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Abstract

We present a methodology to determine the best turbulence closure for an

eddy-permitting ocean model through measurement of the error-landscape of

the closure’s subgrid spectral transfers and flux. We apply this method to 6

different closures for forced-dissipative simulations of the barotropic vorticity

equation on an f-plane (2D Navier-Stokes equation). Using a high-resolution

benchmark, we compare each closure’s model of energy and enstrophy trans-

fer to the actual transfer observed in the benchmark run. The error-landscape

norm enables us to both make objective comparisons between the closures

and to optimize each closure’s free parameter for a fair comparison. The

hyper-viscous closure most closely reproduces the enstrophy cascade, espe-

cially at larger scales due to the concentration of its dissipative effects to

the very smallest scales. The viscous and Leith closures perform nearly as

well, especially at smaller scales where all three models were dissipative. The

Smagorinsky closure dissipates enstrophy at the wrong scales. The antici-
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pated potential vorticity closure was the only model to reproduce the up-

scale transfer of kinetic energy from the unresolved scales, but would require

high-order Laplacian corrections in order to concentrate dissipation at the

smallest scales. The Lagrangian-averaged α−model closure did not perform

successfully for forced 2D isotropic Navier-Stokes: small-scale filamentation

is only slightly reduced by the model while small-scale roll-up is prevented.

Together, this reduces the effects of diffusion.
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1. Introduction1

Turbulence closure models are required in the dynamical cores of global2

ocean-climate simulations. While grand challenge coupled climate simula-3

tions can use an ocean resolution of 0.1°(∼ 10 km) to simulate timescales4

of decades, resolving the turbulent cascade for submesocale, O(1 km), ed-5

dies remains computationally unachievable. For this reason, mesoscale ocean6

large-eddy simulations (MOLES; Fox-Kemper and Menemenlis (2008)) are7

employed. The goal of a MOLES is to anticipate 1 km results at a much8

coarser resolution. While such closures are sometimes compared subjectively9

by visualizing the simulation results, what is needed is a prescription to objec-10

tively and rigorously compare between the various proposed MOLES closures.11

Such a method is presented here: the computation of fluxes and comparison12

via the error-landscape measured against a high resolution benchmark. Our13

application is to an idealized system, but the framework can be generalized14
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for the evaluation and development of closures applicable to World Ocean15

simulations. In Appendix A, we present the details for generalization to a16

3D baroclinic zonally-reentrant channel.17

Often, the closure approach taken is to set the dissipation scale equal to18

the grid scale. This is equivalent to setting the appropriately-averaged grid-19

scale Reynolds number to unity and is accomplished by simply using a con-20

stant viscosity, ν, that is much larger than the physical value (∼ 10−6 m2s−1)21

so that a numerically resolved simulation results. These large viscosities,22

however, also result in unphysical damping of the large scales. To reduce23

this effect while remaining in the paradigm of a linear dissipative model, the24

order of the Laplacian, ∆ = ∇2, can be increased to ∆2 = ∇4 or higher. Such25

hyper-viscous models are more scale-selective, applying dissipation concen-26

trated near the grid scale (a new dissipation scale is derived from dimensional27

analysis of the ∆n dissipation and this scale is set equal to the grid scale).28

Turbulence is far more than a dissipative phenomenon, however, and purely29

dissipative models cannot reproduce up-scale energy transfers due to inter-30

actions between scales (nor can they reproduce “backscatter” in the 3D case31

Meneveau and Katz (2000a)).32

Another approach is to use what is known about turbulent cascades and33

apply dissipation only where it is required with a spatio-temporally varying34

viscosity, e.g., the Smagorinsky (Smagorinsky, 1963) and Leith (Leith, 1996)35

models. In the Smagorinsky model, the global average energy dissipation36

(due to a spatially uniform viscosity) is equated to the local dissipation at the37

grid scale because the turbulence is assumed homogeneous. The expression38

for ν∗(x, t) then follows from the 3D turbulence spectrum and dimensional39
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analysis. For Leith, enstrophy dissipation and the 2D turbulence spectrum40

in an enstrophy cascade are used to derive the appropriate ν∗(x, t). However,41

the assumption of homogeneity is controversial (Lesieur et al., 2005) and42

there are also issues with vorticity dissipation at the boundaries (Fox-Kemper43

and Pedlosky, 2004; Fox-Kemper, 2005). Yet, the Leith model has been44

successful in improving numerical stability in global eddy-permitting models45

(Fox-Kemper and Menemenlis, 2008).46

In 2D turbulent systems where enstrophy is clearly the quantity cas-47

cading to unresolved scales, methods to dissipate potential enstrophy while48

conserving energy have merit. This can be accomplished by modifying the49

Coriolis force in the momentum equation such that the transport of poten-50

tial vorticity is appropriately diffusive while still being energetically neutral51

Sadourny and Basdevant (1985). The anticipated potential vorticity method52

(APVM) reproduces both the physical transfer of energy to larger scales and53

the dissipation of small-scale enstrophy (Vallis and Hua, 1988). APVM has54

also been extended to variable-resolution grids Chen et al. (2011), and it55

has been generalized to 3D rotating Boussinesq flows Gay-Balmaz and Holm56

(2012). However, it requires a high-order Laplacian correction to concentrate57

the eddy viscosity to the smallest scales (Vallis and Hua, 1988).58

A more recent approach is to use a mathematical regularization of the59

underlying equations, which ensures smooth (hence, computable) solutions,60

as the closure model: e.g., the Lagrangian-averaged α−model (Holm et al.,61

1998; Chen et al., 1998, 1999b,c,a; Foias et al., 2001). It is dispersive rather62

than dissipative: the transport is by a spatially-smoothed velocity field (filter63

width ∼ α). For three-dimensional (3D) incompressible, non-rotating, and64

4



non-stratified flows the α−model does not produce sizeable computational65

gains because it unphysically develops rigid bodies in the flow (Pietarila Gra-66

ham et al., 2007). This limitation disappears when modelling systems that67

include a body force. It has been used successfully where there is a Lorentz68

force, in electrically conducting fluids (Pietarila Graham et al., 2009, 2011),69

and where there is a Coriolis force, in rotating fluids, e.g., the two-dimensional70

