
Transmission Network Expansion Planning:
Bridging the Gap between AC Heuristics and DC Approximations

Russell Bent∗, Carleton Coffrin†, Rodrigo R. Gumucio E.†, and Pascal Van Hentenryck‡
∗Los Alamos National Laboratory, Los Alamos, NM, U.S.A.

Email: rbent@lanl.gov
†NICTA & The University of Melbourne, Melbourne, VIC, Australia

Email: {carleton.coffrin,rodrigo.gumucio}@nicta.com.au
‡NICTA & The Australian National University, Canberra, ACT, Australia

Email: pvh@nicta.com.au

Abstract—It was recently observed that a significant gap exists
between the costs of Transmission Network Expansion Planning
(TNEP) solutions produced by the DC power flow approximation
and AC power flow heuristics. This paper confirms the existence
of that gap and shows that DC-based TNEP solutions exhibit
significant constraint violations when converted into AC power
flows. The paper then demonstrates how to bridge this gap with
the LPAC power flow model, a linear-programming approxima-
tion of the power flow that captures reactive power and voltage
magnitudes. Indeed, LPAC-based TNEP solutions have minimal
violations in AC power flows and provide high-quality solutions.
The strength of the LPAC formulation is further demonstrated on
the joint optimization of line expansion and VAr compensation,
as well as a competitive market study. These studies suggest that
the underling TNEP formulation has significant impacts on the
proposed expansion plans.

Keywords—Power System Planning, AC Power Flow, LPAC
Power Flow, DC Power Flow, Nonlinear Programming, Optimiza-
tion methods

NOMENCLATURE

Ṽ = v + iθ AC voltage
S̃ = p+ iq AC power
Ỹ = g + ib Line admittance
Ṽ = |Ṽ |6 θ◦ Polar form
T̃ = |T̃ | 6 θs Voltage Transformer
PN Power network
N Set of buses in a power network
L Set of lines 〈n,m〉 in a power network

where n is the from node
Lr Set of lines 〈n,m〉 in a power network

where n is the to node
L+ Set of new lines 〈n,m〉 that can be added

to the power network
L(n) Set of buses connected to bus n by a line
s Slack bus
x Upper bound of x
x Lower bound of x
<() Real part of a complex number
=() Imaginary part of a complex number

I. INTRODUCTION

Transmission Network Expansion Planning (TNEP) is a
well-studied optimization problem which consists of finding
the least expensive way of increasing the capacity of a

transmission network to meet some projected future energy
delivery requirements. Due to its computational complexity,
TNEP problems have been traditionally studied with active-
power-only approximations of the transmission system [1]–[5].
Such approximations are appealing as they yield Mixed Integer
Linear Programs (MIPs), which exploit decades of research in
network design optimization and existing commercial tools [6].

Many TNEP studies have adopted the widely-used DC
power flow model. However, its applicability for power flow
applications is a point of significant discussion: Some papers
take an optimistic outlook, (e.g., [7], [8]) while others are
more pessimistic (e.g., [9], [10]). For TNEP applications, some
major shortcomings of DC model were identified in [11].
Recognizing these potential limitations, recent work has started
to consider the TNEP problem with the complete AC power
flow equations [11]–[16].

This paper explores the use of the LPAC model [17]
for transmission planning. The LPAC model was proposed
recently for approximating the AC power flow equations.
Contrary to the DC model, the LPAC approximation captures
both reactive power and voltage magnitudes; Yet it is linear
program which is highly desirable computationally. The LPAC
model thus provides an appealing tradeoff between computa-
tional efficiency and solution accuracy: It was instrumental
in identifying new best solutions on existing test cases and
bridging the significant gap between DC-based models and
AC heuristics on transmission planning. The key findings in
this paper are summarized as follows:

1) DC-based transmission planning significantly under-
estimates the cost of expansion; The resulting plans,
when converted into an AC plan, exhibits large vio-
lations of line capacities and voltage bounds.

