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At four years into a five year project,
adventures turn into challenges.




So what exactly are we trying to do here?

Mission Statement:
"To construct an architecturally unified modeling
framework based on geodesic grids and quasi
Lagrangian vertical coordinates that will allow for
the creation of a comprehensive, conservative,
accurate, portable, and highly scalable coupled
climate model.”




Somewhere along the line, our model was named
CCoSM. Not be confused with COSIM, but the
two do share personnel, ideas, and code.

Coupled

Colorado State
Model
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A bit of history regarding the grids we use here:

: Integration of the barotropic vorticity
equation on a spherical geodesic grid.

: A finite difference approximation of
the primitive equations for a hexagonal grid on a plane.

: An integration scheme of
the primitive equations model with an icosahedral-hexagonal
grid system ...

: Numerical integration of
the shallow-water equations on a twisted icosahedral grid.




But as of 1995, we still are working with the
shallow-water equations with any physics.

Ringler, T. D., R. P. Heikes, and

D. A. Randall, 2000: Modeling
the atmospheric general
circulation using a spherical
geodesic grid: A new class of

dynamical cores. Mon. Wea. Rev.,
128, 2471-2490.

SWM + Physics + one year work = AGCM

Why was this needed?




Our original AGCM (UCLA) was a lat/lon C-grid and was notable for
its noise. Since the numerics conserved energy and potential
enstrophy, this noise did not destroy the atmosphere-only
simulations. Coupled simulations were another matter ...
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With our new, improved geodesic AGCM we
tried to couple to POP again ...
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Seems like a lot of work to get rid of some noise!




Definition of Spherical
Voronoi Tesselations

Given the vector positions of a set of
points, [; that lie on the unit sphere,
we define for each pa corresponding
Voronoi region, , as the set of)all
points on the sphere that lie closer fto i
than for all

Properties of SVTs: Every cell wall is
an orthogonal bisector of the geodesic
connecting the grid points that share
that cell wall.

How to choose the generators?




One nice property of SVTs is that
the grids can be highly uniform or
slowly varying in resolution.
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Energy Conservation

Can we design numerical schemes that
use spherical Voronoi grids that also
conserve quadratic quantities such as
total energy and/or potential enstrophy?

Why might we want to do this?
1) because the continuous equations do

2) practical stability of numerical methods
3) correct simulation of energy spectrum




Grid Staggering: The B-Grid on hexagons....
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All scalars at grid cell centers

Mass

Kinetic Energy
Vorticity
Divergence

All vectors at grid cell corners
Velocity
\ 6radients of scalar fields
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Mimicking the Continuous System.....
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Continuous Equations
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Discrete Equations
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D, = discrete divergence operator

G . = discrete gradient operator
I, = averaging of mass to cell corners
N, = averaging of vorticity to cell corners

C, = discrete curl operator
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Then Mimicking the Continuous Derivation.....

Continuous Equations Discrete Equations
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We use our degrees of freedomin G, K, and /. to make this happen.

This could be called the Arakawa energy method.
The mimic method (Shashkov) gives the same results.




Total Energy

2-D Turbulence an a Plane:
Comparison with "old” scheme

“old” scheme
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Top figure: the fractional change
in total energy relative to the
initial amount of energy.
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Bottom figure: same as top,
expect for potential enstrophy.
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Mass—Weighted Potential Enstrophy

Over 40 days of integration, the
“old" scheme shows an order one
change in both total energy and “old” scheme

potential enstrophy.
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The new scheme shows a change =

of ~0.3% in total energy and ‘@JW
~0.03% in potential enstrophy. . vor-div
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Log Energy Power Spectrum
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With the
conservation of these
quadratic quantities,
we can start to look
at spectra.




The vorticity evolves appropriately in time.
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Held-Suarez Test Case/Momentum Formulation

Spectra of Kinetic Energy per unit mass at 250mb
four values of p: 1lel2, 1lel3, 1e14, 1el5 m4d/s
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Now that we don't
need dissipation to
maintain stability in
the 3-D simulations,
we can use the

dissipation to control
the energy and
enstrophy spectra.




