
Optimal Resilient Transmission Grid Design
Harsha Nagarajan†, Emre Yamangil†, Russell Bent†, Pascal Van Hentenryck‡, Scott Backhaus†

† Center for Nonlinear Studies, Los Alamos National Laboratory, NM, United States.
‡ Department of Industrial Operations Engineering, University of Michigan, Ann Arbor, United States.

Contact: rbent@lanl.gov

Abstract—As illustrated in recent years (Superstorm
Sandy, Northeast Ice Storm of 1998, etc.), extreme weather
events pose an enormous threat to the electric power trans-
mission systems and the associated socio-economic systems
that depend on reliable delivery of electric power. These
threats motivate the need for approaches and methods
that improve the response (resilience) of power systems.
In this paper, we develop a model and tractable methods
for optimizing the upgrade of transmission systems through
a combination of hardening existing components, adding
redundant lines, switches, generators, and transformers.
While many of these components are included in traditional
design (expansion planning) problems, we uniquely assess
their benefits from a resiliency point of view.

I. INTRODUCTION

The modern electrical system is designed for transporta-
tion of large amounts of power from sources of supply
to distant points of demand. Within these systems, the
underlying high-voltage transmission networks play a vital
role in achieving this mission. However, when transmis-
sion networks are exposed to extreme event conditions, the
ability to deliver power is degraded because of physical
damage to overhead transmission lines and towers. One
example of such events are ice storms. During an ice
storm, transmission towers can fail due to leg buckling
(Figure 1) and lines can fail due to the combined stress
of ice accumulation and wind [1], [2], [3].

When such events occur on large scales, outages and
impacts can be extreme. For example, in the winter of
1998, an ice storm in northeastern North America toppled
over 1000 transmission towers and 30,000 wooden utility
poles. Over 5 million people were without power and the
economic impacts were estimated at $2.6 billion [4]. Thus,
given the potential social and economic impacts of these
events, it is important to consider how to upgrade the de-
sign of transmission systems to improve their performance
under these conditions.

In this paper, we formulate the Optimal Resilient Grid
Design problem for Transmission systems (ORGDT) as a
two-stage mixed-integer stochastic optimization problem
and develop algorithms to solve this problem. The first
stage selects from a set of potential upgrades to the
network. The second stage evaluates the network per-
formance benefit of the upgrades with a set of damage
scenarios sampled from a stochastic distribution of events
of concern.

Figure 1. High voltage transmission towers damaged due to an ice storm
in North America, January 1998. Picture reproduced from [5].

For the purposes of this study, we adopt the methods
discussed in [3] in order to sample realistic damage
scenarios for transmission systems. The ORGDT upgrade
options include: a) Build new lines, b) Build switches
and FACTS devices to provide operational flexibility, c)
Harden existing lines to lower the probability of damage,
and d) Build distributed generation facilities. Minimal net-
work (resiliency) performance is measured by satisfying
a minimum fraction of critical and non critical load for
each scenario under the convex quadratic AC power flow
constraints discussed in [6]. Given that this problem is
a non-trivial Mixed Integer Problem (MIP), we develop
exact and heuristic decomposition algorithms exploit the
block diagonal structure of the MIPs.
Literature Review The recent paper [7] is the most
closely related work, that we are aware of, in the literature.
This paper considers the problem of resilient upgrades
of electrical distribution grids (radial networks). Their
approach minimizes the upgrade budget while satisfying
a minimum standard of service by selecting from a set of
various potential upgrades. Like us, they pose the optimal
grid design problem as a two-stage, stochastic mixed-
integer program with damage scenarios. They describe
decomposition based optimal and heuristic algorithms that
are the basis for our approach. We generalize their ap-
proaches in three fundamental ways. First, we extend the
optimization framework to transmission networks which
are non-radial by nature. Second, we add AC power flow
physics, an important feature of loopy networks under
stressed conditions [8]. Third, we consider the use of
transformers and FACTS devices to improve operations
under stressed conditions and improve resilience. Another
important area of related work is interdiction modeling



