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Abstract

One of the most common control decisions faced by power
system operators is the question of how to dispatch generation
to meet demand for power. This is a complex optimization
problem that includes many nonlinear, non convex constraints
as well as inherent uncertainties about future demand for
power and available generation. In this paper we develop
convex formulations to appropriately model crucial classes of
nonlinearities and stochastic effects. We focus on solving a
nonlinear optimal power flow (OPF) problem that includes
loss of synchrony constraints and models wind-farm caused
fluctuations. In particular, we develop (a) a convex formula-
tion of the deterministic phase-difference nonlinear Optimum
Power Flow (OPF) problem; and (b) a probabilistic chance
constrained OPF for angular stability, thermal overloads and
generation limits that is computationally tractable.

I. Introduction

Generation re-dispatch is a routine operation for adjusting the
output of flexible generators to meet the needs for electric
power in transmission systems. Redispatch is performed peri-
odically based on predictions about the state of system over a
planning horizon, i.e. demand for power over the next time pe-
riod (usually 15 minutes to an hour). These operations rely on
computed solutions to variations of the Optimal Power Flow
(OPF) problem. Typical implementations of OPF minimize the
(convex) cost of generation, subject to linearized power flow
balance constraints, thermal capacity constraints (on power
lines), ramping constraints, security constraints, etc. In recent
work [1], we have developed a chance constraint OPF model
(CC-OPF) that generalizes the standard OPF to include uncer-
tainties from fluctuations in the output of wind farms. This CC-
OPF manages risk in a principled fashion by allowing physical
constraints to be violated (such as line capacity constraints)
with small and controlled probability. Furthermore, our work
has shown how to construct a robust version of the CC-OPF
– optimal within the set of power flows valid for a range of
parameters characterizing the probability distribution of the
wind output. In practice, unconstrained solutions to an OPF

produce a relatively small number of overloads that violate the
chance constraints, making this problem well-suited for the
cutting plane algorithm we developed in [1]. This algorithm
can solve large instances of the CC-OPF, such as the 2746 bus
Polish network in 20 seconds using a desktop computer.

As a standard simplification practice, OPF models use the
linearized DC equations for modeling power flow (PF) physics.
The DC approximation contains a number of key assumptions
(see e.g. [9]): (a) voltage is constant (fixed) at all nodes of
the network; (b) thermal (resistive) losses are negligibly small
(ignored); and (c) the phase difference over any line of the
network is small, |θi − θj | � 1, and thus the power flows are
linearized in the phases.

In this paper, we extend the standard (deterministic) OPF
approach and the CC-OPF approach of [1] to account for
some of the nonlinear effects in PF physics. Specifically,
in describing the PFs we do not include assumption (c). In
other words, we still assume that voltage is constant and lines
are lossless; however, we include the correct nonlinear phase
difference model in the OPF computation.

First, for the AC (phase-nonlinear) deterministic PF we de-
velop two complementary approaches for solving the deter-
ministic AC-OPF. In the first approach, we utilize the results of
[8] and show how the nonlinear synchronization constraint can
effectively be modeled using a linear set of inequalities. The
computational complexity of the resulting model is equivalent
to the standard convex DC-OPF algorithm. In the second
approach, we adapt and extend the convex formulation of the
AC PF in [3] to derive an exact, nonlinear but still convex
(thus computable efficiently) AC-OPF.

Second, we generalize the CC-OPF model developed by [1]
to incorporate the synchronization condition developed in
[8]. We show that the resulting “sync-aware” CC-OPF is
reducible to a convex optimization problem with the same
complexity as the CC-OPF model of [1]. We finally develop
a computationally very efficient algorithm for this problem
that is capable of solving optimal generation re-dispatch for
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networks with thousands of nodes in seconds on a standard
computer.

Our model includes chance constraints associated with thermal
limits and with the synchronization condition. The latter
express probabilistically the requirement that fluctuations in
wind resources may cause the system to lose synchrony for
only very short periods of time (second or less). In most
dense systems (like the Eastern interconnect in US or Eu-
ropean grids) the synchronization condition is typically less
constraining than the respective conditions guarding against
thermal overloads of lines. In sparse systems with long lines
this situation is often reversed; for example transmission grids
of Russia, Australia or some of Midwest and Southwest states
in US are loss-of-synchrony prone. In our experiments we
include constraints of both types to ensure both limits are
addressed. We illustrate this competition on examples of small,
moderate and large sample grids.

Within the power engineering literature there have been a num-
ber of recent papers developing chance constrained versions of
various problems. First [24] developed a chance constrained
version of DC-OPF that focuses on variations in demand.
Generation is dispatched to ensure that the system’s physical
constraints are violated with low probability (the chance
constraints). A local search algorithm is developed to solve
the problem. [1] develops a convex chance constrained OPF
for problems with uncertain renewable energy fluctuations
using a closed form expression of the fluctuations. Chance
constraints have also been used in longer time scale problems
such as unit commitment [17], [20], [25] as well as expansion
planning [22], [23] to account for uncertainty in renewable
energy generation. Finally, [10] develops a chance constraint
model for voltage control.

Optimal power flow problems have been the subject of a large
amount of research [15], [16]. Most closely related to this
paper is recent work that has developed approaches for solving
versions of the AC OPF using conic and convex relaxations. As
examples, there interior point methods such as in [12] and [14]
that develops a dual approximation to the ACOPF which is
convex semi-definite, along with many others. There has also
been literature on adding constraints to the DC model in order
to generate solutions that are close to their AC counterpart [5],
[6].