(2D) barotropic vorticity equation (BVE) on a β−plane (Nadiga and Mar-71

golin, 2001; Holm and Nadiga, 2003), the shallow water equations (Wingate,72

2004), a two-layer quasigeostrophic (QG) model (Holm and Wingate, 2005),73

and the primitive equations Hecht et al. (2008a,b).74

For 2D flows, relevant to this paper, the α−model enhances the inverse75

cascade of energy (Nadiga and Shkoller, 2001) and in the enstrophy cascade76

regime, the rough kinetic energy and enstrophy spectra remain unchanged77

(k−3 and k−1, respectively) in the limit α→∞ (Lunasin et al., 2007). With78

forcing applied in the wavenumber shells 2 < k < 4 with an amplitude79

proportional to α2, Lunasin et al. (2007) found that increasing α led to80

increasing the amount of fine structure and, consequently, to the need for81

increased resolution. They posited that with forcing unscaled, computational82

gains (instead of losses) might be realized. We will test whether or not this83

is so.84

The challenge in evaluating the effectiveness of LES closures for MOLES85

should already be clear. Not only do many possible closures exist, but these86

closures often differ at the conceptual level of how unresolved turbulent mo-87

tion should be modeled. As such, we expect that the various possible closures88

will each excel in some plausible evaluation metric. The challenge is then to89
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determine an approach, i.e an evaluation framework, that is both unbiased90

and fairly measures the effectiveness of the various closures in mimicking the91

influence of unresolved scales. The goal of this contribution is to do exactly92

that.93

Our approach here is to begin with the simplest system that we believe94

might be applicable to MOLES, with the understanding that the results95

obtained in such idealized systems will have to be reevaluated as the system96

complexity and realism increases. With this caveat in mind, we solve the97

2D barotropic vorticity equation (2D BVE) in a doubly-periodic domain.98

The motivation for using the 2D BVE is to exploit the similarity of the QG99

vorticity equation to the 2D BVE. (MOLES will be applied at grid resolutions100

near 5−10 km.) The QG vorticity equation has a potential enstrophy cascade101

of QG eddies below the scale of the baroclinic instability. Similarly, the 2D102

BVE has an enstrophy cascade below the forcing scale, which serves here as103

an analog to the scale of the baroclinic instability. Furthermore, the robust104

analysis of spectral fluxes of energy and enstrophy in 3D systems, needed for105

more complex, realistic flows (see Appendix A), is sufficiently complicated106

to warrant starting at a lower spatial dimension. Since the 2D BVE system107

lacks the process of baroclinic instability to initiate the turbulent mixing, we108

use large-scale, slowly varying in time, wind stress to activate the turbulence.109

As used in Ocean General Circulation Models (OGCMs), quadratic bottom-110

drag is used to obtain realistic equilibrium solutions.111

Details of the enstrophy cascade process can be measured using spec-112

tral enstrophy transfer analysis (Kraichnan, 1971; Maltrud and Vallis, 1993).113

The goal of any LES is to anticipate higher resolution results. This is ac-114
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complished by accurately modeling the interactions with the missing scales.115

The statistics of these interactions, on a wavenumber basis, are measured116

with spectral transfer analysis. If this analysis shows an accurate reproduc-117

tion, we can be sure we are getting the right answer for the right reason.118

The error-landscape of enstrophy flux is likely, then, the best measure of119

MOLES performance. We use it to quantify the performance of the six pop-120

ular MOLES closures discussed above (the two linear dissipative models and121

the four nonlinear models derived from hypotheses about turbulence) em-122

ploying a single, exponentially convergent, numerical model, the Geophysical123

High Order Suite for Turbulence (GHOST; Mininni et al. (2011)).124

To compare the models, we start by computing a fully-resolved numeri-125

cal solution of a flow with a fixed, physical viscosity as the benchmark. This126

eliminates the possibility of any bias between the parameterizations that127

could result from using any single MOLES at higher resolution as the bench-128

mark. It also serves as our best hope for the MOLES simulations: that they129

reproduce the benchmark. In Section 2, spectral enstrophy transfer analy-130

sis is reviewed: its application to MOLES and how this will be combined131

with the error-landscape is given. In Section 3, the details of the parame-132

terizations are introduced and each parameterization is optimized with the133

error-landscape technique in order to make a fair and objective comparison.134

2. Theory135

2.1. 2D turbulence136

For scales much smaller than the deformation radius, the quasi-geostrophic137

potential vorticity equation reduces to the 2D-BVE (see, e.g., Vallis (2006)).138
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The 2D-BVE are139

∂tζ + {ψ, ζ} = F + ν∇2ζ − CD
h

ẑ · ∇ × (|u|u)

ζ = ∇2ψ

u = −∇× (ψẑ) , (1)

where ζ is the vorticity, ψ the stream function, u the 2D velocity, F an140

external time-varying forcing to mimic wind stress, ν the viscosity, ẑ the141

out-of-plane unit vector, and CD/h the coefficient of quadratic bottom drag.142

As a constant Coriolis parameter has no effect on 2D motion, Eqs. (1) also143

describe the 2D-BVE on an f−plane.144

A general overview of 2D turbulence theory (see, e.g., Vallis (2006)) is145

presented in Fig. 1. Kinetic energy, |u|2/2, and hence enstrophy, |ζ|2/2,146

are injected into the fluid. Because both are quadratic ideal invariants (con-147

served in the absence of forcing and viscosity) and ζ = ẑ · ∇ × u, enstrophy148

cascades to smaller scales and energy undergoes an inverse cascade to larger149

scales (Fjortoft’s theorem). (The central point in deriving Fjortoft’s theorem150

is to realize that energy, E(k), and enstrophy, Z(k), spectra are related by151

k2E(k) = Z(k).) Under the assumption of spectral locality, forcing and dis-152

sipation cannot affect the flow except over a finite range of scales near where153

they are prescribed: far from these ranges, both cascades must therefore have154

a constant flux (Fig. 1, lower panel). The constant flux cascade regimes are155

called inertial ranges because only the inertial terms, u · ∇u for energy and156

u · ∇ζ = {ψ, ζ} for enstrophy, are non-negligible. Dimensional analysis after157

equating constant fluxes to the inertial terms for energy and enstrophy yields158

a k−5/3 energy spectrum in the inverse energy cascade and a k−3 energy spec-159
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Figure 1: Cartoon depicting 2D turbulence theory: kinetic energy spectrum (E(k), top

panel) and fluxes (bottom panel) of enstrophy (ΠS(k), blue solid line) and energy (Π(k),

red dashed line). Kinetic energy undergoes an inverse cascade to large scales (negative

flux) at the kinetic energy injection rate, ε. Enstrophy undergoes a direct cascade to small

scales at the enstrophy injection rate, η.
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trum in the enstrophy cascade (Fig. 1, upper panel). Fine theoretical details160

such as the logarithmic correction to the k−3 spectrum (Kraichnan, 1971)161

and arguments about locality (Xiao et al., 2008) have here been omitted.162

2.2. Transfer analysis163

The {ψ, ζ} term in Equation 1 is the only non-negligible term in the164

enstrophy cascade regime. It will also be shown in Section 2.3 to be the term165

whose small-scale interactions we need to parameterize. It is thus the focus166

of our comparison methodology. Other terms in the analysis will heretofore167

be abbreviated as F for forcing, D for dissipation, and Q for large-scale drag168

(where, e.g., F ≡ ζF ). The time evolution of enstrophy at any physical169

position is given by the enstrophy-balance equation,170

∂t
1

2
ζ2 = ζ∂tζ = −ζ{ψ, ζ}+ F +D +Q . (2)

