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ABSTRACT

The long-term success of climate models that operate on multiresolution grids depends on access to subgrid

parameterizations that act appropriately across a wide range of spatial and temporal scales. As the first step in

a series of efforts to obtain such scale-aware subgrid parameterizations, the authors focus on the anticipated

potential vorticity method (APVM) on a sequence of quasi-uniform grids with varying resolutions. Through

a scale analysis technique and phenomenological theories for two-dimensional turbulent flows, they derive

a new formulation of the APVM that depends on a single parameter that is formally independent of the time-

step size, the grid resolution, and the flow itself. Results of numerical experiments with this new formulation

demonstrate that the optimal parameter of the new APVM formulation is invariant with respect to the time-

step size, is insensitive to the flows, and is only weakly dependent on the grid resolution.

1. Introduction

The pressing need to have detailed knowledge of local

features of climate systems and the high costs of obtaining

such knowledge has motivated research on regional cli-

mate modeling. A new global-to-regional multiresolution

approach has been proposed for which only one grid, with

variable resolutions and with smooth transitions between

fine and coarse grid regions, is involved (Ringler et al.

2011). This approach gives rise to a new set of challenges.

One challenge is how to produce suitable meshes with

local resolutions (see, e.g., Ringler et al. 2008). Another

challenge is related to the implementation of parame-

terizations on a variable-resolution grid. This work is part

of a series of efforts to address the second issue.

Developing scale-aware parameterizations for the

atmosphere and ocean has been a difficult and largely

unmet challenge. While the closures for clouds in the

atmosphere (Arakawa and Schubert 1974) and eddies in

the ocean (Gent and McWilliams 1990) have clearly

been successful, neither has been generalized across

spatial and/or temporal scales. The long-term success

of models that operate on meshes with multiple reso-

lutions will depend on access to closure parameteriza-

tions that act appropriately across a wide range of spatial

and temporal scales with little or no ad hoc tuning. Such

closures, assuming that they exist, would demonstrate an

understanding of the modeled physical process(es) far

beyond our current capability.

Two of the most important components of the climate

system, the ocean and the atmosphere, can both be

considered as thin layers of fluids surrounding the earth.

In other words, the large-scale motions of the ocean and

atmosphere are nearly two-dimensional flows and, thus,

the fundamental principles of two-dimensional turbu-

lent flows provide guidance into the dynamics of the

ocean and atmosphere. The most striking features of such

turbulent flows are the inverse cascade of the kinetic

energy and the cascade of the enstrophy (Batchelor 1969;

Kraichnan 1967; Lilly 1971, 1969; Maltrud and Vallis

1991). For two-dimensional turbulent flows, the enstrophy

plays the role that the kinetic energy does for three-

dimensional turbulent flows. In adiabatic systems, such

as the shallow-water equations or the primitive equa-

tions cast in isopycnal coordinates, this role is played by

the potential enstrophy. The presence of the upscale

(inverse) energy cascade in two-dimensional turbulence
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acts to move kinetic energy away from the grid scale; thus

requiring very little, if any, grid-scale dissipation of ki-

netic energy in numerical simulations. At the same time,

the downscale cascade of potential enstrophy necessitates

the removal of grid-scale variance in potential vorticity in

order to maintain robust simulations. The fundamen-

tally different behavior of energy and enstrophy in two-

dimensional turbulence has led to the development

of energy-conserving, enstrophy-dissipating numerical

schemes (see, e.g., Arakawa and Hsu 1990; Sadourny

and Basdevant 1985).

The anticipated potential vorticity method (APVM)

of Sadourny and Basdevant (1985) is a subgrid eddy

closure scheme that is perfectly energy conserving and,

at the same time, enstrophy dissipating. In the context of

a shallow-water flow, the APVM can be described by

›u

›t
1 (q 2 D)k 3 hu 5 2$

�
gh 1

1

2
juj2
�

, (1)

with u and gh denoting the velocity and geopotential

fields, respectively; q [ (k � $ 3 u 1 f )/h is the potential

vorticity; D is a correction to the potential vorticity q;

and k is the unit vector in the vertical direction. The

modified system remains energy conserving, as the term

k 3 u is perpendicular to the horizontal velocity com-

ponent. As discussed in detail in section 2 and the ap-

pendix, the term D is chosen so that the modified system

dissipates the potential enstrophy (i.e., the variance of

the potential vorticity). In its simplest form, we have

D 5 gu � Dq. (2)

It was proposed in Sadourny and Basdevant (1985) that

g1 should be a time-scale-selective parameter and thus

should take the following form:

g 5 s dt, (3)

with dt denoting the time step and s is an independent

parameter. After substituting (3) into (2), we see that,

with dt 3 u being the displacement vector and $q being

the change rate of the potential vorticity over space, D

represents the variation of the potential vorticity along

the fluid path. As a result, the quantity (q 2 D) repre-

sents the value of the potential vorticity at an upstream

point, hence, the name anticipated potential vorticity

method.

As we have mentioned, we intend to study param-

eterizations on variable-resolution grids. Thus, we are

pursuing approaches for the development of scale-

aware parameterizations. As the first step, here we focus

on the APVM (1)–(2) on a sequence of quasi-uniform

grids with varying resolution. We ask the following ques-

tions: what is the optimal form–value of the coefficient g

and how does the optimal parameter change in response

to changes in the grid resolution and time step?

Clearly, the primary challenge in the development of

any scale-aware parameterization will be the identifi-

cation of parameter(s) that are largely insensitive to the

spatial and temporal resolution of the numerical model.