and optimization. Here, the goal is to operate or design a
system to make it as resilient as possible to an adversary
who can damage up to k elements [9], [10], [11], [12].
These models are a generalization of our model when k
is chosen to bound a worst-case event. However, given
their min-max structure, these models are computationally
challenging and are solvable only for small k. Instead, we
exploit the probabilistic nature of the adversary and we are
able to address larger problems. In addition, existing inter-
diction models also do not generally include AC physics.
A third area of related work is stochastic transmission and
generation expansion planning, where a recent survey de-
scribes some of the state-of-the-art [13]. In general, many
of the papers in this area use the linearized DC model
and few studies consider FACTS devices and transformers,
although they may have significant benefits. Some notable
exceptions include the use of phase-shifting transformers
in network expansion [14], which uses a genetic algorithm
over the DC model. See also the recent work in [15] for the
optimal placement of these devices to avoid congestion.

The key contributions of this paper include:
• Computationally efficient algorithms for designing

resilient transmission systems.
• An analysis of the resiliency benefits of transmission-

level control devices. We show that the stability
criteria related to phase angle differences is a driving
force in costs associated with resilient design and
FACTS devices can be used to control these costs.

II. ORGDT OPTIMIZATION MODEL

NOMENCLATURE
Parameters
N set of nodes (buses)
E set of edges (lines and transformers)
S set of disaster scenarios
Ds set of edges that are inoperable during s ∈ S
i imaginary number constant
cij cost to build a line (i,j) if the line does not already exist
κij cost to build a switch on line (i,j)
ψij cost to harden a line (i,j)
∆ij cost to build a compensator on line (i,j)
Γij cost to build a phase-shifting device on line (i,j)
ζpi cost of real generation capacity at bus i
αi cost to build a generation facility at bus i
Tij apparent power thermal limit on line (i,j)
L set of buses whose loads are critical
Gij + iBij admittance of line (i,j)
Ḡij + iB̄ij modified admittance of line (i,j) due to top transformer
Rij + iXij impedance of line (i,j)
Rij + iX̄ij modified impedance of line (i,j) due to top transformer
θu phase angle difference limit
vli, v

u
i lower and upper bound on voltage at bus i, respectively

dpi + idqi AC power demand at bus i
gpui + igqui existing AC power generation capacity at bus i
zpui + izqui maximum AC power generation capacity that can be

built at bus i
lpncrit + ilqncrit fraction of non-critical AC power loads that must

be served
lpcrit + ilqcrit fraction of critical AC power loads that must be

served

Binary Variables
xij determines if line (i,j) is built
τij determines if line (i,j) has a switch built
tij determines if line (i,j) is hardened
ui determines the generation capacity built at bus i
δij determines if compensator is built on line (i,j)
γij determines if phase-shifting device is built on line (i,j)
xsij determines if line (i,j) is used during disaster s ∈ S
τsij determines if switch (i,j) is used during disaster s ∈ S
tsij determines if line (i,j) is hardened during disaster s ∈

S
δsij determines if compensator on line (i,j) is used during

disaster s ∈ S
γsij determines if phase-shifting device on line (i,j) is used

during disaster s ∈ S
Continuous variables
θsi phase angle at bus i during disaster s ∈ S
vsi voltage at bus i during disaster s ∈ S
lsij current magnitude squared (|Isij |2) on line (i,j) during

disaster s ∈ S
psij + iqsij AC power flow on line (i,j) during disaster s ∈ S
zpi + izqi determines the capacity for AC power generation at bus

i
zpsi + izqsi determines the capacity for AC power generation at bus

i during disaster s ∈ S
gpsi + igqsi AC power generated at bus i during disaster s ∈ S
lpsi + ilqsi AC power load delivered at bus i during disaster s ∈ S
ypsi + iyqsi determines the fraction of AC power load served at bus

i during disaster s ∈ S

P0 := min
∑
ij∈E

(cijxij + κijτij + ψijtij)