The remainder of this paper is organized is follows. Section
II describes notation we use for describing power networks.
Section III describes how turn the AC OPF into a convex
problem. Section IV adds the chance constraints. Section V
describes our algorithm and Section VI some experimental
results. We conclude and discuss path forward with Section
VII.

II. Model

A power network is defined by a set of nodes (buses) and
edges (power lines), referred to here respectively as V and
E. For each node ı ∈ V, we use pi, di, wi, θi, and vi to
denote the conventional generation, power consumption, wind
generation, phase angle, and voltage at i. Similarly, pmini and
pmaxi is used to denote the minimum and maximum amount
of conventional generation at i. We use the sets (possibly
overlapping) G = i ∈ V : pmaxi 6= 0, D = i ∈ V : di 6= 0,
W = i ∈ V : wi 6= 0 to denote sets of nodes that, respectively,
generate power at traditional power plants (controllably), con-
sume power and generate power from fluctuating/uncertain
(wind) sources. Finally the cost of generating power for i ∈ G
is denoted by fi and αi is used to model affine response
of controllable generation (through primary and secondary
control of frequency at the generators.

An (undirected) edge ij ∈ E is defined by the nodes i and j
it connects. The terms βij and p̄ij are then used to define the
susceptance and thermal capacity of ij. In many places, we
assume, as customary that an arbitrary orientation of the edges
has been chosen, yielding a directed graph; any arc of graph is
denoted by (i, j) if it has node i as the “tail” or “from” node
and node j as the “head” or “to” node. For convenience, given
an arc k we will write βk and p̄k for the susceptance (resp.,
capacity) of the (undirected) edge corresponding to arc k. Let
L denote the set of arcs, and construct the node-arc incidence
matrix of this directed graph as follows: for any node i and
arc k = (u, v) we have aik = 1 if i = u, aik = −1 if i = v
and 0 otherwise. Arc and edge notation is used interchangeably
throughout the text, in order to keep the formulations compact.

III. AC OPF Convexification

Our paper uses the real power, thermally-constrained, loseless
and voltage-constrained optimal power flow (OPF) problem as
our starting point:

min
p,θ

∑
i∈G

fi(pi) = min
p,θ

f(p) (1)

s.t.
∑
j:ij∈E

sin(θi − θj)βij=pi−di+wi ∀i∈V (2)

| sin(θi − θj)βij | ≤ p̄ij ∀ij∈E (3)

pmini ≤ pi ≤ pmaxi ∀i∈V (4)

Eq. (1) minimizes the cost of dispatching conventional gen-
eration (usually convex, quadratic) to meet d and w. Eqs. (2)
states the Power Flow (PF) constraints under the assumption
of uniformly maintained voltage1 and of purely inductive (zero
resistivity) lines2. Eqs. (3) and Eqs. (4) introduce constraints
on the line flows and conventional generation. Finally, we note

1In this ACOPF, voltages are modeled as per unit and assumed to be 1, though there is nothing in the model that prevents us from using fixed voltages other
than 1.

2The generation and consumption of the ACOPF is zero sum, i.e.
∑

i∈V(pi − di + wi) = 0, reflecting the lossless nature of the network.
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that this OPF model is exactly the same as the traditional
DCOPF, except for the more accurate sine in (2). We now
discuss two ways of transforming this problem into a convex
problem.

Convex Optimization of Voltage Uniform and Lossless Power
Flows

We first describe a provably correct approach for directly trans-
forming the above OPF problem into a convex optimization
problem. This transformation is based on a reformulation of
Eqs. (2) first discussed in [3], and we use the “aik” notation
to denote the incidence of line k with bus i introduced at the
end of the previous section.

Our formulation is:

min
ρ

∑
k∈L

βkψ(ρk) (5)

s.t.
∑
k∈L

βkaikρk = pi − di + wi ∀i ∈ V (6)

|ρk| < min{1, p̄k}. ∀k ∈ L (7)

Here for |x| < 1,

ψ(x)
.
=

∫ x

−1

arcsin(y) dy,

a convex function of x since arcsin(x) is increasing for
x ∈ [−1, 1]. Interestingly, in this formulation, if the optimal
solution of Eq. (5) occurs on the boundary of Eq. (7), then
there exists no feasible solution to Eqs. (2). In other words,
the grid cannot be synchronized.

When optimization problem (5-7) is well-defined, that is to
say, it has an optimal solution which satisfies the strict Eqs. (7),
we can verify that Eq. (5) yields Eqs. (2). To see this, we
use convexity of the objective (5); denoting by θi the optimal
Lagrange multiplier for constraint (6) we obtain that for every
arc k = (i, j) ∈ L,

arcsin(ρk) = θi − θj . (8)

The combination of this result with Eqs. (6) renders Eqs. (2)
3. Unlike many convex transformations, there is a physical
meaning to the optimization in Eq. (5). It is twice the reactive
power losses in all the lines of the network. Finally, the
constraints (6) expresses flow conservation at any node of the
network.

Convex Optimization of Voltage-Uniform and Lossless-
Optimal Power Flows

We now combine the derivation in the prior section with
optimal power flow. Let C be lower bound on the optimal OPF
cost4. Let 0 < ε < 1 be a tolerance, βmax = maxk βk, D =
Cε

πβmax
and φ = (−m log ε)−1, where m = number of lines.