So whereas the form of g in (3) is appealing because of

its clear physical interpretation, it is clearly sensitive to

the choice of model time step. There is no analysis

available to support the invariance of the parameter s

when using the APVM; in fact, our experience shows

that the optimal value of s is indeed influenced by the

time-step size and the grid resolution of each particular

simulation. In our opinion, this puts a severe constraint

on the applicability of the form in (3) for g because, for

each particular simulation, without extensive fine-tuning

and comparisons, it is not clear what the optimal value of

s one should use.

If we can cast the APVM in terms of a scale-insensitive

parameter, then we can use basic parameter optimization

techniques to find the appropriate value of this parameter

through comparisons to high-resolution reference solu-

tions. Parameter optimization is really only practical for

scale-insensitive parameters.

To overcome the difficulty associated with the form in

(3) for g, we endeavor to find a form of the APVM pa-

rameterization that is a function of a single, largely

scale-invariant parameter, which is denoted as a in our

analysis below. Our main tools are a scale analysis and

the phenomenological theories of two-dimensional tur-

bulent flows. The nonlinear advective term plays an

important role in the phenomenological theories of

turbulence (see, e.g., Frisch 1995). However, the non-

linear advective term usually does not participate in the

scale analysis carried out in designing subgrid eddy

closure schemes (Berselli et al. 2006). The dissipation

term always has a key place in scale analysis because the

dissipation rate is assumed to be representative of the

eddy fluxes throughout the inertial range. A nonlinear

dissipation term, such as the one with APVM [see (17) as

well as (A10) and (A11)] will lead to nonlinear convo-

luted terms in the contributions to the (potential) ens-

trophy dissipation at a given scale [see (A15) for the

two-dimensional incompressible case]. We deal with

the difficulty associated with these terms by analyzing

the scale interactions and singling out the dominant

1 In the foregoing reference, u instead of g is used for the APVM

coefficient. We have switched to g to avoid confusion with the

spherical coordinate u introduced later.
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term, which is then taken as an approximation to the

(potential) enstrophy dissipation rate at that scale. De-

tails are presented in section 2 for shallow-water flows and

in the appendix for two-dimensional incompressible flows.

In section 3, we present the results of numerical ex-

periments conducted to determine the optimal value of

a that appears in the new form of g. One role of those

experiments is to show that the scale analysis is valid,

despite the assumptions made. In fact, it is seen from the

experiments that a is invariant to the size of the time

step and has a very weak dependence on the grid reso-

lution. In section 4 we provide the concluding remarks.

2. Subgrid eddy closure based on the APVM

In this section, we perform a scale analysis on the

APVM applied to the shallow-water equations, and

derive a new formulation that depends on a single pa-

rameter that is formally independent of the time-step

size and the grid resolution and therefore is suitable for

parameter optimization. The scale analysis is an ex-

tension of the analysis given in the appendix for two-

dimensional incompressible turbulent flows for which

the phenomenological (Batchelor 1969; Kraichnan 1967;

Leith 1968) and mathematical (Bardos 1972; Constantin

2007) theories are mature. This extension is possible if

we assume that the shallow-water flow is predominantly

two-dimensional and variations in the fluid thickness

variable h are negligible compared to the mean fluid

thickness. For many realistic cases, this is a reasonable

assumption.

The APVM method for the system of the one-layer

shallow-water equations is given by

›h

›t
1 $ � (hu) 5 0,

›u

›t
1 (q 2 D)k 3 hu 5 2$(gh 1 K),

8><
>: (4)

where h denotes the fluid thickness and K 5 juj2/2 is the

kinetic energy. For shallow-water flows the potential

vorticity is defined as the ratio between the absolute

vorticity and the fluid thickness:

q 5
h

h
, (5)

with the absolute vorticity h given by

h 5 z 1 f (6)

and the relative vorticity z given by

z 5 k � $ 3 u. (7)

The term D is the APVM correction to the potential

vorticity. Taking the curl of the second equation of (4), we

obtain

›z

›t
1 $ � [(q 2 D)hu] 5 0. (8)

Because the Coriolis force can be considered time in-

dependent, we then write (8) as

›h

›t
1 $ � [(q 2 D)hu] 5 0. (9)

Replacing h by hq in (9) and using the first equation of

(4) for the height h, we infer that

h

�
›q

›t
1 u � $q

�
5 $ � (Dhu). (10)

Multiplying (10) by q, we obtain

h
›

›t

�
1

2
q2

�
1 hu � $q2

2
5 q$ � (Dhu). (11)

Multiplying the first equation of (4) by q2/2, we obtain

q2

2

›h

›t
1

q2

2
$ � (hu) 5 0. (12)

Combining (11) and (12), we have

›

›t

�
1

2
hq2

�
1 $ �

�
1

2
hq2u

�
5 q$ � (Dhu). (13)

LetM denote the spatial domain. IfM is bounded, then

the nonpenetration boundary condition is assumed on

the boundary (i.e., u � n 5 0, n being the outward normal

vector on the boundary ›M). IfM is the whole sphere,

then no boundary conditions are needed. Integrating

(13) overM, we obtain the potential enstrophy balance

equation:

d

dt

ð
M

1

2
hq2 5 2

ð
M

Dhu � $q. (14)

It is easy to see that, if the correction term D is taken as

D 5 gu � $q, (15)

then the right-hand side of (14) is negative. Indeed, with

this choice of D, (14) becomes

d

dt

ð
M

1

2
hq2 5 2

ð
M

ghju � $qj2. (16)
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Because the flow is predominantly two dimensional and

the variations in h are small compared to h itself, we as-

sume that h on both sides of (16) is constant. The impli-

cations of this assumption are discussed in section 4. Then,

that equation reduces to

d

dt

ð
M

1

2
q2 5 2

ð
M

gju � $qj2. (17)