+
∑
i∈N

(αiui + ζpizpi) (1a)

s.t. xsij ≤ xij ∀ij ∈ Ds, s ∈ S (1b)
xsij = xij ∀ij /∈ Ds, s ∈ S (1c)
τsij ≤ τij , tsij ≤ tij ∀ij ∈ E , s ∈ S (1d)
zpsi ≤ zpi, zq

s
i ≤ zqi ∀i ∈ N , s ∈ S (1e)

zpi ≤ zpuiui, zqi ≤ zquiui ∀i ∈ N (1f)
(xs, τs, ts, zps, zqs, u) ∈ Q(s) ∀s ∈ S (1g)
xij , τij , tij , ui ∈ {0, 1} ∀ij ∈ E , i ∈ N (1h)

Model P0 formulates the ORGDT as a two-stage mixed-
integer nonlinear program, with first-stage variables spec-
ifying new infrastructure enhancements and second-stage
variables describing how to use the infrastructure to serve
the load for each scenario s ∈ S. In this formulation,
Eq. (1a) minimizes the total upgrade cost. Eqs. (1b)
through (1e) link the first-stage (construction) decisions
with second-stage variables in Q(s). Eqs. (1f) represent
the generation facility location constraints. Eq. (1g) states
that the mixed-integer vector (xs, τs, ts, zps, zqs, u) ∈
Q(s) is an AC feasible transmission network for scenario
s subject to constraints as described in (2).

The constraints of Q(s) involve the well-known AC-
power flow equations from power engineering literature
in addition to the budget constraints on resiliency options.
Eqs. (2a) through (2d) represents the AC power flow given
a topology vector x̃s. When the line is not built the flow
is forced to 0 by x̃s.



Q(s) = {xs, τs, ts, zps, zqs, u :

AC power flow equations:
psij = x̃sij(Gijv

s2
i −Gijv

s
iv

s
j cos(θsij)

−Bijv
s
iv

s
j sin(θsij)) ∀ij ∈ E , (2a)

qsij = x̃sij(−Bijv
s2
i +Bijv

s
iv

s
j cos(θsij)

−Gijv
s
iv

s
j sin(θsij)) ∀ij ∈ E , (2b)

psji = x̃sij(Gijv
s2
j −Gijv

s
iv

s
j cos(θsij)

+Bijv
s
iv

s
j sin(θsij)) ∀ij ∈ E , (2c)

qsji = x̃sij(−Bijv
s2
j +Bijv

s
iv

s
j cos(θsij)

+Gijv
s
iv

s
j sin(θsij)) ∀ij ∈ E , (2d)

θsij = θsi − θsj ∀ij ∈ E , (2e)
psij + psji = Rij l

s
ij ∀ij ∈ E , (2f)

qsij + qsji = Xij l
s
ij ∀ij ∈ E , (2g)

ps2ij + qs2ij ≤ l
s
ijv

s2
i ∀ij ∈ E , (2h)

gpsi − lp
s
i =

∑
ij∈E

psij ∀i ∈ N , (2i)

gqsi − lq
s
i =

∑
ij∈E

qsij ∀i ∈ N , (2j)

Operational limits and topology constraints:
ps2ij + qs2ij ≤ x̃

s
ijTij ∀ij ∈ E , (2k)

ps2ji + qs2ji ≤ x̃
s
ijTij ∀ij ∈ E , (2l)

− θu ≤ x̃sijθsij ≤ θu ∀ij ∈ E , (2m)

vli ≤ vsi ≤ vu ∀i ∈ N , (2n)
xsij = tsij ∀ij ∈ Ds (2o)
x̃sij = xsij − τsij ≥ 0 ∀ij ∈ E (2p)
Generation and demand constraints:
0 ≤ gpsi ≤ gp

u
i + zpsi ∀i ∈ N , (2q)

0 ≤ zpsi ≤ zp
u
iui ∀i ∈ N , (2r)

0 ≤ gqsi ≤ gq
u
i + zqsi ∀i ∈ N , (2s)