For an arc k, let its effective capacity be uk = min{1, p̄k/βk}.
Finally, let the barrier function B : R+ → R+ be defined by

B(t) = − log t.

Consider the optimization problem given by

min f(p) + D
∑
k∈L

βk [ψ(ρk) + φB(δk)] (9)

s.t.
∑
k∈L

βkaikρk = pi − di + wi ∀i ∈ V (10)

|ρk| + ukδk ≤ uk (11)
δk ≥ 0, ∀k ∈ L. (12)

We have:

Lemma 4.1: (a) Suppose (p∗, θ∗) is the optimizer for the sync-
constrained OPF problem. Suppose, further, that for each arc
k = (i, j) we have

| sin(θ∗i − θ∗j )| ≤ (1− ε)uk. (13)

Then, defining ρ∗ij = sin(θ∗i − θ∗j ) and δ∗ij = 1− 1
uij
|ρ∗ij | for

each arc (i, j), we obtain that p∗, ρ∗, δ∗ is a feasible solution
to problem (9)-(12) with cost at most

(1 + 2ε)f(p∗).

(b) Conversely, let (p̂, ρ̂, δ̂) be an optimal solution to problem
(9)-(12) with objective value K̂, say. Then, with θ̂ obtained
by solving problem (5)-(7) we have that (p̂, θ̂) is feasible for
the sync-constrained OPF problem and has cost f(p̂) ≤ K̂.
(c) Let (p̂, ρ̂, δ̂) be as in (b), and suppose that additionally for
every arc k we have

|ρ̂k| ≤ uk(1− ε̃), (14)

for some value 0 < ε̃ < 1. Let Dθ̂ be the optimal dual
variables for constraints (10). Then for every line k = (i, j)
we have:

ρ̂k = sin(θ̂i − θ̂j + ηk) (15)

where |ηk| ≤ (muk ε̃ log(1/ε))−1.

Proof. (a) Define, for each arc k = (i, j), ρ∗k = sin(θ∗i − θ∗j ).
Since (13) holds the values

δ∗k = 1− 1

uk
|ρ∗k|

satisfy
ε ≤ δ∗k ≤ 1,

and the vector p∗, ρ∗, δ∗ is feasible for (9)-(12). It follows
that for any arc k, −B(δ∗k) ≤ log(1/ε), and so the total
contribution from all the terms B(δ∗k) in (9) is at most D ≤
ε
πC < εf(p∗). Likewise, the total contribution from the terms
involving the ψ(ρ∗k) is also at most εf(p∗).

(b) Follows directly from the structure of the objective function
(9).

3See also Appendix A for a brief discussion of the relation between the optimization formulation just discussed and the so-called energy function approach.
4This can be obtained, for example, by solving a DCOPF problem.
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(c) The first-order optimality conditions for a line k = (i, j)
yield

θ̂i − θj = arcsin(ρ̂k) ∓ φ

uk

1

1− ρ̂k/uk
,

(with “-” when ρk ≥ 0 and “+” otherwise). Since 1− ρ̂k/uk ≥
ε̃ the result follows.

Remarks: Condition (14) amounts to a separation condition:
we find a solution where each flow quantity |ρ̂k| is sufficiently
separated from the effective capacity uk. For small but fixed
ε, larger ε̃, and m large, the quantity ηk in (15) is small in
absolute value. Thus condition (15) indicates that the flows
and (scaled) dual variables computed in the optimization
problem (9-12) yield an approximately feasible solution to the
OPF problem (1-4). Also note that the barrier term B(δk)
in the objective function (9) tends to +∞ as |ρk| → 1;
from a practical perspective this (together with the above
Lemmas) imply that the value of problem (9-12) becomes
“large” precisely when the ACOPF problem (1-4) becomes
infeasible. Finally, the overall approach is easily adapted to
the case where we want to impose general constraints of the
form |θi − θj | ≤ γij where the γij ≤ π/2 are input data.

Synchronous Constrained OPF

The approach in the preceding section provides a provably
correct modification of the ACOPF problem (1)-(4) into a
convex optimization problem. Even though the problem is
indeed convex, it may not necessarily be trivially solvable 5.
Moreover we do not have a way to extend the approach so as to
handle additional constraints on the power flow. In this section
we consider a different (admittedly heuristic) approach that
also renders a convex optimization problem which in particular
can handle side-constraints; specifically stochastic constraints.

Returning to the original OPF problem (18)-(4), the main
challenge with this model is that Eqs. (2,3) are nonlinear.
One approach for addressing this difficulty replaces Eqs. (2,3)
with equivalent linear, expressions. To achieve this result we
modify Eq. (1) according to the results of [8]. Reference [8]
discovered the following condition for lossless and voltage-
maintained power flow models:

Synchronous (Sync) condition [8]

For a fixed p, d, w, consider the following system of equations:

|ϑi − ϑj | < min (p̄ij/βij , 1) ∀ij ∈ E (16)∑
j∼i

(ϑi − ϑj)βij = pi − di + wi ∀i ∈ V. (17)

Given a solution to this system, suppose we can choose for
each node i a value θi such that for each edge ij, sin(θi−θj) =
ϑi − ϑj . Then the θi solve Eqs. (2)- (4).