Let ‘ denote the grid scale and x‘ denote the enstrophy

dissipation rate at the scale ‘. Noticing the relations t‘ ;

‘/u‘ and u‘ ; c‘/‘, we derive from the left-hand side of

(17) that

x‘ ;
q2
‘

t‘
;

c‘q
2
‘

‘2
, (18)

where q‘ and c‘ are the potential vorticity and stream-

function, respectively, at the scale ‘ and the symbol ‘‘;’’

means ‘‘equal within an order one constant.’’ From the

right-hand side of (17), we infer that

x‘ ; gju0$q‘j
2

; gke
q2
‘

‘2
. (19)

In the above we have replaced u by u0, the magnitude of

the zeroth mode of the velocity field, based on the con-

jecture that the term ju
0
$q

‘
j2 dominates in all the con-

tributions to the potential enstrophy dissipation at the

scale ‘. This conjecture can be supported by arguments

similar to those made in the appendix for two-dimensional

Euler flows. Comparing (18) and (19), we obtain

g ; ke21c‘. (20)

Using again the relation u‘ ; c‘/‘, we can rewrite (20) as

g ; ke21u‘‘. (21)

We remark that (21) has the dimension of time and this

coincides with the traditional choice of sdt as the form

of g; see Ringler et al. (2011).

The expression (21) is not of use in practice because c‘
is not readily available. We shall apply the same trick as

used in the appendix to equate x‘ to the overall model

potential enstrophy dissipation rate x. To do so, we first

determine the relation between q‘ and c‘ According to

(5)–(7), the potential vorticity q is defined as

q 5
k � $ 3 u 1 f

h
.

It still holds true that, as in the two-dimensional Euler case

(see the appendix), variations in the Coriolis parameter

f are unimportant at the grid scale ‘. On the other hand,

we continue to use the assumption that the variation in

h is small compared to h itself and replace h in the above

equation by its mean value h. Hence, we have

q‘ ;
c‘

‘2h
. (22)

With (22), the potential enstrophy dissipation rate x‘ in

(18) takes the form

x‘ ;
c3
‘

‘6h
2

. (23)

Using this new form for x‘, we can infer from (20) that

g ; ke21x1/3
‘ ‘2h

2/3
. (24)

Note that the overall model enstrophy dissipation rate is

given by

x 5 gju � $qj2. (25)

Replacing x‘ in (24) by x and using (25), we have

g ; ke23/2ju � $qj h‘3. (26)

The full form for g is then given by

g 5 ake23/2ju � $qj h‘3, (27)

where a is a constant independent of the scale and state

of the flow. We remark that the average kinetic energy

ke, the advection of the potential vorticity u �$q, and the

average height h can all be computed from the corre-

sponding dynamical variables of the model. The grid

scale ‘ can be represented by the distance between two

neighboring grid points. Thus, a is the only parameter in

the expression in (27) for g and is the value of this pa-

rameter that we wish to optimize.

3. Numerical experiments

a. The spectra and the basic optimization technique

Our purpose here is to evaluate the effectiveness of the

scale-aware APVM closure developed above. In partic-

ular, several reasonable sounding assumptions were

made in carrying out the scale analysis, so that numerical

testing of the scale invariance of a is useful in verifying

that result of the analysis. As with the evaluation of most

closures, the measure of effectiveness is based on the

ability of a low-resolution simulation with the closure to
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reproduce certain important aspects of a high-resolution,

reference simulation. In the simulations below, we eval-

uate the closure based in its ability to reproduce the

spectrum of the enstrophy obtained in the high-resolution

simulation.

It has been conjectured (see, e.g., Batchelor 1969;

Kraichnan 1967) and approximately verified in the litera-

ture (see, e.g., Lilly 1969, 1971) that for two-dimensional

incompressible turbulent flows, the spectrum of the ens-

trophy satisfies a 21 power law. Equivalently, the spectrum

of the kinetic energy satisfies a 23 power law, in contrast to

the famous 25/3 power law for three-dimensional turbulent

flows. Our reference solution is computed on a very fine

grid, with the least damping that is still capable of pro-

ducing a potential enstrophy spectrum that approxi-

mates the 21 power law well. The damping mechanism

used to produce the reference solution is provided by

conventional hyperviscosity that has been widely used in

geophysical fluid dynamics.

To study the spectra of the fluids on the whole sphere,

the natural choice of basis functions are the spherical

harmonic functions (Adams and Swarztrauber 1997).

We briefly recall that the spherical harmonics are the

eigenfunctions of the Laplace operator on the sphere. In

spherical coordinates, spherical harmonics are conven-

tionally represented as

Ym
n (u, u) 5 Pm

n (cosu)eimu, n $ 0, jmj # n, (28)

where m denotes the zonal wavenumber and Pm
n the nth

is the associated Legendre polynomial of mth order.

Here Ym
n (u, u) satisfies the eigenvalue problem:

2DYm
n (u, u) 5 n(n 1 1)Ym

n . (29)

Because of (29),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(n 1 1)

p
is often taken as the scalar

(spherical) wavenumber of the spherical harmonic Ym
n .

It can be shown that fYm
n g forms a complete orthogonal

basis for functions on the sphere (Courant and Hilbert

1953). For this reason, the complete set of the spherical

harmonics makes an ideal candidate for the basis func-

tions used for studying the spectra of various dynamical

variables on the sphere.

Because we have chosen to define the effectiveness of

the closure based on its ability to reproduce the potential

enstrophy spectra of the reference solution, our definition

of ‘‘error’’ represents the difference, on a log scale, be-

tween the spectra over a subrange of wavenumbers.