2) LPAC-based transmission planning provides AC
plans with little or no violations and more reasonable
expansion costs; Yet the use of the LPAC model
may significantly improve the quality of AC-based
heuristics.

3) The results in (1) and (2) still hold when VAr com-
pensation is considered, including in the case where
each bus has unlimited reactive power injection.

4) The LPAC model can be used for the joint optimiza-
tion of line and VAr compensation costs, steps which
are typically separated in prior work.
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Model 1 The Core AC-TNEP Problem.
Inputs:
〈N,L, s〉 - the power network

|Ṽn|, |Ṽn| - voltage limits for bus n

pgn - active limits for bus n
qg
n
, qgn - reactive limits for bus n

pln, q
l
n - demands at bus n

gnm, bnm - admittance of line 〈n,m〉
|S̃nm| - thermal limit of line 〈n,m〉
cnm - cost of expanding corridor 〈n,m〉
z - maximum expansions in a corridor

Variables:
Ṽn - voltage at bus n
pgn ∈ (0, pgn) - active generation on bus n
qgn ∈ (qg

n
, qgn) - reactive generation on bus n

pnm ∈ (−|S̃nm|, |S̃nm|) - active flow on line 〈n,m〉
qnm ∈ (−|S̃nm|, |S̃nm|) - reactive flow on line 〈n,m〉
znm ∈ {0, ..., z} - expansion variable for line 〈n,m〉

Minimize:∑
〈n,m〉∈L

cnm(znm − 1) +
∑

〈n,m〉∈L+

cnmznm (M1.1)

Subject To:
=(Ṽs) = 0 (M1.2)

|Ṽn| ≤ |Ṽn| ≤ |Ṽn|; ∀n ∈ N (M1.3)

pgn − pln =
∑

m∈L(n)

znmpnm ∀n ∈ N (M1.4)

qgn − qln =
∑

m∈L(n)

znmqnm ∀n ∈ N (M1.5)

1 ≤ znm ∀〈n,m〉 ∈ L (M1.6)
∀〈n,m〉 ∈ L ∪ Lr ∪ L+ ∪ L+r

pnm = gnm|Ṽn|2 − gnm<(ṼnṼ
∗
m)− bnm=(ṼnṼ

∗
m) (M1.7)

qnm = −bnm|Ṽn|2 + bnm<(ṼnṼ
∗
m)− gnm=(ṼnṼ

∗
m) (M1.8)

p2nm + q2nm ≤ |S̃nm|
2

(M1.9)

Additionally, the paper also suggests that, given the LPAC
models accuracy, it may be informative to revisit previous
TNEP studies. This point is illustrated on a simple case study
about the implications of competitive markets for the TNEP.

The rest of the paper is organized as follows. Section II
introduces the TNEP problem and the notations. Section III
discusses potential solution methods, including prior art, and
uses a 3-bus example to illustrate the tradeoffs of the ap-
proaches. The next three sections conduct the case studies:
Section V establishes the baseline by considering the classic
TNEP formulation; Section VI considers the implications of
VAr compensation; and Section VII studies the implications
of a competitive market. Section VIII concludes the paper.

II. THE TNEP PROBLEM

From a mathematical perspective, the TNEP task is a
network design problem that aims at modifying the network
topology to increase the total capacity and supply the necessary
power. Flow conservation, ensured by Kirchhoff’s Current
Law (KCL), is the same as in classic network design prob-
lems. However, Ohm’s Law, which governs power flows, is
a departure from classic network design problems. A TNEP

formulation based on the nonlinear AC power flow equations
is presented in Model 1. The input data and decision variables
are described in the model and hence only the constraints are
discussed in detail. The objective (M1.1) minimizes the costs
of building all of the transmission lines, discounted for the
lines that already exists. Constraint (M1.2) fixes the slack-bus
phase angle to 0, which simplifies the comparison between
different models. Constraints (M1.3) ensure reasonable voltage
magnitude limits are enforced. Constraints (M1.4–M1.5) en-
sure flow conservation and constraints (M1.6) ensure existing
lines stay in the network. Constraints (M1.7–M1.8) capture
Ohm’s Law and constraints (M1.9) enforce the thermal line
loading limits. Implicitly, the TNEP problem assumes that the
total power demand of the network

(
i.e.,

∑
n∈N p

l
n

)
cannot

be satisfied by the current network topology. Hence, new lines
must be introduced.