0 ≤ zqsi ≤ zq
u
iui ∀i ∈ N , (2t)

lpsi = ypsidpi ∀i ∈ N , (2u)
lqsi = yqsidqi ∀i ∈ N , (2v)∑
i∈L

lpsi ≥ lpcrit
∑
i∈L

dpi (2w)∑
i∈N\L

lpsi ≥ lpncrit

∑
i∈N\L

dpi (2x)

∑
i∈L

lqsi ≥ lqcrit
∑
i∈L

dqi (2y)∑
i∈N\L

lqsi ≥ lqncrit

∑
i∈N\L

dqi (2z)

xs, τs, ts ∈ {0, 1}; 0 ≤ yps, yqs ≤ 1}

Eqs. (2f) through (2h) represent power loss equations
associated with AC power flow. Eqs. (2i) and (2j) define
the power flow balance constraints. Eqs. (2k) and (2l)
are used to express the operational thermal limits of a
line in both directions. Phase angle difference bounds and
bus voltage limits are expressed in Eqs. (2m) and (2n),
respectively. Eq. (2o) represents the damaged lines of the
scenario s ∈ S, i.e. line is inoperable when damaged and

unhardened. Eq. (2p) defines the topology for scenario
s which allows a switch to be operational only if the
line is active. Eqs. (2q) through (2t) represent the power
generation available from existing power plants and new
generators that can be built. Eqs. (2u) and (2v) express
the fraction of power served for customer i. Note that we
allow continuous power shedding. Eqs. (2w) through (2z)
ensures that a minimum fraction of critical and non-critical
loads is served during scenario s. Finally, all the discrete
and continuous variables are defined.

A. Convex Relaxation of AC Power Flow
McCormick relaxations Given any y1,y2 ∈ R, we define
the McCormick relaxation of the bilinear product y1y2 as
ŷ12 ∈ 〈y1, y2〉MC such that,

ŷ12 ≥ yl1y2 + yl2y1 − yl1yl2 (3a)
ŷ12 ≥ yu1 y2 + yu2 y1 − yu1 yu2 (3b)

ŷ12 ≤ yl1y2 + yu2 y1 − yl1yu2 (3c)

ŷ12 ≤ yu1 y2 + yl2y1 − yu1 yl2 (3d)

Note that the above relaxations are exact when either y1
or y2 is a binary variable.

Using the above notation, we present the convex
quadratic relaxation techniques discussed in [6] to outer-
approximate the non-linear AC power flow equations in
(2) For brevity, we will focus on constraints (2a), (2b).

psij = Gij x̂v
s
i −Gij x̂wc

s
ij −Bij x̂ws

s
ij ∀ij ∈ E ,

qsij = −Bij x̂v
s
i +Bij x̂wc

s
ij −Gij x̂ws

s
ij ∀ij ∈ E ,

where x̂v
s
i , x̂wc

s
ij and x̂ws

s
ij satisfy the following con-

straints:

v̂si ≥ vs2i (4a)

v̂si ≤ (vui + vli)v
s
i − vuiv

l
i (4b)

x̂vsi ∈ 〈x̃sij , v̂si〉MC (4c)

x̂wcsij ∈ 〈x̃sij , ŵc
s
ij〉MC (4d)

x̂wssij ∈ 〈x̃sij , ŵs
s
ij〉MC (4e)

ŵcsij ∈ 〈ŵs
ij , ĉs

s
ij〉MC (4f)

ŵssij ∈ 〈ŵs
ij , ŝn

s
ij〉MC (4g)

ŵs
ij ∈ 〈vsi, vsj〉MC (4h)

θmax = (|E|θu)2 , θ̃u = θu/2 (4i)

ĉssij ≤ x̃sij +
1− cos(θu)

θu2

(
(1− x̃sij)θmax − θs2ij

)
(4j)

ĉssij ≥ x̃sij(1 + cos(θu))− 1 (4k)

ŝns
ij ≤ cos(θ̃u)(θsij − x̃sij θ̃u + (1− x̃sij)θmax) + x̃sij sin(θ̃u) + 1

(4l)