Hence, for a spectral density function P̂ and the reference

spectral density function P̂
r
, we define the difference as

d 5
1

k1 2 k0 1 1
�
k

1

k5k
0

��logP̂(k)2 logP̂r(k)
��, (30)

where the spherical wavenumber k is defined as [see

(29)]

k 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(n 11)

p
and k0 and k1 are the starting and ending wavenumbers

for the subrange, respectively. We refer to d as the spectral

distance.

b. The optimal parameters

The numerical experiments are conducted with the

one-layer shallow-water equations on the whole sphere.

The numerical model is based on the numerical scheme

presented in Thuburn et al. (2009) and Ringler et al.

(2011). This approach is being used to develop global

atmosphere and ocean models that are a part of the

Model for Prediction Across Scale (MPAS) project.

The MPAS modeling approach is particularly attractive

for this study since it solves the vector-invariant form

of the momentum equation from which the APVM is

derived in (4), conserves potential vorticity in analogy to

the continuous system in (9), and guarantees that the

APVM correction term does not create or destroy ki-

netic energy. While the MPAS system can be used with

a wide class of meshes, for our experiments we use

spherical centroidal Voronoi tessellations (SCVTs) be-

cause of their global uniformity and isotropy (Du et al.

1999). The remapping from SCVTs to regular Gaussian

grids on the sphere (as input to the spherical harmonics

package; Adams and Swarztrauber 1997) is done with

the Spherical Coordinate Remapping and Integration

Package (SCRIP; Jones 1999).

The first test case is the standard shallow-water test

case 5 (Williamson et al. 1992) that involves a zonal flow

impinging on a mountain. The initial zonal velocity u of

the flow and the surface height ~h are given by

u 5 u0 cosu,

g ~h 5 gh0 2 aVu0 1
u2

0

2

�
cosu,

�

respectively. The mountain, which is part of the lower

boundary, has the form

b 5 b0

�
1 2

r

R0

�
.

The fluid thickness h is then given by

h 5 ~h 2 b.

In the above, u represents the latitude as usual, and the

other physical parameters are set following Williamson
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et al. (1992), namely, V 5 7.292 3 1025 s21, g 5

9.806 16 m s22, a 5 6.371 22 3 106 m, u0 5 20 m s21, h0 5

5960 m, b 5 200 m, R0 5 p/9, r2 5 min[R2
0, (l 2 l)2 1

(u 2 uc)
2], with l being the longitude, and lc 5 2p/2,

uc 5 p/6. The midlatitude Rossby radius in these simu-

lations is approximately 2000 km. The coarsest simula-

tion conducted has a nominal resolution of approximately

450 km. Thus, in all simulations the Rossby radius is

resolved. We remark that the topography is not a source

or sink of potential vorticity, but instead acts as an in-

homogeneity that leads to the breakdown of the non-

linearly balanced geostrophic zonal jet. There is no other

external forces added, and therefore this is a slowly de-

caying turbulent flow.

The reference solution is computed on an SCVT mesh

with 655 362 cells (dx ’ 30 km), with the traditional =4

dissipation of 109 m4 s21. The shallow-water test case

5 evolves into turbulence in about 20–25 days. A snap-

shot of the potential vorticity field on day 50 is shown in

Fig. 1. The axis of the globe is slightly tilted in order to

better display the structure of the potential vorticity

field on the Northern Hemisphere. We plot the spec-

trum of the potential enstrophy of the reference solution

on day 150 in Fig. 2. An inertial range of width ap-

proximately 1 decade appears between wavenumbers 20

and 120, which approximately verifies the 21 power law

for potential enstrophy spectra.

Before we present comparison and optimization re-

sults, we remark on the choice of the starting and ending

wavenumbers of the subrange used in the comparisons.

The subrange for comparison should be part of the in-

ertial ranges of the reference and approximate solutions.

The reason for this is that the high noise level in the scales

larger than the inertial range will render the compari-

son results largely stochastic, and hence noninformative,

whereas the spectra at scales smaller than the inertial range

heavily depend on the damping mechanism used in each

particular simulation, and hence cannot give reliable re-

sults. Because the approximate solutions are computed

FIG. 1. The potential vorticity field on day 50, with values in the

range from 23.2 3 1028 m21 s21 to 3.2 3 1028 m21 s21. The lo-

cation of the mountain is indicated by the circle.

FIG. 2. The potential enstrophy spectrum on day 150 for the reference solution.
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using the APVM on a coarser grid to measure the ef-

fectiveness of the closure, these simulation display

a spectral range that is narrower than that of the ref-

erence solution. Their inertial range will also be nar-

rower than that of the reference solution. This fact

should also be taken into consideration when choosing

the starting and ending wavenumbers of the subrange

used for comparisons.

Approximate solutions are computed on a 10 242-cell

(approximate resolution of 240 km) SCVT grid, with the

APVM parameter a taking values from 0 to 0.01, with an

increment of 0.0001. The APVM in (15) is the only

closure used in these low-resolution simulations (i.e., the

=4 dissipation is turned off). Hence, there are 101 sim-

ulations. The spectrum of the potential enstrophy for

each of these simulations is compared to that of the ref-

erence solution and a distance between the spectra is

calculated using (30). The approximate solutions on the

10 242-cell grid have an inertial range between wave-

numbers 20 and 80. Hence, we take k0 5 20 and k1 5 80

in (30), per the discussion in the preceding paragraph.