The work in [8] suggests, via analytical and statistical meth-

ods, that in many cases this change leads to an accurate
computation of line flows, though possibly not of actual phase
angles. For example, the change of variables is exact on
trees. We thus obtain a formulation that is reminiscent of
the traditional DC formulation, however accounting for the
nonlinearities in Eqs. (2,3).

Thus we are lead to replace Eqs. (2,3) with Eqs. (17,16) in
the AC OPF (1), or in other words, to substitute Eq. (1) by
the following convex optimization problem

min
p,ϑ

f(p), s.t. Eqs. (4,16,17). (18)

Remarkably, Eq. (18) is identical to the DCOPF with an extra
constraint on the flows across an edge. We therefore refer to
this OPF as the sync-constrained OPF (SCOPF).

IV. Chance Constrained OPF

In the previous sections we assumed that the load d and
uncontrollable generation w are known apriori and do not
significantly or unpredictably change over a dispatch plan-
ning horizon; this assumption is justified in practice. In con-
trast, wind generation uncertainty is significant and cannot
be ignored [2], [4], [11]. Wind fluctuations are intrinsically
stochastic phenomena; even when the wind forecast is known,
the forecast only expresses information on the underlying
probability distribution but not on precise wind generation.

To overcome this limitation [1] developed a stochastic model
of wind and other uncertain resources for OPF problems. More
formally, the Chance Constrained (CC) OPF with fluctuating
wind resources is stated as

min
p,α

Ew [f(p)] (19)

s.t. Prob (CON violation) < εCON ∀ CON (20)

where Ew [· · · ] is used to denote the expectation over a
probability density function (PDF) for the wind, ρ(w), s.t.∫
dwρ(w) = 1. In (20) CON represents an OPF constraint

such as a (thermal) line limit or a generator output limit;
εCON is a small number (additional parameter) controlling the
probability that the constraint is violated. In (20) p, α are
vectors describing the generation set points and affine (droop)
coefficients which will be discussed, in detail, later in the text.

The CC-OPF computation that serves as our inspiration was
discussed in [1] in the context of the linear DC power
flow model. This approach developed chance constraints for
thermal constraints on power lines and chance constraints for
bounds on generation. Within the DC model all input configu-
rations (of d−w) are guaranteed to have a solution satisfying
power transmission constraints (but possibly not thermal line
or generator limit constraints). However, in nonlinear models

5In future work we plan to test the computational feasibility of solving problem (9)-(12).
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such as those discussed in the previous section, the power
flow Eqs. (2) may have no solution – equivalently the system
may be out of sync. More formally, this CC-OPF version of
Eq. (20) is stated as

min
p,α

Ew

[
f(p− (eTw)α)

]
(21)

s.t.
∑
i∈G

αi = 1, α ≥ 0, p ≥ 0 (22)

Prob (PF Eqs. are not feasible) < ε (23)
Prob (βij | sin(θi − θj)| > p̄ij) < εij ∀i,j∈E (24)

Prob
(
pg − (eTw)αi > pmaxg

)
< εg ∀g∈G (25)

Prob
(
pg − (eTw)αi < pming

)
< εg ∀g∈G (26)

where µ = Ew[w] is the mean wind, w = w − µ is the zero
mean fluctuating component of the wind, and p− (eTw)α is
the vector of controllable generation according to the affine
model of the automatic (primary and secondary) generation
control. PF entering Eqs. (24,25,26) assume the following
affine response version of Eqs. (2)∑

j:(i,j)∈E

sin(θi − θj)βij

= pi − (eTw)αi − di + µi + wi ∀i∈V. (27)

In Eq. (24), there are a number of ways that εij can be
interpreted. For the purposes of this paper, we interpret εij
as the fraction of time that a line’s flow exceeds a critical
value, such as its thermal limits. For example, setting εij = 1

60
for thermal limits is equivalent to stating that a line may be
overloaded for at most 1 minute during a 1 hour period (a
typical planning horizon for dispatch decisions).

The ε in the probabilistic sync condition (23) is interpreted
similarly to εij entering the probabilistic thermal constraints
(24). It is the fraction of time a system can tolerate loss of
synchrony. However, the quantitative difference between the
sync and thermal constraints (in actual values) is significant. In
practice, loss of synchrony cannot last for more than a second,
or even a fraction of a second, before electro-mechanical
instability develops in the system. Therefore, the ε associated
with loss of synchrony is typically significantly (∼two orders
of magnitude) smaller than, εij . In summary, constraint (23)
may be active (optimization limiting), for systems with long
lines, in spite of the fact that the loss of synchrony threshold
is often more stringent than the thermal constraint, i.e. when
p̄ij/βij < 1, which holds for typical lines, ε smaller than εij
makes Eq. (23) potentially more restrictive than Eq. (24).

The optimization problem described in (21) is non-convex,
and generally difficult to solve. However, by using the mod-
ifications, conjectures and simplifications developed for the

SCOPF, the problem is transformed into a formulation that is
computationally tractable.