A. Extensions

Model 1 is a natural extension of the DC-TNEP model to
the AC power flow equations. However, classic power flow
test cases [18] feature additional parameters such as (1) line
charging bshnm; (2) bus-shunts Ỹ s = gs + ibs; and (3) Voltage
transformers T̃ . As suggested by [14], for improving the AC
power flow accuracy, Model 1 can be modified to incorporate
these values as follows (only reactive power equations are
shown, active power is similar).

Bus Shunts:

qgn − qln + bsnm|Ṽn|2 =
∑

m∈L(n)

znmqnm

Line Charging & Voltage Transformers:

qnm=−
(
bnm+

bshnm
2

)
|Ṽn|2

|T̃n|2
+bnm<

(
ṼnṼ

∗
m

T̃ ∗n

)
−gnm=

(
ṼnṼ

∗
m

T̃ ∗n

)

qmn=−
(
bnm+

bshnm
2

)
|Ṽm|2+bnm<

(
ṼmṼ

∗
n

T̃n

)
−gnm=

(
ṼmṼ

∗
n

T̃n

)
These additions may not fully capture the detailed components
of modern AC power networks (such as changing transformer
settings and FACTS devices), but they represent the most
detailed model with readily available network data.

III. PRIOR WORK AND SOLUTION METHODS

The AC-TNEP problem presented in Model 1 (and its
extensions) are challenging Mixed Integer Non-Convex Non-
Linear Programs (MINLP) and are outside the scope of current
global optimization solvers. As a result, one must resort to
solving alternative, computationally tractable versions of the
problem. There are three main approaches to making the AC-
TNEP more tractable: (1) using heuristics [11], [14], [15];
(2) approximating the power flow equations [1], [17]; (3)
relaxing the power flow equations to a convex set [12], [13],
[16]. Heuristics are often very fast to compute, but they
provide no quality guarantees. Approximations can alter the
computational complexity (e.g., moving from a MINLP to
a MIP) and provide quality guarantees within the confines
of the approximation. In practice, approximations may be
sufficiently accurate to provide feasible solutions to the original
problem, but they provide no such guarantees. In the context



of the AC-TNEP problem, it was recently demonstrated that
feasibility can be quite challenging when using the DC power
flow approximation [11]. Relaxations provide provable dual
bounds to the original problem. In the context of the AC-TNEP,
relaxations compute an optimistic value for the number of lines
required to meet the future demands. The rest of this section
introduces various heuristics, relaxations, and approximations
of the AC-TNEP problem, and evaluates them on a simple
3-bus example to illustrate their properties. All the models
presented below rely on a continuous relaxation of the discrete
variable znm and use the binarization of znm from [13].

A. Heuristics

Several heuristics have been proposed [11], [14], [15]
for solving the AC-TNEP. In contrast to these constructive
heuristics, we consider a destructive heuristic HAC-TNEP
which maintains feasibility in each iteration. HAC-TNEP out-
performs the constructive heuristic proposed in [11], produces
high-quality primal solutions, and thus provides a good basis
for comparison. HAC-TNEP starts with all of the lines in
the network (there are sufficiently many lines to guarantee
feasibility). On each iteration, HAC-TNEP attempts to remove
one line from the network and tests if the network is still
feasible in an AC Optimal Power Flow model (AC-OPF). Lines
are selected in increasing order of relative loads. HAC-TNEP
completes when no line can be removed.