Then, we plot the spectral distance against the APVM

parameter a in Fig. 3. It is seen that the minimum dis-

tance is obtained at a 5 0.0013. Just to show what

happens if a is too small or too large, we plot in Fig. 4 the

potential enstrophy spectra of the reference solution

and of the simulations with a 5 0, 0.0013, 0.0080. With

a 5 0, the potential enstrophy is transferred down scales

by the nonlinearity and then, because of the lack of dis-

sipation, it piles up at high wavenumbers. On the other

hand, with a 5 0.008, the overdamping is obvious as it

pulls down the tail of the spectrum significantly below

that of the reference solution leading to an inertial range

with a slope significantly steeper than the 21 slope.

The APVM, as it was formulated in Sadourny and

Basdevant (1985) and used in the literature, is not suit-

able for parameter optimization because the way it is

formulated, the parameter will depend on the time-step

size as well as the grid resolution. The advantage of our

formulation is that the parameter is invariant with re-

gard to the time-step size, up to time truncation error. It

is also formally independent of the grid resolution,

though we suspect that the parameter may have a weak

dependence on the grid resolution. In what follows, we

demonstrate the time-step invariance aspect of our

formulation and we explore whether and how the pa-

rameter depends on the spatial grid resolution.

To show the invariance of the parameter with respect

to the time-step size dt, we redo the comparison study,

but with dt varying over f691.2 s, 345.6 s, 172.8 s, 86.4 s,

43.2 s, 21.6 sg. For each of these step sizes, a curve is

plotted in Fig. 5 showing how the distance in the spectra

varies with respect to the APVM parameter a. These

curves for different time-step sizes agree very well with

each other. In particular, they all point to the same

minimizing parameter a 5 0.0013. This is not surprising,

as our modified subgrid eddy closure model consists of

partial differential equations that are independent of the

time-step size, and hence the solutions of the model are

independent of the time-step size as well.

FIG. 3. Error in the inertial range of the potential enstrophy spectrum for an APVM

approximation with a grid having 10 242 cells and time step of 172.8 s.
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To explore whether and how the parameter a depends

on the grid resolution, we fix the time-step size at dt 5

172.8 s and perform the optimization on a on 2 addi-

tional grids, one coarser with 2562 cells, and the other

finer with 40 962 cells. For each of these grids (nCells 5

2562, 10 242, and 40 962) we plot, in Fig. 6, a curve de-

picting how the spectral distance changes with respect to

the APVM parameter a. The curve for the coarser grid

(nCells 5 2562) attains its minimum at a 5 0.0010

whereas the curve for nCells 5 10 242 attains its mini-

mum at a 5 0.0013, as we have already seen. The curve

for the finer grid (nCells 5 40 962) attains its minimum

at a 5 0.0018. Through this experiment, we see that the

minimizing parameter a tends to increase as the grid is

FIG. 4. Comparison of the potential enstrophy spectra with a 5 0, 0.0013 and 0.0080 for an

APVM approximation with a grid having 10 242 cells and time step of 172.8 s. While a makes

a huge difference on the spectrum at day 150, the error norms at day 15 (as compared to the

high-resolution spectral solution used in Ringler et al. 2011) are insensitive (results not shown).

FIG. 5. Invariance of the parameter a with respect to the time-step size.
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refined. The dependence of the minimizing parameter a

is weak because, in this experiment, the grid resolution

changes by a factor of 2, but the change in the mini-

mizing a is much slower. As a matter of fact, the mini-

mizing a is approximately proportional to nCells0.212,

with the exponent 0.212 being much smaller than the

exponent 3 over ‘ in (27).

There are a few other noteworthy features about

Fig. 6. We see that for the same parameter a, finer grids

usually produce better results (smaller spectral distance

when compared to the reference solution). We also note

that as the grid gets finer, the spectral distance curve

becomes less sensitive to the increment in the parameter

a. In fact, even though the curve for nCells 5 40 962

attains its minimum at a 5 0.0018, its value at a 5 0.0013

is very close to the minimum value. To corroborate on

this point, we compare, in Fig. 7, the spectra of the re-

sults on the finer grid (nCells 5 40 962) with a 5 0.0010,

0.0013, 0.0018, and 0.0050. The spectrum of the refer-

ence solution is also plotted for comparison. We see that

the spectra for a 5 0.0010, 0.0013, and 0.0018 stick to-

gether and are close to the spectrum of the reference

solution in the inertial range. On the other hand, the

spectrum for a 5 0.0050 is pulled down below the refer-

ence solution due to overdamping. These results indicate

that, although the minimizing value of the parameter a is

weakly dependent on the grid resolution, there is some

robustness present: using optimal values for the param-

eter determined using one grid resolution can seemingly

be safely used for other grid resolutions.

Universality is a key concept in Kolmogorov’s K41

theory of three-dimensional turbulence (Kolmogorov

1941a,b). It is also one that has been the subject of in-

tense debate (see, e.g., Frisch 1995; Landau and Lifshitz

1987). It is beyond the scope of the current article to

discuss the implications that this concept bears on two-

dimensional turbulence modeling. Instead, we examine

the sensitivity of the optimal APVM parameter with re-

spect to the flow itself by performing another set of ex-

periments with arbitrarily imposed initial data. In the

results that we present, the initial velocity is derived from

the streamfunction:

c 5 2au0 cosu sin2f,

where u denotes the latitude and f the longitude. This

seemingly simple function is highly oscillatory in the

spherical harmonics space, leading to the presence of a

wide range of scales. The height h is initially taken as

a constant 5000 m. There is no external forcing ap-

plied, and we let the flow evolve freely. Therefore, this

is also a slowly decaying turbulent flow. The high-

resolution solution is again computed on the 655 362-

cell SCVT grid, with a =4 diffusion of 109 m4 s21. On

day 230, we observe an inertial range spanning ap-

proximately from wavenumber 30 to 300 (see Fig. 8).