Sync CC-OPF

Based on the synchronous constraint developed in the pre-
vious section, we now develop a chance constrained SCOPF
problem. As in deriving SCOPF (18), we replace PF Eqs. (27)
with

∑
j:(i,j)∈E

(ϑi − ϑj)βij

= p̄i − (eTw)αi − di + µi + wi ∀i∈V. (28)

Likewise, we replace Eq. (24) with (28) and the chance
constraint

Prob (|ϑi − ϑj | > p̄ij/βij) < εij ∀i,j∈E. (29)

Moreover, following Eqs. (16,17) we substitute the sync fea-
sibility chance constraint (23) with

Prob(|ϑi − ϑj | ≥ 1) < ε ∀i,j∈E. (30)

As in SCOPF, the ϑ variables are auxiliary and are not directly
related to the actual phase angles θ. The phase angles in a
power flow solution resulting for a particular realization of
wind are calculated using Eq. (27); this is equivalent to solving
convex optimization problem (5). Also, once again Eq. (21)
only relates to the linear system of equations defined on ϑ,
and in this regards it is almost equivalent to the DC CC-
OPF discussed in [1]. The only difference is the addition of
the synchrony constraint (30). Importantly, this new constraint
does not add complexity to the original DC CC-OPF of [1].
Eq. (30) is a re-parameterized version of Eq. (29).

In order to define the PDF we use the model of [1] which
assumes that each component of w is an independent, zero-
mean Gaussian, i.e.

ρ(w) =

(∏
i∈W

(2πσi)
−1/2

)
exp

(
−
∑
i∈W

w2
i

2σ2
i

)
, (31)

This allows us to evaluate all the Prob statements in Eq. (21)
explicitly, ie. 6

6As in [1], we do not use Prob(|x| > y) < ε directly. Instead we use Prob(x > y) < ε ∪ Prob(−x > y) < ε which allows us to derive the convex/conic
generalization described in [1]
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min
α,p

∑
i∈G

ci1
p2

i + (
∑
j∈W

σ2
j )α2

i

+ ci2pi + ci3

 (32)

s.t.
∑
i∈G

αi = 1, α ≥ 0, p ≥ 0 (33)

|θ̄i − θ̄j | ≤ 1−

η(ε)

β2
ij

∑
k∈W

σ2
k(πik − πjk − δi + δj)

2

1/2

∀i,j∈E

(34)
βij |θ̄i − θ̄j | ≤ p̄ij−

η(εij)

β2
ij

∑
k∈W

σ2
k(πik − πjk − δi + δj)

2

1/2

∀i,j∈E

(35)

pmin + η(εg)

(∑
k∈W

σ2
k

)1/2

≤ pg ∀g∈G

(36)

pg ≤ pmax − η(εg)

(∑
k∈W

σ2
k

)1/2

∀g∈G

(37)

In this formulation it is assumed that the objective function
is convex-quadratic. The term η(x) is defined implicitly b
x = (1−erf(η(x)/

√
2))/2. Also δ = Bα and θ̄ = B̆(p+µ−d)

[1]. These terms are derived from the n×n β- weighted graph
Laplacian and its (n− 1)× (n− 1) submatrix B̂ counterpart,
obtained by removing row and column n. Finally, we also use

B̆ =

(
B̂−1 0

0 0

)
,

∀i, j ∈ V : Bij =


−βij , (i, j) ∈ E∑

k;(k,j)∈E βkj , i = j

0, otherwise
.

The algorithm for solving this convex optimization problem
efficiently is discussed below in Section V.

It is important to note that even though problem (32)-(37)
is convex and (as discussed below) can be efficiently solved
to optimality, its derivation relays on the extended synchrony
conjecture. An alternative approach assumes that the probabil-
ities of the chance constraints are small enough to allow the
probabilities to be estimated from Large Deviation (LD) form.
Some preliminary discussions of LD based approaches appear
in the Appendix B.

V. Algorithm

The objective and constraints in Eq.(32) are convex, however
since the size of the problem is large (typical practical models
of transmission grids may contains thousands of nodes) it is
advantageous to present the problem in a format amendable to
efficient computations. A major obstacle for efficiency is the
large number of nonlinear constraints (which are nevertheless
convex). To simplify computations we employed the following
set of algorithmic enhancements.

First of all, we combine the thermal Eqs. (35) and sync
constraints Eqs. (34), replacing these by ∀(i, j) ∈ E:[∑

k∈W

σ2
k(πik − πjk − δi + δj)

2

]1/2

≤ sij , (38)

|θ̄i − θ̄j | − η(εij)sij ≤ p̄ij/βij , (39)
|θ̄i − θ̄j | − η(ε)sij ≤ 1, (40)

where sij is an auxiliary unconstrained real variable (used
to handle the two original constraints). Then, Eqs. (39,40),
which are linear in the optimization variables, as well as the
respective linear inequalities originating from the generation
CC are all added (accounted for) at any elementary step of
the multi-step process, where an individual step consists in
solving quadratic programming with linear constraints. As far
as the nonlinear (but convex) constraint (38) is concerned, we
check if the constraint is valid at the current values of the
optimization variables (known from the previous iteration).
Valid constraints are ignored, while the violated ones are
linearized around the current value, δ̂:

Cij(δ) =

[∑
k∈W

σ2
k(πik − πjk − δi + δj)

2

]1/2

≤ sij ⇒

Cij(δ̂) +
∂Cij(δ̂)

∂δi
(δi − δ̂i) +

∂Cij(δ̂)

∂δj
(δj − δ̂j) ≤ sij .

A similar linearization of the active set of constraints is carried
out with the generation-related CC violated constraints. At any
new step all the nonlinear CC constraints are checked and the
most violated is linearized and added to the active set. The
algorithm terminates after no violated (nonlinear) constraints
are discovered. As discussed in the next Section, only very
few iterations (dozen or less) are required for typical CC-OPF
case over an even very large network.