B. DC Power Flow

The DC model is a popular approximation of the AC
power flow model motivated by design and operational con-
siderations. It uses the polar voltage formulation of the AC
power flow equations, i.e., Ṽ = |Ṽ |6 θ◦, and makes the
following simplifications: (1) the susceptance is large relative
to the conductance |g| � |b|; (2) the phase angle difference
is small enough to ensure sin(θ◦n − θ◦m) ≈ θ◦n − θ◦m and
cos(θ◦n − θ◦m) ≈ 1.0; and (3) the voltage magnitudes |Ṽ |
are close to 1.0 and do not vary significantly. Under these
assumptions, equations (M1.7–M1.8) reduce to

pnm = −bnm(θ◦n − θ◦m) (1)

and the resulting model is called the DC-TNEP formulation.
Due to the voltage approximation, this formulation cannot
capture any of the extensions presented in Section II-A. From
a computational standpoint, the DC model is much more
appealing than the AC power flow: It forms a system of
linear equations and can be naturally embedded in Mixed-
Integer Linear Programs (MIPs). For this reason, many TNEP
works have focused on the DC-TNEP variant [1]–[4]. The DC-
TNEP model however has no notion of line losses, reactive
power flow, or bus voltage magnitudes. As noticed in [11],
these inaccuracies may make it difficult to convert DC-TNEP
solutions to AC-TNEP solutions.

C. LPAC Power Flow

The LPAC power flow model [17] bridges the gap between
the DC power flow and the AC power flow model without
an increase in computational complexity (i.e., it can still be
embedded in MIPs). The LPAC model approximates the AC
power flow equations (also in the polar voltage formulation)

with following modifications: (1) sin(θ◦n − θ◦m) ≈ θ◦n − θ◦m
(2) the voltage magnitude at each bus is based on the de-
viation form a nominal voltage |Ṽ | = 1.0 + φ; (3) the
non-convex cosine function is replaced with a polyhedral
relaxation (ĉosnm); (4) the remaining non-linear terms are
factored and approximated with a first order taylor expansion.
These modifications yield the following power flow equations:

pnm= gnm−gnmĉosnm−bnm(θ◦n − θ◦m)

qnm= −bnm+bnmĉosnm−gnm(θ◦n − θ◦m)−bnm(φn − φm)

and the resulting model is called the LPAC-TNEP formula-
tion. The LPAC model captures line losses, reactive power
flows, and an approximation of bus voltage magnitudes and
is significantly more accurate than the DC power flow model.
The LPAC-TNEP can also incorporate the extensions discussed
in Section II-A. The line loading constraint (M1.9) can be
embedded in the LPAC-TNEP through a polyhedral outer
approximation.

D. SOCP Power Flow

A Second Order Cone Problem (SOCP) relaxation of the
rectangular power flow equations was proposed in [19]. This
was used in [13], [16] to build a SOCP-TNEP formulation.
This formulation is appealing for two reasons: (1) High-quality
industrial solvers exist for SOCPs; and (2) it is a relaxation and
can be used for bounding the AC-TNEP problem. The primary
disadvantage of the SOCP formulation is that it assumes
the network has a sufficient number of virtual phase-shifting
transformers (at least one for every cycle in the network). This
assumption means that the SOCP formulation degenerates into
a transportation model at the limit. In addition to extending
[19] to TNEP, the formulation in [13] also adds an ε = π/720
term for limiting the effects of the virtual phase-shifting
transformers. It is not clear, however, whether the resulting
formulation is still a relaxation. In this paper, we refer to this
modified SOCP model as SOCP∗-TNEP. The SOCP∗-TNEP
formulation in [13] included the line charging extension, but
bus shunts and transformers were not mentioned.