The time evolution of the enstrophy spectrum at wavenumber k, Z(k), is171

similarly,172

∂tZ(k) = ζ̂∗∂tζ̂ = S(k) + F(k) +D(k) +Q(k) , (3)

where S(k) is the enstrophy transfer function (i.e., net enstrophy received by173

wavenumber k from all other wavenumbers),174

S(k) = −ζ̂∗(k){̂ψ, ζ}(k) , (4)

and where the Fourier transform is represented by ·̂ and complex-conjugation175

by ·∗. The flux of enstrophy through wavenumber k, i.e., the sum of the rate of176

change of enstrophy leaving all wavenumbers ≤ k and going to wavenumbers177

> k (i.e., moving to smaller scales), is given by178

ΠS(k) = −
∫ k

0

S(k′)dk′ , (5)
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that is, the total rate of enstrophy flowing past wavenumber k to larger179

wavenumbers. The divergence of the flux is the transfer, S(k). Because of180

the relation between energy and enstrophy spectra, the transfer of energy is181

T (k) = S(k)/k2.182

2.3. MOLES183

To reduce computational cost, MOLES solve only the largest scales of a184

flow. The remaining unresolved scales from the anticipated higher-resolution185

simulation are filtered out. The filtering operation is indicated by ·̄ and the186

resulting equations are187

∂tζ̄ + {ψ̄, ζ̄} = σ + F̄ + ν∇2ζ̄ − CD
h

ẑ·∇ × (|u|u) , (6)

where we have defined the subgrid term σ ≡ −{ψ, ζ}+ {ψ̄, ζ̄}. The subgrid188

term is the effects on the resolved scales by unresolved fluid motions. How189

well it is modeled is the measure of the success of the MOLES. (Note that190

σ = ẑ·∇×∇ · τ where τ = −uu+ ūū, the momentum-equation LES subgrid191

stress tensor.) The time evolution of the enstrophy spectrum is now given192

by193

∂tZ(k) = S̄(k) + L(k) + F(k) + D̄(k) +Q(k) , (7)

where S̄(k) is the rate of enstrophy received by wavenumber k from all other194

resolved wavenumbers,195

S̄(k) = −ˆ̄ζ
∗
{̂ψ̄, ζ̄} , (8)

and L(k) is the rate of enstrophy received from all unresolved wavenumbers,196

L(k) = ˆ̄ζ
∗
σ̂ . (9)
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Note that the rate of energy received from unresolved wavenumbers is L(k)/k2.197

How closely the sum of enstrophy transfer functions, from resolved and un-198

resolved wavenumbers, approximate the enstrophy transfer function from a199

fully resolved system,200

S̄(k) + L(k) ≈ S(k) , (10)

(for all wavenumbers smaller than the filter wavenumber) is the spectral201

measure of the success of the model. For k in the inertial range, S(k) = 0202

and a successful model will produce L(k) ≈ −S̄(k). The flux of enstrophy203

through wavenumber k due to resolved and modeled interactions is given by204

ΠT (k) = −
∫ k

0

[S̄(k′) + L(k′)]dk′ . (11)

2.4. Objective method: error-landscape of enstrophy flux205

To objectively compare parameterizations, we make use of the error-206

landscape assessment (Meyers et al., 2003, 2006, 2007; Meyers, 2011) on207

the enstrophy flux. We modify the method of Meyers (2011) and employ L1
208

instead of L2 error norms,209

Dp =

∫ kmax

1
|ΠS(k)− ΠT (k)|kpdk∫ kmax

1
|ΠS(k)|kpdk

, (12)

where kmax is determined from the MOLES resolution (see below). We chose210

p = 0 to obtain a good balance between the smaller resolved scales and211

the largest, less model-sensitive, scales. The optimal parameter value for212

each method is the point where this error norm is minimized. (The term213

landscape is intuitive for two-parameter models.) Inter-model comparisons214

are also made using the D0 norm.215
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2.5. Design of numerical experiments216

We employ a well-tested parallelized pseudo-spectral code (Mininni et al.,217

2011). The computational box has size [2π]2, and wave numbers vary from218

kmin = 1 to kmax = N/3 using a standard 2/3 de-aliasing rule, where N is the219

number of grid points per direction. To cast our results in meaningful units,220

the results are dimensionalized by l = l0l
′, t = t0t

′ where ·′ indicates non-221

dimensionalized pseudo-spectral result and l0 = 504×104/πm and t0 = 1.2×222

106s. To spin up our runs we begin with a 10082 simulation (dimensionalized223

grid spacing ∆x = 10 km) initialized with a few large-scale Fourier modes.224

The forcing is designed to mimic wind-stress at k = 4:225

F = A(t)
[

cos (4y + φy)− cos (4x+ φx)
]
, (13)

where φx = π sin(1.2 × 10−6 s−1t) and φy = π sin(1.2 × 10−6π s−1t/3) so226

that the wind varies with a period of about 60 days. The coefficient A is227

dynamically controlled to hold a steady enstrophy injection rate of 1.75 ×228

10−18 s−3 to reduce the amount of required statistics to measure a constant229

flux cascade, i.e.,230 ∫
ζFdA∫
dA

= 1.75× 10−18 s−3 . (14)

Time step is 600 s, ν = 88 m2s−1, and CD/h = 1.25×10−8 m−1. The resulting231

root-mean-squared velocity is vrms = 2.6 ms−1 and the forcing scale (k = 4)232

is LF = 2520 km. The corresponding forcing-scale turnover time is 11 days233

and the Reynolds number is Re ≡ vrmsLF/ν ≈ 75, 000. Simulations are234

integrated for over 1300 days. The final turbulent state of this run is used as235

initial conditions for the benchmark and MOLES runs at ν = 1.375 m2s−1.236
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3. Analysis of parameterizations237

The goal of MOLES is to anticipate higher resolution results at an afford-238

able resolution by representing the effects of the unresolved eddies. To avoid239

any bias between the parameterizations, we use as the benchmark a fully240

resolved direct numerical solution (DNS) at a resolution of 81922 of a flow241

with ν = 1.375 m2s−1. Each MOLES is then run at a resolution of 10082 and242

tested for its ability to reproduce the benchmark. This allows us to test the243

models’ representations against a known solution: a DNS flow. Accordingly,244

the MOLES simulations also must use ν = 1.375 m2s−1 in addition to the245

subgrid term or they should be compared, instead, to a ν = 0 benchmark246

which cannot be produced.247

The benchmark is run for 390 days, vrms = 2.6 ms−1 and the corre-248

sponding forcing-scale turnover time is 11 days. The Reynolds number is249

≈ 4.8 × 106. A snapshot of the vorticity of the benchmark run is shown250

in the Upper Left panel of Fig. 2. There are several large vortices of both251

signs. Over time, vortices stretch and fold vortex filaments into the fine-scale252

features as seen. This is the enstrophy cascade process. This simulation is253

well-resolved (only the slightest upturn is visible even in a compensated spec-254

trum) and this cascade is arrested at the smallest scales by dissipation (Upper255