The APVM in the approximate solutions in (4) are

computed on the 10 242-cell SCVT grid. The errors in

the inertial range of potential enstrophy spectra of

FIG. 6. Error in the inertial range of the potential enstrophy spectrum for several spatial

resolutions. The time step is 172.8 s.
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these approximate solutions are plotted against the

APVM parameter a in Fig. 9. The trend in the spectral

distance with respect to the APVM parameter a re-

sembles that depicted in Fig. 3. The minimizing pa-

rameter found for this test case, a 5 0.0020, is close to

the optimal value found for the standard shallow-water

test case 5.

4. Conclusions

The original form of the coefficient g for the antici-

pated potential vorticity method, as suggested in Sadourny

and Basdevant (1985), is not suitable for parameter op-

timization because it involves a parameter that is not in-

variant with respect to the time-step size and the spatial

FIG. 7. Insensitivity of the spectrum near the minimizer for the grid with 40 962 cells and the

time step is 172.8 s.

FIG. 8. The potential enstrophy spectrum of the solution evolving from an arbitrary initial data

on a 655 362-cell grid (approximate resolution of 30 km) on day 230.
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grid resolution. Using a scale analysis technique and the

phenomenological theories of two-dimensional turbu-

lence, we propose a new form for the APVM coefficient g

such that the new parameter involved is formally in-

variant with respect to the time-step size and spatial grid

resolution.

Numerical experiments are conducted on the whole

sphere with different grids, each of which is a quasi-

uniform spherical centroidal Voronoi tessellation of the

sphere. Two test cases have been used. One is the

standard shallow-water test case 5 involving a mountain

topography, and the other is a flow evolving from arbi-

trarily imposed initial data. Our basic optimization

technique is to compare the potential enstrophy spectra

of the APVM solutions to that of a reference solu-

tion that is calculated on a very fine grid with =4 hy-

perviscosity. The numerical results demonstrate the

time-step invariance aspect of our formulation for g.

Over a sequence of grids having the number of cells

varying from 2562 to 40 962, the optimal APVM pa-

rameter is found to be within the range 0.001 to 0.002.

Because the measure function is relatively flat near the

optimal value of a, this factor of 2 change in the optimal

parameter is not significant.

One issue that we have not touched upon in this article

is the performance of the APVM compared to the tra-

ditional hyperviscosity (iterated D) method. This issue

was discussed in Sadourny and Basdevant (1985) for the

APVM in its original formulation; it was shown that, for

the same spatial grid resolution, the APVM produces

more realistic results than the traditional hyperviscosity

method. A comparison between the APVM in the new

scale-invariant formulation and the traditional hyper-

viscosity method is then in order. With the standard

shallow-water test case 5, the reference solution is com-

puted on a 655 362-cell (approximate resolution of

30 km) grid with a =4 dissipation of 1.0 3 109 m4 s21,

which is the result of extensive fine tuning. Basic scaling

arguments say that the =4 parameter goes like ‘4. Thus,

the optimal =4 parameter on a 10 242-cell grid should be

4.0 3 1012 m4 s21. For comparison, we plot, in Fig. 10,

the spectra between the spherical wavenumbers 10 and

100, of the high-resolution reference solution, the 4.0 3

1012 m4 s21 =4 solution, and the APVM solution with

the optimal parameter a 5 0.0013. It is seen that the

solution of the APVM and the solution of the =4 method

match very well at low wavenumbers; at high wave-

numbers the APVM solution has a more extensive in-

ertial range that matches well with that of the reference

solution. The spectrum curve of the =4 solution also

appears slightly steeper than that of the reference so-

lution in the inertial range. This test shows that the

APVM in the new formulation developed in this article

is at least as good as the traditional =4 method at pro-

ducing solutions that conform to the phenomenological

theories of two-dimensional turbulence.

The full three-dimensional primitive system will re-

quire some type of =4 closure to dissipate the downscale

cascade of kinetic energy. Even in this situation, we

expect that the APVM is a valuable component of the

FIG. 9. Error in the inertial range of the potential enstrophy spectrum of APVM solutions

evolving from an arbitrary initial data on a 10 242-cell grid (approximate resolution of 240 km).

The minimizing parameter is at a 5 0.0020.
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overall model closure by allowing the =4 parameters to

be smaller, and therefore less dissipative, than they

would be otherwise.

The closure presented here includes the assumption of

small deviations in fluid thickness. Namely, before starting

the scaling analysis in (17), we assume that the fluid

thickness h that is included on both sides of (16) cancels

out. For the simulations conducted above and, likely, for

the broad class of shallow-water systems where this closure

might be utilized, this will, in general, be a valid assump-

tion. As we apply the closure to more realistic systems,

such as the isopycnal model of the ocean circulation, this

assumption will have to be carefully reevaluated.

This work is the first in a series of efforts to address the

issue of subgrid eddy parameterizations on variable-

resolution grids in global models. The experiments in

this work are conducted on quasi-uniform grids and we

address the question about how the resolution of the

quasi-uniform grid affects the optimizing parameter for

the APVM. Naturally, our next step is to address the

issue on a variable-resolution grid. There, the ques-

tion becomes: how the resolution of each region af-

fects the optimal parameter a. The form of (27) for g

involves the grid resolution ‘ and therefore the re-

gional resolution has been accounted for in the co-

efficient g. Hence, we believe the form of (27) can be the

starting point for parameter optimizations on variable-

resolution grids. However, we also expect new chal-

lenges (e.g., the interactions between the flows from

different regions).