E. Comparing Expansion Plans

An expansion plan produced by any approximation or
relaxation of the AC-TNEP problem can be infeasible for
the original AC-TNEP problem (i.e., Model 1). To compare
expansion plans, their constraint violations can be measured
by computing an AC power flow in the expanded network for
the generator dispatches and the voltage magnitudes obtained
in the solution (the voltage magnitudes are fixed to 1.0 in
the DC-TNEP). Two types of constraint violations are used to
characterize the quality of an expansion plan: Line capacity
violations and voltage magnitude violations. Line capacity
violations measure how overloaded a line is. The relative
capacity violation of a line 〈n,m〉 is the maximum relative
violation at either side of the line:

max

(√
p2nm + q2nm

|S̃nm|
,

√
p2mn + q2mn

|S̃mn|

)
where pnm and qnm denote the real and reactive power on the
line in the AC power flow. Obviously the line is overloaded
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Bus Parameters

bus pl ql |Ṽ | |Ṽ |
1 0 0 0.9 1.1
2 0 0 0.9 1.1
3 500 0 0.9 1.1

Line Parameters
From–To bus R X b Cost

1–2 0.00 0.05 0.01 1
2–3 0.00 0.05 0.01 1
1–3 0.05 0.10 0.01 1

Fig. 1. Three-Bus System Diagram and Network Data (100 MVA Base).

TABLE I. THREE-BUS SYSTEM AC POWER FLOW SOLUTION.

Bus Values
Bus pg qg |Ṽ | θ◦, deg.

1 528 126 1.100 0.000
2 0 0 1.048 -6.597
3 0 0 1.011 -13.78

Line Values
Line From MVA To MVA
1–2 294 281
2–3 281 271
1–3 263 242

when this value is greater than 100%. Voltage magnitude
violations are defined as

max
(
0, |Ṽn| − |Ṽn|, |Ṽn| − |Ṽn|

)
which captures violations above or below the desired limits.

IV. A CASE STUDY ON TNEP SOLUTION METHODS

This section studies the behavior of each TNEP solution
method on a simple 3-bus example. The network and its
parameters are presented in Figure 1: It is designed so that
the power flows on the paths 1–3 and 1–2–3 are roughly the
same. This is illustrated on the AC load flow study presented
in Table I. To understand the properties of the methods, two
variants of this simple 3-bus system are considered: One with
a low capacity line (5MVA thermal limit on 2–3) and one
with tight voltage magnitude bounds (±0.01 V p.u.). The
results of each TNEP solution method on these two cases are
compared to our best-known AC feasible solution (AC∗-TNEP)
in Tables II and III. The quality of the solutions produced by
the approximation and relaxation methods are evaluated using
the constraint violations metrics discussed previously. We now
review the results of each method in detail.

In the low capacity case (Table II), AC∗-TNEP features an
expansion plan with 27 additional lines. Because the approxi-
mate methods effectively capture line congestion caused by cy-
cles in the network, both LPAC-TNEP and DC-TNEP correctly
identify expansions with 27 lines. In contrast, the SOCP model
does not capture cycle-based line congestion and SOCP-TNEP
greatly underestimates the expansions needed (only expanding
1 line) and leads to huge violations on line 2–3. SOCP∗-TNEP
does better by adding 19 lines but still exhibits significant
violations. Since similar trends were observed on the SOCP∗-
TNEP solutions to the other benchmarks studied in this paper,
this solution method is not discussed further.

The results on the tight voltage magnitude bound case in
Table III are entirely different. AC∗-TNEP is an expansion
plan requiring 5 expansions. DC-TNEP has no notion of
the voltage magnitudes; Hence it adds no lines and exhibits
significant voltage violations. The SOCP model proposes only
2 expansions, producing a network with less severe voltage vi-
olations. The remaining methods (HAC-TNEP, SOCP∗-TNEP,

TABLE II. TNEP RESULTS ON THE THREE-BUS SYSTEM WITH A
5MVA THERMAL LIMIT ON LINE 2–3.