Right panel in Fig. 2). Energy is injected by the forcing term (Lower Right256

panel in Fig. 2) at a constant injection rate: an inverse cascade of energy257

and direct cascade of enstrophy result. The quadratic drag term serves to258

arrest the inverse cascade of kinetic energy and primarily removes energy259

(and enstrophy) at the largest scales. Though, it does remove both from a260

wide range of scales (Lower Left panel in Fig. 2).261
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Figure 2: 81922 benchmark; snapshot at 390 days for (Upper Left) vorticity, ζ, with

thresholds ±1.5 × 10−5 s−1 (counter-clockwise vorticity is shown in yellow; clockwise in

red); (Upper Right) absolute value of vorticity tendency due to dissipation, ν∇2ζ, black

pixels are 2.25×10−7 s−2; (Lower Left) vorticity tendency due to quadratic drag, −CD

h ∇×

(|u|u), with thresholds ±1.38× 10−6 s−2; (Lower Right) vorticity tendency due to forcing,

F , with thresholds ±1× 10−4 s−2.
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The flux and resulting enstrophy spectrum for the benchmark are shown262

in Fig. 3. A power-law spectrum, Z(k) ∼ k−1.2, is observed in the enstrophy263

cascade inertial range. It is steeper than the predicted k−1 spectrum due to264

the quadratic drag which acts at all scales of the flow: the difference between265

the enstrophy flux (solid line) and a constant flux is exactly the cumulative266

drag (dotted line). This steeper spectrum is similar to the result for linear267

drag (Danilov and Gurarie, 2001). Note that dissipation is not significant268

for wavenumbers, k < 300. Reproducing this flow at a resolution of 10082
269

(kmax = 336) will thus be a onerous test for the parameterizations.270

The benchmark run contains all scales of motion at this Re. It can be271

used to calculate the true transfers with scales that will be unresolved at272

MOLES resolution by spectral cut-off filtering the benchmark run down to273

a resolution of 10082. These subgrid transfers for energy and enstrophy are274

plotted in Fig. 4. The effects of the subgrid scales are to remove enstrophy275

from a narrow band of wavenumbers near the resolution limit and to generate276

a small amount of energy at the very largest scales. These transfers can also277

been seen in Fig. 7 of Vallis and Hua (1988). The upscale energy transfer is278

a strong function of the resolution, ∆x: as can be seen by comparison with279

Vallis and Hua (1988), the smaller ∆x is, the smaller in magnitude is the280

upscale energy transfer. In fact, in the limit as ∆x approaches ν1/2 times281

some constant, both subgrid transfers will tend to zero Lunasin et al. (2007).282

However, at fixed ∆x both transfers will tend to a non-zero function of k283

that remains the same in the limit of zero viscosity. This is due to spectral284

locality: only those scales nearest ∆x will contribute to the transfers. As ν285

decreases, and more and more scales are added, they will contribute less and286
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Figure 3: Benchmark run: (Top) Enstrophy flux (ΠS(k), solid) and cumulative enstro-

phy injection (dash-triple-dotted), dissipation (dashed), and quadratic drag (dotted). As

quadratic drag operates at all but the dissipative scales, a constant enstrophy flux range is

not seen. (Bottom) Compensated enstrophy spectrum, kZ(k), versus wavenumber, k, for

81922 BVE benchmark. Quadratic drag acts at all scales and precludes a pure Z(k) ∼ k−1

spectrum.
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less to the transfers for k < 1/∆x.287

Given that an ideal MOLES will have L(k) that exactly reproduces Fig.288

4, we can anticipate the performance of the proposed closures. None of the289

purely dissipative models (viscous, hyper-viscous, Leith, or Smagorinsky)290

will be able to reproduce the upscale transfer of energy. The hyper-viscous291

model should better confine enstrophy dissipation to large wave numbers292

as its subgrid term contains fourth-order derivatives compared to second-293

order for the viscous model and first-order derivatives of the product of first-294

order derivatives for Leith. Smagorinsky is derived for 3D flow and is not295

expected to perform well in 2D. It has been previously shown that AVM can296

produce the correct forms of the transfers if high enough order viscosities297

and small enough anticipation times are employed Vallis and Hua (1988).298

The α−model is non-dissipative, but could potentially transport energy in299

the correct direction Nadiga and Shkoller (2001).300

3.1. Linear viscous parameterizations and their performance301

The simplest parameterization is to assume the main effect of subgrid302

turbulence is dissipative. Accordingly, the viscosity is often increased until a303

numerically resolved solution is possible. The subgrid term, σ, in the MOLES304

equation, Eq. (6) is then305

σ = (ν ′ − ν)∇2ζ , (15)

with ν ′ � ν. A slightly more sophisticated approach is to add higher-order306

dissipation, hyper-viscosity, e.g.307

σ = ν4∇4ζ , (16)
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Figure 4: Benchmark run: Transfers with what will be unresolved scales for MOLES

simulations for enstrophy, S(k) − S̄(k) (solid line), and energy, [S(k) − S̄(k)]/k2 (dashed

line). An ideal MOLES would exactly reproduce these transfers with L(k) = S(k)− S̄(k).

or even higher order. We focus on ∇2 and ∇4 parameterizations here.308

We apply the error-landscape of enstrophy flux technique to optimize the309

viscous model. The modeled flux, ΠT (k), for the viscous model is shown310

in Fig. 5. Note that as the viscosity is varied, the modeled flux brackets311

both sides of the benchmark flux. This suggests an optimal ν ′ for the model312

should be indicated by the enstrophy flux error-landscape. Indeed, D0 has313

its minimum for ν ′ = 11 m2s−1. This is the optimal viscous model which we314

will compare to the other parameterizations.315

The approximate reproduction of the benchmark flux is accomplished by316

the action of the subgrid enstrophy transfer L(k) (Fig. 6). As expected, the317

action of the viscous model is solely dissipative. The solid black line indicates318

what the true transfer with the unresolved scales should be, S(k)− S̄(k) (see319
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increasing ν