VI. Empirical Results

As discussed earlier, the inclusion of the sync constraints in
our Sync CC-OPF increases the number of constraints that are
checked during the execution of the cutting plane portion of the
algorithm (the number of edge-related constraints is doubled).
However, in general this does not introduce any additional
complexity issues beyond with what was discussed in [1].

For completeness we will first recount the main contributions
of our general approach (as first stated in Sections 2 and 3
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of [1]). We will then describe results that include the sync
constraints.

• Algorithm scalability. [1] described results on large graphs
including the various instances of the Polish grid model
that consist of 2383-3120 edges, 327-388 generators and
2896-3693 lines and a BPA model with 2209 buses, 176
generators and 2866 lines. Solving the CC-OPF required
5-30 seconds on a standard 4-core laptop. Even for these
very large models the number of the cutting plane iterations
was relatively small, i.e. 2-30, with only a handful of
lines violating the chance constraints. Finally, in [1] the
generation limits were sufficiently high such that that were
non-binding.

• CC-OPF succeeds where standard OPF fails. [1] shows that
the standard OPF solution that ignores fluctuations in wind,
may lead to choices of p and α that overload lines too often.
The CC-OPF optimization solutions choose p and α with
significantly lower probability (risk) of line overloads, due
to the utlization of the chance constrained parameters ε.

• Cost of Reliability. From a certain point of view the CC-
OPF produces solutions with lower cost than standard (i.e.,
not chance constrained) OPF. In order for standard OPF
to meet the same level of risk as CC-OPF, the amount of
renewable energy must be reduced (when renewable energy
has negligible generation cost), thereby driving generation
costs higher.

• [1] also noted that there is no intuitively easy policy for
“fixing” a standard OPF solution. In multiple experiments
with different distributions of generation, line flows changed
significantly in response to changes in the various governing
parameters. In particular, standard OPF and CC-OPF tend
to produce very different flows patterns when the chance
constraints are binding.

• [1] also shows how the solution to CC-OPF helps when
answering the following question:What is the level of wind
penetration that can be tolerated? Given that increased wind
penetration leads to increased risk of physical violations
(e.g. of line overloads) a “what-if” experiment where wind
farm output is progressively scaled up will find a feasible
solution with the largest wind penetration possible. This
critical feasible solution sets a threshold for reasonable
investments in wind farms that are beneficial and do not
require other upgrades of the grid.

• CC-OPF modeling also helps resolve other investment
questions, for example the siting of wind farms. Different
allocations of wind farm capacity over a grid typically result
in very different solutions to CC-OPF and different risk
exposure. In this case CC-OPF computation can be used as
a diagnosis tool to identify nodes (or regions) in the grid
where placement of wind-farms is desirable or prohibited.

• Finally, the experiments of [1] have shown that (allowed)
fluctuations in wind may introduce significantly variable op-
erating conditions. For example, flow reversals in response
to minor changes in load, wind forecasts, and level of risk.

In the rest of this section we focus on analysis and illustrations

that are specific to the synch constrained implementation of
the CC-OPF, thereby increasing the contributions of CC OPF
capabilities, advantages and accomplishments.

Competition of sync and thermal risks guides iterations of the
algorithm

While at termination our algorithm produces a solution that
satisfies all constraints, a useful empirical observation is that
the algorithm “discovers” the set of lines that are most exposed
to risk – typically, these are the lines for which the conic
constraints are violated during intermediate iterations of the
algorithm, thus requiring the addition to cutting-planes as
described above. This phenomenon is easily explained by the
(highly) nonlinear nature of the “risk” that is modeled by the
chance constraints; this nonlinearity necessarily demands a
comparatively larger number of inequalities so as to obtain an
accurate approximation. Often, this set of critical lines is small
and sometimes quite small. There is, therefore, qualitative
value in studying this set.

In this regard, an interesting pattern that emerged in our
experiments was an alternation of violations in sync and ther-
mal CC-constraints during the execution of the cutting plane
algorithm. This was observed in cases where p̄ij/βij ≤ 1; even
though the probabilistic (temporal) requirements on the loss
of synchrony are much more stringent than the thermal line
requirements, i.e. ε � εij . Fig. (1) illustrates this alternation
of constraint violations. In this example CC constraints on
four lines are violated after the first iteration. Of the four
lines with CC violations, one line displays problems with both
the thermal and sync conditions and one line has a violation
in sync conditions only. The number of chance constraint
violations is reduced as the number of iterations increases.
Naturally, the optimal solution to generation dispatch changes
during the course of the iterations. In particular, we observe
that as the algorithm iterates, flows over all lines with violated
chance constraints are reduced. This is arguably driven by
changes in generation dispatch over the grid and which is also
accompanied by adjustment of the flow pattern over many
other lines within the system.