ŝns
ij ≥ cos(θ̃u)(θsij + x̃sij θ̃

u − (1− x̃sij)θmax)− x̃sij sin(θ̃u)− 1
(4m)

B. Additional Resiliency Options

This paper also considers the addition of FACTS de-
vices and transformers for resiliency. These devices are
often useful for addressing congestion in overloaded trans-
mission systems and when the power system is outside
normal operating conditions, which is typically the case



after major disruptions. These devices are often cost-
effective, as they cost a fraction of transmission lines [16]
and their availability may reduce resiliency costs signifi-
cantly, avoiding the introduction of new transmission lines
or hardening the existing damaged lines. This paper ex-
plores this option but restricts attention to FACTS devices
for series compensation and phase-shifting transformers.

a) Series Compensators: We model series compen-
sation by reducing the reactance of a line. Let δsij ,
as described in the nomenclature, be a binary variable
indicating if a series compensation device is installed on
line ij during scenario s ∈ S. Therefore we can modify
the susceptance and reactance of line ij as follows:

Bij = (B̄ij −Bij)δ
s
ij +Bij (5a)

Xij = (Xij − X̄ij)δ
s
ij +Xij (5b)

In particular, if series compensation is used, the suscep-
tance increases by B̄ij −Bij and the reactance decreases
by Xij−X̄ij . The conductance G is modified in a similar
way.

b) Phase-Shifting Transformers: Phase-shifting
transformers are devices which make it possible
to move phase-shifts forward and backwards. They are
particularly useful when lines have different susceptances.
As described in the nomenclature, let γsij be a binary
variable indicating if a phase shifter is installed on line
ij during scenario s ∈ S . The phase angle difference
θsi −θsj can then be replaced with θsi −θsj +γsijφ

s
ij where

φsij represents the phase angle modification introduced
by the phase shifter on line ij during scenario s ∈ S.
This problem is referred to as P1.

C. Recovering AC-feasible solutions
It is important to note that the QC relaxation

introduced in Eqs. (4) might violate the nonlinear
AC-equations described in Eqs. (2a) through (2d).
Let (xs, τs, ts, zps, zqs, u) be a given topology and
(lps, lqs, gps, gqs) be a corresponding feasible load and
generation profile. We can then solve the following prob-
lem and measure the gap between a feasible solution for
AC-power flow and QC relaxations to obtain the total load
to be shed:

p0 := min

n∑
i=1

(lpsi − lp
sAC
i )+

s.t. (lpsAC
i , lqsAC

i ) ∈ Eqs. (2a) through (2n)

(lpsAC
i , lqsAC

i ) ∈ Eqs. (2q) through (2v)

where (lpsi− lps
AC
i )+ represents the additional load shed

for bus i in scenario s under the AC-power flow solution,
also known as the positive part of lpsi − lps

AC
i .

III. ALGORITHMS

In this section we discuss the algorithms developed for
solving ORGDT. ORGDT is a two-stage MIP problem
with a block diagonal structure that includes coupling vari-
ables between the blocks. In order to exploit this structure,
we generalize the standard scenario-based decomposition

techniques in combination with the heuristics proposed in
[7] to solve ORGDT. In the remainder of this paper, let
P0(S ′) denote ORGDT with the scenario set S ′ ⊆ S and
σ denote the vector of construction variables xij , τij , tij ,
for all ij ∈ E and ui for all i ∈ N .

A. Exact Algorithm (Scenario-Based Decomposition
(SBD))

Decomposition is often used for solving two-stage
stochastic MIPs [17], and it can be applied to ORGDT
after the following key observation:

Observation III.1. The second stage variables do not
appear in the objective function. Therefore any optimal
first stage solution based on a subset of the second stage
subproblems that is feasible for the remaining scenarios,
is an optimal solution for the original problem.