Figure 5: Viscous model: (Top) Modeled flux, ΠT (k), for ν′ = 5.5 m2s−1 (red dot-

ted), 11 m2s−1 (green dashed), 16.5 m2s−1 (blue dash-dotted), 22 m2s−1 (pink dash-triple-

dotted), and 24.75 m2s−1 (cyan long-dashed) and ΠS(k) for 81922 BVE benchmark (solid

black). (Bottom) Flux error-landscape norm D0. The optimal value is ν′ = 11 m2s−1.
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Fig. 4). The viscous model dissipates enstrophy over a much larger range320

of scales. Moreover, since energy is dissipated as ∼ ν ′Z(k) ∼ k−1.2, eddy321

viscosity is unphysically positive at large scales. What the unresolved scales322

should be doing is contributing to the upscale transfer of energy as shown by323

the solid, black benchmark line. The enstrophy spectra are shown in Fig. 7.324

The result of too little dissipation is the piling of small-scale thermal noise325

in the spectrum (Cichowlas et al., 2005).326

By looking at the hyper-viscous model’s flux error-landscape norms (Fig.327

8), we identify ν4 = 1.1×109 m4s−1 as the optimal hyper-viscous model. The328

hyper-viscous model much more closely models the dissipation of enstrophy329

due to the unresolved scales than the viscous model, see Fig. 9. Additionally,330

as the energy dissipation is ∼ k2Z ∼ k0.8, the rate of energy dissipated at331

large scales is insignificant (note the difference in vertical scales for energy332

transfer in Figs. 4, 6 and 9). This is a marked improvement, but no solely-333

dissipative parameterization will model the mechanism of upscale energy334

transfer.335

3.2. Leith model336

The Leith model is derived by dimensional analysis (Leith, 1996). The337

local enstrophy dissipation rate is estimated as338

η∗ = ν∗|∇∗ζ̄|2 , (17)

and an enstrophy cascade spectrum is assumed,339

Z(k) ∝ η2/3k−1 . (18)
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increasing ν

increasing ν

Figure 6: Viscous model: subgrid transfers for enstrophy (L(k), Top) and energy (L(k)/k2,

Bottom) and S(k)− S̄(k) for benchmark (solid black). The model is solely dissipative of

enstrophy and energy. Exact viscosities are denoted in Fig. 5.
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νincreasing

Figure 7: Viscous model: Compensated enstrophy spectrum; exact viscosities are denoted

in Fig. 5.

Figure 8: Hyper-viscous model: Flux error-landscape norm D0. The optimal value is

ν4 = 1.1× 109 m4s−1.
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increasing ν4

increasing ν4

Figure 9: Hyper-viscous model: Subgrid transfers for enstrophy (L(k), Top) and en-

ergy (L(k)/k2, Bottom) for ν4 = 2.2 × 108 m4s−1 (red dotted), 3.3 × 108 m4s−1 (green

dashed), 4.4 × 108 m4s−1 (blue dash-dotted), 5.5 × 108 m4s−1 (pink dash-triple-dotted),

1.1× 109 m4s−1 (cyan long-dashed), and S(k)− S̄(k) for benchmark (solid black).
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The viscous range, k, is when the viscous enstrophy losses in a given wavenum-340

ber band,
∫
νk2Z(k)dk, are comparable to the enstrophy injection, η, or341

η ∼ ν3k6 . (19)

Setting the global average dissipation, ν, to the local, grid-scale dissipation342

rate, ν∗, and equating Eqs. (17) and (19), we find343

ν∗ ∝ |∇ζ̄|(∆x)3 . (20)

The BVE with Leith model, is (Leith, 1996; Fox-Kemper and Menemenlis,344

2008)345

∂tζ̄ + {ψ̄, ζ̄} = ∇ · ν∇ζ̄ +∇ · ν∗∇ζ̄+F̄ + Q̄ , (21)

where ν = 0 for an infinite Reynolds number flow. The Leith subgrid term346

is then347

σ = ∇ ·
[(Λ∆x

π

)3
|∇ζ̄|∇ζ̄

]
, (22)

where Λ is a free parameter.348

The subgrid transfers for the Leith model are very similar to the viscous349

model results (see Fig. 10). This is to be expected as the Leith model is also350

solely-dissipative. Note that there is strong enstrophy dissipation at the forc-351

ing scale. This can be understood by looking at Fig. 11. The Leith viscosity352

ν∗ is proportional to |∇ζ̄| and, therefore, is concentrated along the borders353

between oppositely-signed vortices. These large-scale coherent structures of354

enhanced dissipation then project on the small wavenumber Fourier-modes355

(bottom left panel of Fig. 11). Note that the optimal parameter value is356

found to be Λ = 1.357
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increasing Λ

increasing Λ

Figure 10: Leith model: Subgrid transfers for enstrophy (L(k), Top) and energy (L(k)/k2,

Bottom) for Λ = 0.5 (red dotted), Λ = 0.75 (green dashed), Λ = 1 (blue dash-dotted),

Λ = 1.25 (pink dash-triple-dotted), Λ = 1.5 (cyan long-dashed), and benchmark (black

solid). The optimal model is Λ = 1.
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Figure 11: Snapshots of ν∗ (Top Left) and Fourier power spectrum of ν∗ (Bottom Left)

for Leith model, Λ = 1, of ν∗ (Top Right) for Smagorinsky, ΛS = 1, and of vorticity field

(Bottom Right, shown for reference). All snapshots are at 4× 104 min.
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3.3. Smagorinsky model358

The Smagorinsky model (Smagorinsky, 1963; Lilly, 1967) is the 3D pre-359

cursor of the Leith model. It is derived with a similar dimensional analysis360

as in Sec. 3.2, but assuming a 3D direct cascade of energy. Consequently,361

the model for eddy-viscosity is362

ν∗ =
(ΛS∆x

π

)2
|Sij| , (23)

where Sij = (∂jvi + ∂ivj)/2. For isotropic, homogeneous 3D turbulence the363

Smagorinsky Constant, CS ≡ ΛS/π ≈ 0.2 (Meneveau and Katz, 2000b). It364

should be noted that Smagorinsky was devised for 3D isotropic flow and was365

not intended for 2D nor geostrophic flows, but has been employed in global366

climate models Griffies and Hallberg (2000); Delworth et al. (2012) albeit367

with a biharmonic rather than harmonic operator as employed here.368

The enstrophy flux and enstrophy spectrum for Smagorinsky (Fig. 12),369

highlight the fact that good spectra can be produced without necessarily370

reproducing the correct dynamics. The best spectra are produced for ΛS =371

0.5 (blue dash-dotted) while the best flux is produced by ΛS = 0.1 (red372

dotted). This is opposed to the case for the viscous model where the best373

flux and spectrum occur for the same value of the model’s one free parameter,374

ν ′. The reason for the disparity is that the viscous parameterization captures375

the most important physical process, small-scale enstrophy dissipation, while376

the Smagorinsky model unphysically removes enstrophy and energy from377

the largest scales (see Fig. 13 and the real-space visualization of ν∗ in Fig.378

11). Therefore, even when the combination of modeling and numerical error379

produces a good spectrum, the model is not capturing the correct physical380

dynamics.381
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increasing ΛS

Λincreasing
S

Figure 12: Smagorinsky model: (Top) Modeled flux, ΠT (k), for ΛS = 0.1 (red dotted),