Pattern of Sync Warnings

Fig. (2) specifically focuses on sync chance constraints that are
violated during the course of the algorithm; as explained above
the lines corresponding to these constraints are indicative of
potentially vulnerable patterns within the grid. In Fig. (2) we
color those lines that were overloaded at some iteration of
the algorithm (which in this case terminated in 11 iterations).
Lines marked red showed a sufficiently high probability of
the sync overload even within the feasible solution (their sync
probability of overload was larger than 10−4 but smaller than
ε = 10−2).
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Fig. 1. Outputs of the 1st, 8th, 11th and 13th iteration steps (in ascending order from left to right) of the cutting plane Sync CC-OPF algorithm for the 9 node
IEEE model. The algorithm terminates after 13 iterations and these pictures show snapshots of the most significant qualitative changes. Loads, wind farms and
regular generators are located at the nodes marked in black, green and red, respectively. The size of the nodes are scaled with consumption (of load), mean
production (of wind farm) and optimal production (of regular generation). Red, magenta, blue and black show lines with both sync and thermal CC violations,
only sync CC violations, only thermal CC violations, and no violations respectively. The width of the lines are scaled according to the mean flow over the line.

Fig. 2. A feasible solution snapshot of the Polish grid (rendered non-geographically) and a magnified spot from the snapshot are shown. Lines marked red
and blue were sync-overloaded during the algorithm iterations. Lines marked red showed the sync overload probability larger than 10−4 but smaller than 10−2

within the feasible solution, where the latter was the pre-set value of ε. Scaling of node size and line width is set according to respective consumption/production
and power flows within the final feasible solution.

Sensitivity of the optimal solution to risk awareness and other
parameters

The optimal solution to the Sync CC OPF problem may have
significantly different structure depending on the governing
parameters; i.e. load, wind penetration and voltage level.
A particularly interesting case, observed under two slightly
different conditions, is illustrated in Fig. (3) . In the case
shown on the right the distribution of generation (red dots)
is rather uniform, while the same distribution is visibly much
less uniform in the case shown on the left side of the figure.
The left (non-uniform) case mainly has synchronization CC
violations, while the right (uniform) case contained a mixture
of the synchronization and thermal violations. It is important to
note that difference in solutions is genuine, as the two optimal
values are different.

VII. Conclusions and Path Forward

This paper describes an approach for incorporating important
nonlinear aspects of the AC power flow equations into OPF
models. We first develop a formulation for AC-OPF that is

convex under the assumption that (a) power lines are inductive
(zero resistivity) and (b) voltage is maintained constant across
the grid. This convex formulation builds on the earlier result
of [3]. Second, the paper developed a chance constrained AC-
OPF that forces the probability of the grid losing synchrony,
the probability of thermal line overload and the probability of
the generators deviating from their bounds to be sufficiently
low. The AC OPF problem is reduced to a convex (conic)
optimization problem that has the same complexity as the
DC CC-OPF of [1]. Experiments show it to be efficiently
solvable. Our formulation is approximate and it is based on
implementing the static and linear synchronization conditions
of [8].

While these advances are considerable, there are a number
of questions and challenges left for further explorations. In
particular, we highlight the following open questions:

• Lemma 4.1 guarantees that the convex optimization (10) is
a theoretically accurate approximation for AC-OPF when
voltages are fixed and there are no losses. However, an
efficient algorithm for solving this approximation is not yet
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Fig. 3. The two figures correspond to optimal solutions of the Sync CC-OPF on the 118 bus IEEE model. Green, black and red dots mark wind farms, loads
and regular generators, respectively. The sizes are proportional to the mean production, consumption and the average value of the optimal solution production.
Line width expresses the mean value of power flows for the optimal solution. The two optimal solutions are derived for two slightly different values of the
base voltage. The solution shown on the left required 21 iterations of the cutting plane algorithm with only sync conditions violated. The solution shown on
the right required 9 iterations with violations of both sync and thermal constraints. Optimal distribution of the mean generation is visibly less uniform for the
sync constrained solution (shown on the left).

developed. Moreover, inspired by [13], we believe that a
distributed version of the algorithm is possible.

• Adding chance constraints to the convex, nonlinear and
exact AC-OPF makes finding a computationally efficient
algorithm a challenging task. One possible way of ad-
dressing this challenge, relies on approximating the chance
constraints in a Large Deviation fashion and is briefly
outlined in Appendix B.

• As shown theoretically in [1] the robust version of the DC
CC-OPF includes uncertainty in parameters of the wind
forecast distribution. This approach generalizes to the sync
CC-OPF introduced and discussed in this manuscript, but
needs to be tested.

• The convex AC-OPF and the sync CC-OPF do not include
voltage variations and thus neglects dramatic and highly
nonlinear phenomena such as voltage collapse [21], [19],
[7]. Including voltage-related effects is expected to be a
much more difficult task than dealing with the phase angle
nonlinearities and related loss of synchrony phenomena
addressed in this paper.

• Finally, there remain a large number of extensions to
consider. These include modeling nonzero power line resis-
tivity, including N − 1-contingency compliance, modeling
temporal (discrete or continuous) evolution of wind forecast
and the incorporation of our approach into discrete problems
such as unit commitment. These serve as a foundation for
extending this emerging approach to stochastic modeling
and efficient algorithmic implementations of optimization

and control problems in power transmission systems.
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Appendix

A. Relation to Energy Function

Eq. (5) can also be turned into an alternative formulation,
where the only optimization is over θ. To derive such a
formula, dual to Eq. (5), one starts from Eq. (5), incorporates
the conditions (6) through Lagrangian multipliers θ into the
effective Lagrangian, performs variation over ρ, uses Eq. (8)
to express ρ via θ, and finally one substitutes the result in the
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objective, thus arriving at

max
θ

 ∑
(i,j)∈E

βij (cos(θi−θj)−1)+2
∑
i∈V

θi(pi+di− wi)


=2 min

θ

 ∑
(i,j)∈E

βij
1− cos(θi − θj)

2
−
∑
i∈V

θi(pi+di−wi)

 .