The accuracy of this scheme compares well to its peer group.

Error Norms compared to a T213 spectral model
L2 Norm at Day 15
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Making use of these

numerical methods in an
ocean model




The vertical coordinate is chosen to be an
Arbitrary Lagrangian Eulerian (ALE) coordinate.

ALE coordinates can mimic fixed z-level
Eulerian coordinates by forcing mass across
coordinate surfaces to maintain a uniform
layer thickness.

Alternatively, ALE coordinates can mimic
floating or Lagrangian coordinates by
allowing the layer fo inflate while requiring
zero mass flux across the coordinate
surface.

ALE coordinates accommodate any blending
of the Eulerian and Lagrangian limits.

Since the vertical coordinate is largely
independent of the horizontal discretization,
we are working closely with the HYPOP
effort in this area.
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Designing a Coupler....

The two ends of the coupling spectrum

one end: couple any component to any other
component. example ... couple the sun to the
atmosphere.

the other end: design couple to deal with a specific
grid structure and constrained by strict rules.




Climate sub-models generally
use different resolutions.

The high level of conformity
between geodesic grids of
different resolutions leads to

balanced loading and
communication.

For MPP architectures,
balanced loading and
communication is a must.










Sea-Ice Modeling

advection and the rate-of-strain tensor

We already had much of what we needed
from CICE: thermodynamics and EVP. What

we needed was an accurate, monotone
advection scheme and a formulation of the
rate-of-strain tensor.

more on advection in a little later ....




Rate-of-strain and stress tensors are of primary importance in
sea-ice models and are increasingly important in anisotropic
viscosity formulations in ocean models.

For us, the guiding principal for this development has been the
tensor identity of
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Assuming the boundary conditions vanish, we have
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If we are only interested in symmetric rank-2 tensors,
we can just extend the weak formulation that we have
already developed for scalars and tensors.
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The divergence of the rank-2 tensor follows directly
from its weak formulation

Veg- lim (Vg-@jac

) 4

This approach fo discretizing the

gradient of a vector and divergence

of a tensor allows the relevant

vector identity to told and assures e
that the dissipation operator is

negative definite.




Incremental Remapping
Dukowicz and Baumgardner (JCP 2000)

Arrival Grid

Departure Grid
Back-trajectories

Flux across arrival grid
edge during dt

Flux is computed via quadrature methods with
limiting on the reconstruction fo produce a
compatible, conservative, and monotone
advection scheme.




Incremental Remapping seemed fo work great for
quadrilateral grids, what about SVTs?

N

Advection of slotted
cylinder one revolution
around a sphere.

a) exact

b) 2nd-order centered
c) FCT

d) IR




Looking a cross-section after 15 days of a
cosine-bell and a slotted cylinder.

Exact

-+ Centered
FCT
Remapping

As far a accuracy
goes, incremental
remapping is the

best of the three
schemes.
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What about computational efficiency?
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So what have we accomplished here?




Other topics not discussed here:
Finding computional modes

a) on our SVTs

b) on triangular C-grid
2-D turbulence simulations

a) on our SVTs

b) on triangluar C-grid

Looking for climate change signal in
SE China.

How should we use IPCC-level models
in climate change mitigation.




Other topics




Designing a trianglular C-grid model
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Log Energy Power Spectrum
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Designing a
triangluar C-grid
model to simulate

the correct energy
and enstrophy
spectra.




Pure Gravity Waves

Physical Mode: has
zero group velocity in
resolved wavenumber

space.

Computational Mode:

has frequency always

greater than physical
mode.




Rozsby radius over d = 2. Physzical modss on top,
computational modes on bottom.




Our scheme
faithful
reproduces

the
geostrophic
adjustment
process.




Collaboration with The Nature Conservancy
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Temperature Time—Series Comparison
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