ΛS = 0.3 (green dashed), ΛS = 0.5 (blue dash-dotted), ΛS = 1 (pink dash-triple-dotted),

and ΛS = 2 (cyan long-dashed) and ΠS(k) for 81922 BVE benchmark (solid black). (Bot-

tom) Compensated enstrophy spectrum.
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Λincreasing S

increasing ΛS

Figure 13: Smagorinsky model: subgrid transfers of enstrophy (L(k), Top) and energy

(L(k)/k2, Bottom). The model dissipates enstrophy and energy unphysically from the

large scales. Exact viscosities are denoted in Fig. 12.
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3.4. Anticipated vorticity method (AVM)382

AVM (APVM when applied to potential vorticity, Sadourny and Basde-383

vant (1985)) is so-called because it can be seen as substituting the forward-384

in-time vorticity in the BVE,385

ζ̄n+1 − ζ̄n
θ

= −{ψ̄, ζ̄n} , (24)

where θ is the time step for the anticipation. Substituting this anticipated386

value, ζ̄n+1 in Eq. (1) results in the lowest-order AVM,387

∂tζ̄ = −{ψ̄, ζ̄n}+ θ{ψ̄, {ψ̄, ζ̄n}}+F̄ + D̄ + Q̄ . (25)

In practice, to weight the subgrid model to smaller scales,388

σ = − θ

k2mmax
{ψ̄,∇2m{ψ̄, ζ̄}} , (26)

In this study we have used m = 1 as even this order of diffusive opera-389

tor is not practical in finite-volume and finite-difference schemes typically390

used in global ocean modeling because of the relationship between high-order391

derivative accuracy and stencil size. AVM is not Galilean invariant, i.e., it392

does not conserve momentum, but it exactly conserves energy while dissi-393

pating enstrophy. Note that the subgrid term for the momentum equation is394

∇ · τ = [(−1)m θ
k2mmax
∇2m(u · ∇(ζ ẑ × u))]ẑ × u which is perpendicular to the395

velocity at every point in space. AVM then exactly conserves energy even if396

θ varies spatially and temporally.397

As AVM dissipates enstrophy at small scales, L(k) < 0 for large k (see398

Fig. 14), it must also remove some small-scale energy, k−2L(k) < 0. Since399

AVM exactly conserves energy, this energy shows up at large scales. AVM400
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is the only parameterization studied here that reproduces this signature of401

the correct transfer. The physical effect, however, is over estimated by at402

least an order of magnitude. This can be mitigated by reducing θ. However,403

too small θ (0.125dt for our flow) results in an excess of energy at all scales404

(Vallis and Hua, 1988). For m = 1, as used here, AVM is unable to mimic405

that eddy viscosity should only act in a small range of wavenumbers near406

kmax (Vallis and Hua, 1988). Note that setting the anticipation time equal407

to the time step, θ = 1, very closely reproduces the low-wavenumber flux408

(Fig. 15). This large value for θ, however, makes the eddy viscosity act at409

even larger scales (Fig. 14). If larger values of m were practical in actual410

ocean applications, a two parameter optimization might yield a very robust411

model. Holding constant m = 1, the optimal value of θ is 0.16.412

3.5. α−model413

The α−model takes a different approach than the other parameteriza-414

tions. It is a non-dissipative, solely dispersive model – a mathematical regu-415

larization (smooth, and hence computable solutions are ensured even in the416

limit ν → 0) of the fluid equations Holm et al. (1998); Chen et al. (1998,417

1999b,c,a); Foias et al. (2001). The result is that the vorticity is advected by418

a smoothed velocity, us = (1− α2∇2)−1ū, with a filter scale ∼ α,419

∂tζ̄ +∇ ·
(
usζ̄
)

= ν∇2ζ̄ + F̄ + D̄ + Q̄ , (27)

where ∇ ·
(
usζ̄
)

= {ψ̄s, ζ̄}. The alpha subgrid term is420

σ = {ψ̄, ζ̄} − {ψ̄s, ζ̄} . (28)

Note that the α−model has complex conservation properties in that the421

energy balance equation is in the H1
α norm,

∫
us · ūdA, and enstrophy is in422
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increasing θ

increasing θ

Figure 14: AVM: Subgrid transfers of enstrophy (L(k), Top) and energy (L(k)/k2, Bottom)

for 81922 BVE benchmark (solid black), for θ = 0 (NO MODEL, red dotted), θ = 0.16

(green dashed), 0.25 (blue dash-dotted), 0.5 (pink dash-triple-dotted), and 1 (cyan long-

dashed). The subgrid model transfer in AVM changes sign so that the model dissipates

no energy, sum of L(k)/k2 over all wavenumbers is o(10−12), while enstrophy dissipation

(sum of L(k)) is o(1). The negative energy dissipation at large scales mimics the upscale

transfer from unresolved scales, though too strongly.
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increasing θ

Figure 15: AVM: (Top) Modeled flux, ΠT (k). Exact values of θ are given in Fig. 14.

(Bottom) Flux error-landscape norm. Optimal value is θ = 0.16.
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the L2 norm,
∫
ζ̄2dA. The subgrid energy transfer is Lα(k)/k2 is related to423

the subgrid enstrophy transfer by Lα(k) = L(k)/(1 + α2k2).424

The subgrid transfers, Fig. 16, for the α−model are very large and in the425

wrong direction. As the model dissipates neither energy nor enstrophy the426

transfers are conservative; they remove energy and enstrophy from above the427

forcing scale and deposit them below the forcing scale. As the filter width,428

α, is increased so is the amount of large-scale energy and enstrophy moved429

down-scale to scales larger than α (vertical lines in Fig. 16).430

The physical effects of the α−model are visualized in Fig. 17: small-scale431

vortical motions are removed from the advecting field. As α is increased the432

rotation of the central, yellow(light) V-shaped, vorticity feature is reduced.433

This can be seen by viewing each row from left to right. To visualize the434

effect on the vorticity filaments, 1D cuts are taken as indicated by the black435

lines in the third row. The vorticity values are plotted in Fig. 18. There is436

a translation due to the removal of small-scale vorticity from the advecting437

field. Disregarding this, it is seen that the filaments are slightly larger as438

α is increased. The vorticity peaks are also taller. This indicates that the439

dissipation of the filaments is reduced as α is increased. The effect is also440

seen in the spectra: enstrophy is removed from the largest (and smallest)441

scales and deposited at scales bracketed by the forcing scale and α. One442

interpretation could be that the α−model reduces both the roll-up and the443

thinning of filamentation. The reduced roll-up reduces spatially averaged444

vorticity gradients and, hence, reduces dissipation. The reduction in thinning445

of the filaments does not appear to be large enough to be significant for the446

dissipation of individual, small filaments. Also due to this, more vorticity447
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increasing α

increasing α

Figure 16: α−model: subgrid transfers of enstrophy (L(k), Top) and energy (Lα(k)/k2,