Our first step in doing parameter optimizations is to

identify a parameter that is invariant with respect to

other configurations of the model (e.g., the time-step

size and the spatial grid resolution). We believe that this

approach applies to and can be taken toward other pa-

rameterizations or subgrid eddy closure schemes. It is

our intention to apply this approach to certain other im-

portant parameterizations (e.g., the Gent–McWilliams

parameterization of turbulent transport on variable-

resolution grids; Gent and McWilliams 1990; Gent

et al. 1995; Ringler and Gent 2011).

Acknowledgments. The authors owe thanks to Mat

Maltrud for a careful reading of a draft of this paper

and for helpful comments. The authors also thank the

anonymous referees, whose comments and suggestions

helped to improve the manuscript. Q. Chen and M.

Gunzburger were supported by the U.S. Department of

Energy Grant DE-SC0002624 as part of the Climate

Modeling: Simulating Climate at Regional Scale pro-

gram. T. Ringler was supported by the DOE Office of

Science’s Climate Change Prediction Program Grant

DOE 07SCPF152.

APPENDIX

Scale Analysis for the 2D Incompressible Flows

In this appendix, we give details about the scale analysis

for two-dimensional inviscid incompressible flows, which

FIG. 10. Comparison of the spectra between spherical wavenumber 10 and 100 of the APVM

with a 5 0.0013 and the =4 dissipation of 4.0 3 1012 m4 s21 on a 10 242-cell grid on day 100.
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leads to a scale-aware formulation for the anticipated

potential vorticity method (APVM). Such an analysis

serves as a base for the extension to shallow-water flows

given in section 2. We also hope that it will provide

guidelines for the analysis of other geophysical flows that

are predominantly two-dimensional, such as the primitive

equations cast in isopycnal coordinates.

Two-dimensional inviscid incompressible flows obey

the Euler equations:

›u

›t
1 u � $u 1 f k 3 u 1 $p 5 0

$ � u 5 0
:

(
(A1)

The term f k 3 u represents the Coriolis force, as the

equations are cast in a rotating reference frame. Before

we present the APVM, we need to rewrite (A1) in the

vector-invariant form:

›u

›t
1 hk 3 u 1 $

�
p 1

1

2
juj2
�

5 0

$ � u 5 0

,

8<
: (A2)

where

h 5 k � $ 3 u 1 f (A3)

denotes the absolute vorticity. The APVM adds a cor-

rection D to h in (A2) so that it becomes

›u

›t
1 (h 2 D)k 3 u 1 $

�
p 1

1

2
juj2
�

5 0

$ � u 5 0

.

8<
: (A4)

We first remark that this correction term has no effect on

the energy balance of the system because

2D(k 3 u) � u 5 0.

In other words, the kinetic energy is still conserved for

the modified system in (A4). Taking the curl of the ve-

locity equation and using the incompressibility condi-

tion shown in (A4), we obtain

›h

›t
1 u � $h 5 u � $D. (A5)

We shall determine a form of D so that the term on the

right-hand side of (A5) will effectively dissipate ens-

trophy. We denote the spatial domain by M. If M is

bounded, then the no penetration boundary condition is

assumed (i.e., u � n 5 0, n denoting the outward normal

vector on the boundary ›M). IfM is the whole sphere,

then no boundary conditions are needed. We multiply

(A5) by h, integrate by parts over the spatial domainM,

and again making use of the incompressibility condition,

we have

1

2

d

dt
jhj2 5 2

ð
M

Du � $h. (A6)

The right-hand side of (A6) is negative if

D5A(u � $h) (A7)

for some positive definite operator A, where A being

positive definite means, for each scalar function J:

ð
M

A(J)J $ 0: (A8)

A natural choice for the operator A is the iterated

Laplacian operator:

A 5 (21)m
=m(~g=m), (A9)

with ~g being a positive parameter yet to be determined.

We can verify that A is positive definite according to (A8)

via integration by parts, assuming suitable boundary

conditions on h and u to annihilate the boundary terms

(again, on the whole sphere, no boundary conditions are

needed). In this appendix we analyze the general form

(A9) of A. The analysis will be extended to a special form

(m 5 0) of A for the shallow-water model in section 2.

The numerical experiments reported on in section 3 are

conducted with this special form as well. We note that

with A taking the form (A9), (A5), and (A6) become

›h

›t
1 u � $h 5 (21)mu � $ =m[~g=m(u � $h)]gf (A10)

and

1

2

d

dt
jhj2 5 2

ð
M

~gj=m(u � $h)j2, (A11)

respectively.

In what follows we employ the scale-analysis tech-

nique to determine a suitable form for ~g. Before doing

so, it will be helpful to recall that, given the stream-

function c, the velocity field u and the absolute vorticity

h can be obtained via

u 5 =?c [ k 3 $c, h 5 Dc 1 f . (A12)

We denote by ‘ the grid scale, and by a subscript ‘ the

mode of certain variables at the scale ‘ (e.g., cl for

the mode of the streamfunction c at the scale ‘ and xl for
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the mode of the enstrophy dissipation rate at the scale ‘).

At the grid scale ‘, the flow is assumed to be in the

turbulent regime; isotropy is assumed for motions at this

scale. Therefore, it is justified to replace the overall

enstrophy dissipation rate by the per-unit-volume ens-

trophy dissipation rate (Berselli et al. 2006).

The absolute vorticity h and the streamfunction are

related by (A12). We first note that the variations in the

Coriolis parameter f are unimportant at the grid scale ‘.

A rigorous justification of this assertion would requires

the use of Fourier expansion or spherical harmonics.