Note that the objective on the rhs of the last expression is
nothing but the so-called energy function (modulo overall
factor of 2 and considered under fixed voltage) discussed
extensively in the power systems literature, see e.g. [18] and
references therein.

B. Large Deviation Derivation of the Nonlinear
Chance-Constrained Condition

Our goal for this Appendix is not to present the complete
algorithm, and even not to present a convex optimization
problem, but instead we aim to show how the CC constraints
can be evaluated in the LD asymptotic, thus resulting in some
deterministic, but implicit and still non-convex expressions.
These expressions will require further manipulations/tricks to
produce an efficient computational procedure in the future.

Our task here is to replace the exact probabilistic chance-
constrained condition of the thermal type, Eq. (35), e.g.

Prob (βkl sin(θk − θl) ≥ %) < ε, (41)

by its Large-Deviation (LD), or saddle-point (instanton) deter-
ministic approximation. Then, using Eq. (31) for the PDF of
wind one approximates the rhs of Eq. (41) in the LD (saddle-
point) manner

Prob (βkl sin(θk − θl) ≥ %) =

∫
ω∈Ω(p̄,α)

dωρ(ω) = W0

∫
ω∈Ω0(p̄,α)

dθρ(ω) = W1 exp (−E(p̄;α)) , (42)

Ω(p̄, α) =

ω ∈ R|W|
∣∣∣∣∣∣ ∃θ ∈ R|V| s.t.


θn = 0

∀i ∈ V :
∑
j:(i,j)∈E βij sin(θi − θj) = (p̄− d+ µ+ ω − (eTω)α)i

βkl sin(θk − θl) ≥ %

 , (43)

Ω0(p̄, α) =

ω ∈ R|W|
∣∣∣∣∣∣ ∃θ ∈ R|V| s.t.


θn = 0

∀i ∈ V :
∑
j:(i,j)∈E βij sin(θi − θj) = (p̄− d+ µ+ ω − (eTω)α)i

βkl sin(θk − θl) = %

 ,(44)

E(p̄, α) = min
θ,ϑ,ω

∑
i∈W

ω2
i

2σ2
i

∣∣∣∣∣ βklϑkl = %, θn = 0,
∀i ∈ V :

∑
j:(i,j)∈E βijϑij = (p̄− d+ µ+ ω − (eTω)α)i,

∀(i, j) ∈ E : ϑij = −ϑij = sin(θi − θj)

, (45)

where W0 and W1 are volume factors which dependence on
σ is expected to be algebraic in the |σ| → 0 limit. Then, the
condition (41) turns into

E(p̄;α) ≥ log(1/ε) + logW1. (46)

The “effective energy”, E(p̄;α), dependence on |σ| is expected
to be at least ∼ 1/|σ| at |σ| → 0 (or stronger), therefore one
can safely ignore the logW1 = O(log σ) term on the rhs of
Eq. (46) in the limit.

As shown in the Subsection below the linear (DC) approx-

imation version of Eq. (46) results in a constraint which is
convex in p̄ and α. An important question becomes: if Eq. (46)
may also allow a convex and/or computationally convenient
re-formulation?

The case of DC approximation

Eq. (42) applies to the nonlinear case of interest (fixed voltage,
no resistive losses), however under a simple modification,
consisting in replacement of ϑij → (θi − θj), it reduces to

EDC(p̄;α) = min
θ,ω

∑
i∈W

ω2
i

2σ2
i

∣∣∣∣∣ βkl(θk − θl) = %, θn = 0,
∀i ∈ V :

∑
j:(i,j)∈E βij(θi − θj) = (p̄− d+ µ+ ω − (eTω)α)i

, (47)

describing the CC-constraint within the DC-approximation.
Then the DC analog of Eq. (46) becomes

EDC(p̄;α) ≥ log(1/ε)±O(log σ). (48)

Resolving the conditions in Eq. (47) explicitly and following
the notations of [1] one derives
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EDC(p̄;α) = min
ω

∑
i∈W

ω2
i

2σ2
i

∣∣∣∣∣
(B̆(p̄−d+µ+ω−(eTω)α))

k
−(B̆(p̄−d+µ+ω−(eTω)α))

l
=%

(49)

= min
ω

max
φ

(∑
i∈W

ω2
i

2σ2
i

− φ
((
B̆(p̄− d+ µ+ ω − (eTω)α)

)
k
−
(
B̆(p̄− d+ µ+ ω − (eTω)α)

)
l
− %
))

(50)

= −max
φ

φ2
∑
i∈W

σ2
i

2

∑
j∈V

(B̆kj − B̆lj)αj − B̆ki + B̆li

2

+φ
((
B̆(p̄− d+ µ)

)
k
−
(
B̆(p̄− d+ µ)

)
l
−%
) (51)

=

((
B̆(p̄− d+ µ)

)
k
−
(
B̆(p̄− d+ µ)

)
l
−%
)2

2
∑
i∈W

σ2
i

(∑
j∈V

(B̆kj − B̆lj)αj − B̆ki + B̆li

)2 , (52)

where the auxiliary variational variable φ is a scalar. Eq. (52)
combined with Eq. (48) results in the σi → 0 (and
βij → 1) version of the CC-constraint (35), with η(x) →
(2 log(1/x))1/2.
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