Based on this observation, we can apply SBD to solve
ORGDT. At a high level, Algorithm 1 solves problems
with iteratively larger sets of scenarios until a solution is
obtained that is feasible for all scenarios. The algorithm
takes as input the set of scenarios and an initial scenario
to consider, S ′. Line 2 solves ORGDT on S ′, where
P0(S ′) and σ∗ are used to denote the problem and solution
respectively. Line 3 then evaluates σ∗ on the remaining
scenarios in S \ S ′. The function l : P ′(s, σ∗) → R+,
is an infeasibility measure that is 0 if the problem is
feasible for scenario s, positive otherwise. This function
is implemented by maximizing the reliability constraints,
i.e. total and critical demand satisfied. It measures the gap
between the delivered and the required demand (the right
hand side of the Eqs. 2w through 2z). This function prices
the current solution over s ∈ S \ S ′. If all prices are 0,
then the algorithm terminates with solution σ∗ (lines 4-5).
Otherwise, the algorithm adds the scenario with the worst
infeasibility measure to S ′ (line 7).

Algorithm 1: Scenario Based Decomposition
input: A set of disasters S and let S ′ = S0;

1 while S \ S ′ 6= ∅ do
2 σ∗ ← Solve P0(S ′);
3 I ←

〈
s1, s2 . . . s|S\S′|

〉
s ∈ S \ S ′ :

l(P ′0(si, σ
∗)) ≥ l(P ′0(si+1, σ

∗));
4 if l(P ′0(I(0), σ∗)) ≤ 0 then
5 return σ∗;
6 else
7 S ′ ← S ′ ∪ I(0);

8 return σ∗

Remark III.2. We observed that the LP-relaxation for
ORGDT is very loose. To overcome this issue, we augment
every iteration of Algorithm 1 with the previous optimum
objective value as a lower bound for the current iteration.



Cutting-plane algorithm to handle quadratic and SOC
constraints: For the sake of completeness, we invoke the
following quadratic and SOC constraints from Sec. II.

ps2ij + qs2ij ≤ lsijvs
2
i , (7a)

ps2ij + qs2ij ≤ x̃sijTij , (7b)

ps2ji + qs2ji ≤ x̃sijTij , (7c)

vs2i ≤ v̂si, (7d)
Constraint (4j), (7e)

Even though optimization theory guarantees that the
above set of convex inequalities can be solved efficiently,
several numerical experiments show that it is challenging
to solve even moderately sized problems using state-
of-the-art MISOCP solvers (CPLEX). Either the solver
convergence is very slow or it terminates with “numerical
trouble” (CPLEX Error 3019). In order to circumvent this
issue, we use an effective cutting-plane approach to solve
the problem in a tractable fashion.

Let the following rotated form of the SOC inequality
represent the generalization of constraints (7):

a2 + b2 ≤ c1c2 (8)

where, a, b, c1, c2 are variables.

Lemma III.3. Let f(a, b, c1) = a2+b2

c1
. Constraint (8) is

satisfied “iff” the following infinite set of linear inequal-
ities hold:

f(â, b̂, ĉ1) +
∂f(â, b̂, ĉ1)

∂a
(a− â) +

∂f(â, b̂, ĉ1)

∂b
(b− b̂)

+
∂f(â, b̂, ĉ1)

∂c1
(c1 − ĉ1) ≤ c2 ∀â, b̂, ĉ1 ∈ R (9a)

For any â, b̂, ĉ1 ∈ R, linear inequalities/cutting planes in
Lemma 9 represent an outer envelope of the set described
by (8) and thus produces a lower bound to the optimal
objective value. This lower bound can be tightened further
for every infeasible solution by adding the valid cutting
planes until a solution obtained is feasible, and hence
optimal, for the original SOC set.

B. Heuristic Algorithms

Improvement Heuristic (Variable Neighborhood
Search (VNS)) To overcome the computational
limitations of exact methods, we use a VNS heuristic.
We can describe the VNS in the following high level
form: Given an incumbent to the original problem, the
algorithm fixes a subset of first stage variables to their
incumbent value and searches the remaining variables
for a better solution. If we can find a better solution, the
incumbent is reset by the better solution and we restart
the search from the new incumbent, else, we increase
the neighborhood size (number of unfixed variables).
If we reach a maximum number of iterations with no
improvement, the algorithm restarts the search with a

random subset of variables fixed to their incumbent
values. The details of the algorithm can be found at [7]
(this is a modification of the general VNS for an arbitrary
MIP proposed by [18]).