Bottom) for α = ∆x (red dotted), 2∆x (green dashed), 9∆x (blue dash-dotted; vertical

line shows wavenumber), 16∆x (pink dash-triple-dotted; vertical line shows wavenumber),

and benchmark (solid black, nearly zero except for k ' 300 in L(k)). Due to numerical

cancellation noise in Eq. (28), smoothing has been applied to the plots.
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Figure 17: Vorticity field, ζ: Vortex merger event (tracked to center of field of view

which is 1/52 of the entire domain). Time runs from top to bottom starting 0min after

initialization in steps of 104 min. 1st column LANS α = 2∆x, 2nd column 9∆x, 3rd

column 16∆x. α = 2∆x is the most realistic result. Cuts from 3rd row (black lines) are

plotted in Fig. 18.
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and enstrophy remains at super−α scales.448

Note that our α−model spectra do not compare to results found by449

Nadiga and Shkoller (2001): their forcing kept Zs(10) constant rather than450

enstrophy injection constant, dissipated based on ζs not ζ, and plotted differ-451

ent quantities than we have here. They studied |us|2 and |ζs|2 which are not452

the ideal invariants for the α−model. Finally, unlike for the 3D α−model453

Foias et al. (2001), no change in the scaling of the dissipation scale with454

Reynolds number is expected for the 2D α−model Lunasin et al. (2007).455

This suggests 2D−α will not perform as a LES in the same regard as its 3D456

counterpart and, perhaps, explains our results.457

3.6. Comparison of parameterizations458

The subgrid transfers of the six parameterizations are compared in Fig.459

19. Concentrating on the subgrid enstrophy transfer, we can eliminate the460

α−model because it unphysically generates enstrophy for 100 / k / 200 and461

Smagorinsky can be eliminated because it essentially eliminates zero small-462

scale enstrophy (the grey line is flat an indistinguishable from zero on this463

vertical scale). Of the remaining models, the hyper-viscous is closest to mim-464

icking the true subgrid transfers of both energy and enstrophy, though for465

the largest wavenumbers, k > 200, the viscous and Leith parameterizations466

perform similarly. The AVM is the only method that reproduces the correct467

sign of the energy transfer, but it removes enstrophy preferentially from in-468

termediate scales instead of the smallest resolved scales. This method would469

likely perform better for m > 1 (Vallis and Hua, 1988).470

The enstrophy flux error landscape norms are given in Fig. 20. The471

α−model and Smagorinsky are the obvious outliers with a factor of five472
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increasing α

Figure 18: α−model: (Top) Cut of vorticity field, 2×104 min into simulation for α = 2∆x

(green dashed), 9∆x (blue dash-dotted), and 16∆x (pink dash-triple-dotted). Section of

cut is indicated in 3rd row of Fig. 17. (Bottom) Compensated enstrophy spectrum for

same time.
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Figure 19: Subgrid transfers of enstrophy (L(k), Top) and energy (L(k)/k2, Bottom)

for benchmark (solid black), hyper-viscous ν4 = 1.1 × 10−9m4s−1 (red dotted), LANS

α = 2∆x (green dashed), viscous ν = 11m2s−1 (blue dash-dotted), Leith Λ = 1 (pink

dash-triple-dotted), AVM θ = 0.16 (cyan long-dashed), and Smagorinsky ΛS = 0.1 (solid

grey).
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poorer performance. The viscous, hyper-viscous and Leith parameteriza-473

tions have very similar performance. The AVM is within a factor of two in474

performance. Again, this could likely be improved upon by using a larger475

value of m.476

This similarity in performance between hyper-viscous, viscous, and Leith477

parameterizations can also been seen in the resulting enstrophy spectra, Fig.478

21. All three methods have the same spectra for k / 100. Neither the479

α−model nor Smagorinsky reduces the pile-up of numerical thermalization480

noise Cichowlas et al. (2005) in the small scales. As seen in the previous481

results, the AVM method with m = 1 is dissipative at too large scales to482

perform as well as the viscous, hyper-viscous, or Leith parameterizations.483

Smagorinsky performs poorly because it removes enstrophy from the largest484

rather than the smallest resolved scales.485

4. Conclusions486

We have compared six popular turbulence parameterizations in the en-487

strophy cascade regime of the barotropic vorticity equation on an f−plane488

(equivalently, 2D Navier-Stokes) in forced-dissipative simulations. The hyper-489

viscous, viscous, and Leith models all perform well down to about 10∆x. The490

hyper-viscous model reproduces the largest-resolved-scales (1 ≤ k ≤ 100) flux491

the best of the three and the viscous model best reproduces the smallest-492

resolved-scales (k ≥ 200) flux. The Leith model, because its diffusion is493

anisotropic, is expected to carry-over its performance to anisotropic flows494

(e.g., the 3D baroclinic ocean system) which would be challenging for the495

viscous and hyper-viscous models. The Smagorinsky model does not work in496
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Figure 20: (Top) Enstrophy flux error-landscape norm D0 for hyper-viscous (ν4), α−model

(α), ∇2 viscosity (ν), Leith (Λ), AVM (θ), and Smagorinsky (ΛS). (Bottom) Modeled

enstrophy flux, ΠT , for for benchmark (solid black), hyper-viscous ν4 = 1.1× 10−9m4s−1

(red dotted), LANS α = 2∆x (green dashed), viscous ν = 11m2s−1 (blue dash-dotted),

Leith Λ = 1 (pink dash-triple-dotted), AVM θ = 0.16 (cyan long-dashed), and Smagorinsky

ΛS = 0.1 (solid grey).
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Figure 21: Enstrophy spectra for benchmark (solid black), hyper-viscous ν4 = 1.1 ×

10−9m4s−1 (red dotted), LANS α = 2∆x (green dashed), viscous ν′ = 11m2s−1 (blue

dash-dotted), Leith Λ = 1 (pink dash-triple-dotted), AVM θ = 0.16 (cyan long-dashed),

and Smagorinsky ΛS = 0.1 (solid grey).
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the enstrophy cascade regime–it removes enstrophy from the largest rather497

than the smallest resolved scales. The anticipated vorticity method with-498

out a strong enough weighting to small scales, larger values of m, does not499

perform as well as the prior three parameterizations. As even this order of500

diffusive operator is not practical in the finite-volume and finite-difference501

schemes typically used in global ocean modeling (e.g., Ringler et al. (2010)),502

we chose not to investigate higher-orders.503

We have confirmed Lunasin et al. (2007)’s suggestion that the Lagrangian-504

averaged α−model does not perform as a turbulence model in this system (see505

also Nadiga and Shkoller (2001)). Analytically, one expects the numerical de-506

grees of freedom to scale with Reynolds number the same as unparameterized507

Navier-Stokes. The model reduces rotation due to small-scale vorticity and,508

less dramatically, also reduces the thinning of vortex filaments due to stretch-509

ing. The balance of the effect is a net reduction of dissipation of the vorticity510