Formally speaking, the Coriolis parameter f is only

present in the first few modes (large scales), and is ab-

sent from higher modes (smaller scales). Thus at ‘, we

have

h‘ ;
c‘

‘2
, (A13)

with h‘ denoting the magnitude of the mode of the ab-

solute vorticity at the scale ‘. Noticing that t‘ ; l/u‘ ; ‘2/

c‘, we derive from the left-hand side of (A11) that

x‘ ;
c3
‘

‘6
. (A14)

The enstrophy dissipation rate x‘ can also be calculated

using the right-hand side of (A11). However, there is

a pitfall as the right-hand side involves the integral of the

square of a nonlinear term. We have briefly discussed

the difficulty associated with this term in the introduc-

tion. This fourth-order nonlinear term comes from the

nonlinear term on the right-hand side of (A10) multi-

plied by h. Generally speaking, in the presence of non-

linearity, the scale separation principle no longer holds.

However, it can be argued that j=m(u0 � $h‘)j
2 is the dom-

inant term in the enstrophy dissipation rate at the scale ‘,

with u0 denoting the magnitude of the zeroth mode of

the velocity field in its representation in terms of, for

example, the spherical harmonics. Indeed, we go back to

(A10), multiply the right-hand side by h‘, and we see that

the convoluted terms that contribute to the enstrophy

dissipation at the scale ‘ has the following form:

u‘
1
=2m11(u‘

2
$h‘

3
)h‘, (A15)

with ‘1, ‘2, ‘3 $ ‘ satisfying the following relation:

1

‘1

1
1

‘2

1
1

‘3

5
1

‘
. (A16)

In the above, for i 5 1, 2, 3, the u‘ and h‘i
are the compo-

nent of the velocity and the absolute vorticity, respectively,

at the scale ‘i. By (A12), these two variables are related

to c
‘i

the component of the streamfunction c at the scale

‘i in the following way:

u‘
i
;

c‘
i

‘i

and h‘
i
;

c‘
i

‘2
i

, i 5 1, 2, 3.

Substituting u‘
i

and h‘
i

in (A15) by the corresponding

expressions listed above, we obtain

�
1

‘2

1
1

‘3

�2m11c‘
1
c‘

2
c‘

3
c‘

‘1‘2‘
3
3‘

2
. (A17)

Phenomenological theories (Batchelor 1969; Kraichnan

1967; Leith 1968) of two-dimensional turbulence implies

that the enstrophy cascade rate x is a constant in the

inertial range, which includes the grid scale ‘. Therefore,

letting L denote the largest scale in the inertial range

(or, the origin of the enstrophy tunnel), and assuming

‘ # ‘1, ‘2, ‘3 # L, we infer from (A14) that

c3
‘

i

‘6
i

;
c3

L

L6
. (A18)

Now that each c
‘i

can be written in terms of cL, ‘i, and

L, we replace the c‘
i

s in (A17) by their corresponding

expressions so that, also using (A16), we obtain

�
1

‘
2

1

‘1

�2m11 ‘1‘2

‘3L8
c4

L. (A19)

It is clear that this term is large when both ‘1 and ‘2 are

large (or equivalently when ‘3 is small) and it is small

when both ‘1 and ‘2 are small (or equivalently when ‘3 is

large). When ‘1 and/or ‘2 fall outside the inertial range,

the relation (A18) does not hold and the preceding

analysis is no longer valid. However, it is reasonable to

conjecture that when ‘1 and ‘2 are the largest scales and

‘3 coincides with ‘, the term in (A19) dominates in all

terms that contribute to the enstrophy dissipation at the

scale ‘. Such a conjecture is supported by the postulation

of inverse energy cascade in two-dimensional turbulent

flows (see e.g., McWilliams 1989; Pedlosky 1987; Rhines

1975), as u0, the magnitude of the largest scale of the

velocity field, tends to grow and dominate as the flow

evolves. Well-behaved numerical results presented in

section 3, albeit for the shallow-water flows, also support

this conjecture. Thus, we replace u‘1
and u‘2

in (A15) by

u0, and h‘3
by h‘, and take the resulting expression as an

estimate for x‘. Therefore, we have
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x‘ ; ~gj=m(u0 � $h‘)j
2

; ~gju0j
2 c2

‘

‘612m
. (A20)

In practice, u0 can be calculated by taking mean of the

kinetic energy ke over the spatial domain. Thus (A20) is

equivalent to

xl ; ~gke
c2

l

‘612m
. (A21)

Comparing (A21) with (A14), we find that

~g ; ke21c‘‘
2m. (A22)

Using (A14) again, we express ~g in terms of x‘ and the

scale ‘:

~g ; ke21x1/3
‘ ‘212m. (A23)

The expression in (A23) is not ready for practical use

because, for many realistic turbulent flows, the enstrophy

dissipation rate x‘ is not known a priori. To overcome this

difficulty, we apply a trick that is often used in con-

structing subgrid eddy closure schemes (e.g., the classic

Smargorinsky closure; Smagorinsky 1963). The trick is to

equate x‘ with the overall model enstrophy dissipation

rate x. The rationale for doing this is that if the closure

method is to faithfully model the flow, the dissipation

mechanism at the scale ‘ must be able to replicate the

overall model enstrophy dissipation rate. To apply the

trick to our case, we first derive from (A11) that

x 5 ~gj=m(u � $h)j2. (A24)

Replacing x‘ in (A23) by x and using (A24), we find

~g ; ke23/2j=m(u � $h)j‘313m.

The complete form of ~g is therefore

~g 5 ~ake23/2j=m(u � h)j‘313m, (A25)

where ~a is a constant independent of the grid resolution

and of the state of the flow.
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