It is important to note that, if all the first stage vari-
ables are fixed, the problem decomposes into |S| separate
problems that are easily solved and provide heuristic
justification for searching the neighborhood of only the
first stage variables.
SBD-VNS Heuristic for ORGDT In this algorithm we
combine the strengths of VNS with SBD. SBD provides
an exact solution to ORGDT while VNS generates high
quality solutions with limited CPU time. Understanding
that the master problem takes a substantial amount of
the computation time, it is natural to create a hybrid
algorithm. The hybrid algorithm proceeds exactly the
same as Algorithm 1, except that the exact solver for
Solve(P0(S ′)) is replaced by V NS(P0(S ′)) in line 2.

IV. CASE STUDY

In this section, we demonstrate the benefits of the
algorithms when solving the ORGDT to optimality and
sub-optimality on the modified single area IEEE RTS-
96 system [19]. The comparison is based on the upgrade
costs for resilient transmission grids and the additional
cost benefit obtained due to the series compensators and
phase-shift transformers in the system. We also investigate
the performance of proposed algorithms with regards to
computation time and scalability. All computations were
implemented with KNITRO 9.1.0 as a nonlinear solver
and CPLEX 12.6 as an MILP solver. We used 32 threads
on a 2.6GHz Intel 64 bit processor with 40 physical cores,
25.6MB L3 cache and 132GB of memory. All modeling
was done using JuMP [20].
Test system We use the modified IEEE single-area RTS-
96 system that has 24 buses including 17 load buses, 38
transmission lines and 32 conventional generators. The
total installed capacity of the existing generators is 3405
MW. The total load in the system is 2850 MW, with 1740
MW as critical loads (critical load locations are shown
in Fig. 2). The bus locations were chosen to spread the
topology of the standard test system spread over an area
of 52783 miles2. The admittance, impedance and apparent
power thermal limit values on lines are as mentioned in the
standard test case. We use the following parameters for our
study: vl = 0.95, vu = 1.05, θu ∈ {15◦, 45◦}, lpcrit =
lqcrit = 0.99, lpncrit = lqncrit = 0.8, cij = $1.35m/mile,
κij = $100, ψij = $5000/mile, ∆ij ,Γij = $0.5m/device,
αi = $0.1m and ζpi = $0.817m/MW for new generators
[21]. For the study of FACTS devices, we reduced the
reactance of a line by 20% due to series compensators
and the phase angle modification (φij) was bounded by
60◦ for phase shifters.
Scenario generation Our damage scenarios were cho-
sen as line failure probabilities following a multivariate



TABLE I. COMPARISON OF WALL TIME (SEC.) OF ALGORITHMS

WITHOUT FACTS DEVICES. * INDICATES TIMED OUT IN 5 HRS.

θu = 15◦ θu = 45◦

% damage SBD SBD-VNS SBD SBD-VNS

90 911.7 1074.4 1495.4 2125.2
80 896.2 640.2 * 5278.5
70 935.6 1709.0 * 1931.4
60 677.8 354.9 376.0 2003.2
50 689.7 818.5 * 4307.6

TABLE II. COMPARISON OF OBJ. VALUES (×106$) OF ALGORITHMS

WITHOUT FACTS DEVICES. * INDICATES TIMED OUT IN 5 HRS.