filaments and a piling of energy and enstrophy to sub-forcing/super−α scales511

(enhancing the flux in this spectral region).512

One possible MOLES closure has not been scoped here, the use of mono-513

tone transport as the model for LES closure. These closures, commonly514

referred to Monotone Implicit Large-Eddy Simulation (MILES), require the515

evaluation of the nonlinear transport be carried out in physical space, some-516

thing that is not possible within the global spectral model utilized for this517

study. Our future work, discussed briefly below, will utilize a traditional518

finite-volume approach where an evaluation of MILES will be possible. Com-519

bined models have also not been investigated here due to the enormous pa-520

rameter space that would entail.521

44



Subgrid transfers have been measured before, e.g., for the APVM (Val-522

lis and Hua, 1988), and again for the APVM, hyper-viscosity, and implicit523

large-eddy simulations (Thuburn et al., 2011). Error-landscapes for LES have524

been produced for various quantities like spectra (Meyers et al., 2003, 2006,525

2007; Meyers, 2011). By combining these two techniques, however, we have526

introduced a method for determining the optimal turbulence parameteriza-527

tion also in flows different than those considered here: the error-landscape of528

the enstrophy flux at small-scales in a 2D flow can be replaced by the error-529

landscape of the modeled flux in a 3D baroclinic system (see Appendix A).530

We emphasize that MOLES comparisons based on spectra alone do not en-531

sure that the correct dynamics are being reproduced by a parameterization.532

For example, consider the ΛS = 0.5 (CS ≈ 0.16) result for the Smagorinsky533

model (blue dash-dotted line in Fig. 12). The spectrum is best approximated534

by this run, but for the wrong reasons as the non-linear flux is more poorly535

reproduced than for ΛS = 0.1. For the viscous model, however, which phys-536

ically correctly removes enstrophy from the small scales, both the spectrum537

and the flux are best reproduced for ν ′ = 11 m2s−1. In this latter case, the538

spectrum is reproduced because the dynamics are reproduced.539

For a 3D baroclinic system, at the scales on which the MOLES acts540

(5 − 10 km), the system will be approximately QG. Because of the simi-541

larities between QG and 2D Fox-Kemper and Menemenlis (2008), we have542

some expectation that our results will hold: Smagorinsky, the α−model, and543

APVM with m = 1 will not perform as well as viscosity, hyper-viscosity, and544

Leith. In fact, because of the anisotropic diffusion offered by Leith, it will545

likely perform the best. Our results may not extend to the 3D system, how-546
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ever, if additional physics comes in to play, like vertical mixing over small547

horizontal scales.548

Our next step is to move into an idealized, 3D baroclinic system, most549

likely a re-entrant zonal channel that can serve as an idealized Antarctic Cir-550

cumpolar Current. While the move to three dimensions allows for the direct551

simulation of baroclinic instability, it also necessitates the development of552

analysis tools that can accurately account for energy and enstrophy transfers553

between the disparate horizontal and vertical scales of motion. Furthermore,554

the move to a 3D baroclinic system entails the use of a height-based vertical555

coordinate. Such a system requires the transport of one or more tracers in556

order to close the system via an equation of state. The theoretical analysis557

of such a system is outlined in Appendix A. And finally, as we move to more558

realistic and, thus, bounded domains, our ability to simulate the governing559

equations, as well as analyze the fluxes, via global spectral expansions will560

be increasingly cumbersome. As a result, we plan on utilizing a traditional561

finite-volume global ocean model Ringler et al. (2012, submitted) in the next562

phase of this study.563
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Appendix A. 3D baroclinic case571

In this section, we apply our methodology to a 3D baroclinic system of572

equations. The hydrostatic, traditionally shallow, and simple Boussinesq573

equations, e.g., as solved by Ringler et al. (2012, submitted), are574

∂u

∂t
+

1

2
∇h |u|2 + (f + ζ)ẑ× u + w

∂u

∂z
= − 1

ρ0
∇hp+ F +D +Q (A.1)

∇3 · v = 0 (A.2)

∂tρ+∇h(ρu) + ∂z(ρw) = 0 (A.3)

∂t(ρT ) +∇h(ρTu) + ∂z(ρTw) = 0 (A.4)

where v = u + wẑ is the full 3D velocity field, u and w are the horizontal575

and vertical components, ∇h is the 2D horizontal gradient, ∇3 is the full 3D576

gradient, f is the Coriolis force, ζ = ẑ · ∇h × u is the vertical component577

of vorticity, ρ0 is the background density, p is the pressure, and T is the578

temperature. We have assumed constant salinity and a linear equation of579

state for simplicity.580

Unlike for the 2D case, for the 3D system, we must also consider transfer581

between available potential (APE) and kinetic energies. The time evolution582

of the horizontal kinetic energy, KE ≡ u2/2, is given by583

∂t(KE) +∇3 · [v(KE +
p

ρ0
)] = −gρ

ρ0
w (A.5)

Where we make use of the hydrostatic condition, ∂zp = −gρ, and have left584

off the terms u ·F+u ·D+u ·Q for brevity. We define the potential energy,585

Φ, implicitly by (∂zΦ)ρT ≡ gρ/ρ0. From this, we can derive Vallis (2006)586

DΦ

Dt
=
( DΦ

DρT

)
z

DρT

Dt
+
(DΦ

Dz

)
ρT

Dz

Dt
=
gρ

ρ0
w

∂tΦ +∇3 · (Φv) =
gρ

ρ0
w (A.6)
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The sum of horizontal kinetic energy and potential energy is ideally conserved587

(i.e., when F = D = Q = 0 and no transport occurs across the system588

boundaries). The exchange between the two energy reservoirs is via the589

gρw/ρ0 term.590

The transfer functions for the 3D ocean system determine the time rate591

of change of the horizontal kinetic energy “spectrum,”592

∂tKEκ = TKKκ + TKKPκ + TAKκ , (A.7)

where B{·}κ will represent projection onto a complete orthonormal basis. For593

example, in a zonally-reentrant channel this basis could be Fourier modes in594

the zonal direction, sines in the meridional direction, and baroclinic eigen-595

modes in the vertical. The transfer of KE from other modes to a given596

orthonormal mode (equivalent of T (k) = S(k)/k2) is597

TKKκ = −B{u}∗κ · B
{
v · ∇3u

}
κ

(A.8)

where v · ∇3u = ∇hKE + ζ ẑ × u + w∂zu, the transfer of KE from other598

modes due to the pressure term is599

TKKPκ = −B{v}∗κ · B
{
∇3

p

ρ0

}
κ
, (A.9)

and net transfer rate from potential energy to KEκ is600

TAKκ = −B{w}∗κ · B
{gρ
ρ0

}
κ
. (A.10)

Similarly, expressions for the transfer functions for Eq. (A.6) can be written.601

As we have shown for the 2D case, the method to determine the best turbu-602

lence closure for an eddy-permitting ocean model is to compute the transfer603
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