θu = 15◦ θu = 45◦

% damage SBD SBD-VNS SBD SBD-VNS

90 154.3 157.1 2.1 2.6
80 153.6 159.4 * 2.4
70 152.7 157.9 * 2.0
60 152.9 158.7 1.9 2.2
50 152.6 156.5 * 1.8

Gaussian distribution with its mean placed at the center
of the network. We further performed a Bernoulli trial
on every line under a chosen percentile (% damage)
of the distribution to randomly generate the scenarios.
Empirically, we observed that 25 scenarios were sufficient
to represent the features of the chosen distribution.
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(a) Resilient grid
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(b) Cost-efficient resilient grid

Figure 2. Graphical representation of IEEE-96 system built to withstand
disasters under 90% damage. (a) represents the resilient grid (total up-
grade cost = $154.3×106) obtained at θu = 15◦ and (b) represents the
resilient grid (total upgrade cost =$104.2×106) obtained at θu = 15◦

with FACTS devices. Legend: Red nodes-critical loads; thick black-
existing lines that are hardened during disasters; thin black-existing lines
that are damaged during disaster; dotted black-new lines that be built;
solid blue-lines with series compensators; solid green-lines with phase
shifters; solid blue and green-lines with both devices.

Tables I and II present the solution times and objec-
tive values of the algorithms, respectively. SBD solves
problems with θu = 15

◦
without an issue. However,

at θu = 45
◦
, SBD times out (5 hrs. wall time limit).

Here we see the benefits of using a local solver. SBD-
VNS solves these problems within the time limit and
provides an acceptable (not necessarily optimal) solution

TABLE III. COST ANALYSIS WITH FACTS DEVICES

Best found obj. values (×106$) at θu = 15◦

% damage P0 P1 % savings

90 154.3 104.2 32.5
80 153.6 95.8 37.6
70 152.7 94.3 38.2
60 152.9 93.5 38.8
50 152.6 93.1 39.0

quickly. It is important to note that θu strongly impacts
the solution cost; larger θu results in significantly cost-
efficient upgrades but operationally unstable networks.

Table III summarizes the benefit of using FACTS de-
vices to achieve the same advantages of large θu. For
this study, we consider θu = 15

◦
where the increase

in upgrade costs is quite significant on out test system.
It can be observed that the savings range from 32.5 to
39.0%, which is a substantial decrease in the upgrade cost
(roughly $60M). At lower values of θu, since the networks
are more congested, one must consider resiliency options
like building new lines or hardening the congested por-
tions of the network to increase throughput under extreme
events. However, here we demonstrate that a small set of
strategically placed, not-so-expensive FACTS devices can
also accomplish the same objective (Fig. 2), which is very
encouraging from an engineering perspective.
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Figure 3. Total load shedding due to non-linear AC-power flow
feasibility (θu = 15

◦
)

Lastly, we use the nonlinear AC-power flow equations
to recover feasible flows to P0 (without FACTS devices)
with minimum load shedding. Fig. 3 represents a detailed
computational experiment of problem P0 II-C. In this
figure we observe that most of the scenarios’ QC solutions
are almost AC-power flow feasible. The average percent-
age of total load shed over all scenarios are: 0.99, 0.36,
0.2, 2.18 and 0.18 for each damage percentile from 90
through 50, respectively. The outlier in the 60% damage



is quite interesting to analyze with respect to the QC
relaxations, which will be a future direction of research.

V. CONCLUSIONS

In this paper, we formulated, modeled, and developed
new algorithms for solving the ORGDT. Our contribu-
tions include exact and heuristic algorithms for solving
the ORGDT that exploit the decomposable structure of
the problem. We have also provided an analysis that
demonstrates one of the key challenges in resilient de-
sign is handling constraints associated with enforcing
stability-related phase angle differences on power lines.
This constraint drives costs orders of magnitude higher,
however, we have shown that these costs can be managed
by introducing technologies, like FACTS, for resilience
purposes.

There remain a number of interesting future directions
for work in this area. First, we will look at scaling these
approaches to larger, more realistic transmission grids. An
important idea in this area is to limit the upgrades to
those that are deemed practical by subject matter experts.
Second, we are working on introducing tighter models of
FACTS to improve the AC relaxations. Finally, we are
also considering approaches for using FACTS to improve
the restoration process of transmission grids, as seen in
[22].
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