Cost Investment Capacity
1–2 2–3 1–3 Violation (MVA)

AC∗-TNEP 27 0 15 12 0
HAC-TNEP 72 0 72 0 0

SOCP∗-TNEP 19 0 8 11 31.3
SOCP-TNEP 1 0 0 1 184
LPAC-TNEP 27 0 15 12 0

DC-TNEP 27 0 14 13 0

TABLE III. TNEP RESULTS ON THE THREE-BUS SYSTEM WITH
TIGHT VOLTAGE BOUNDS (±0.01 V P.U.).

Cost Investment Voltage
1–2 2–3 1–3 Violation (V p.u.)

AC∗-TNEP 5 2 3 0 0
HAC-TNEP 5 3 2 0 0

SOCP∗-TNEP 5 2 3 0 0
SOCP-TNEP 2 1 1 0 0.0256
LPAC-TNEP 5 2 3 0 0

DC-TNEP 0 0 0 0 0.1567

and LPAC-TNEP) all suggest adding 5 lines and have no
violations.

In summary, on this 3-bus network, LPAC-TNEP provides
an appealing tradeoff of accuracy and computational complex-
ity: It finds the best-known AC solution in both cases. Similar
observations also hold for the other benchmarks discussed
in this paper. Hence, although there are many options for
solving the AC-TNEP problem, we selected LPAC-TNEP
as a reasonable approximation of the challenging AC-TNEP
MINLP for the remainder of the paper. LPAC-TNEP will be
compared with HAC-TNEP and DC-TNEP.

V. EVALUATION ON CLASSIC TEST SYSTEMS

The three most popular TNEP test cases are networks with
6, 24, and 46 buses (from [1], [3], [5] respectively). Since
there are some variations on these test cases in the literature,
we review our versions in detail. Our 6-bus benchmark corre-
sponds to the one from [14] with bus 6 as the slack bus and
0.95 ≤ |Ṽn| ≤ 1.05. Our 24-bus case is from MATPOWER’s
distribution case files with cost data from [14], bsh6,10/100, and
the load increasing strategy discussed next. Our 46-bus case is
from [5] with bus 16 as the slack bus. The reactive injection
capacity of generators is set to half of the active capacity, and
line resistances are assigned one fifth of the reactance.

To understand the TNEP problem on a wide collection of
networks, we design the following procedure for generating
TNEP instances from any MATPOWER OPF test case. The
loads and the capacity of generating units are scaled by a
factor of 3 (except for synchronous condensers). The reactive
injection capacity of each generator is set to half of the active
capacity (i.e., qg

n
= −0.5 · pgn, qgn = 0.5 · pgn). For lines with a

capacity set to 9900 MVA, we use the value of the line loaded
at a phase angle difference of 15 degrees instead. Finally, the
cost of adding each line is set to 1 (i.e., the goal is to minimize
the number of lines added). This procedure is used to build
the 9, 14, 30, 39, 57, and 118 bus TNEP problems from the
MATPOWER cases.1 In all of our benchmarks, expansions can
select up to 6 lines per corridor (z = 6) and their quality

1The voltage constraints on case 57 dominate this network and we widen
the bounds to 0.9 ≤ |Ṽn| ≤ 1.1 to make the optimization task interesting.



TABLE IV. SOLUTIONS PRODUCED BY HAC-TNEP, DC-TNEP, AND
LPAC-TNEP

HAC-TNEP DC-TNEP
Capacity vio. Vol. vio.

Case Cost Cost Max (%) Avg. (%) Max
6 160 (6) 110 (4) 137.32 (5) 121.90 0.13188
24 2310 (43) 152 (5) AC-PF did not converge
46 569810 (47) 89889 (9) AC-PF did not converge
9 3 (3) 2 (2) 136 (5) 124.07 0.18994
14 15 (15) 1 (1) 120.44 (2) 116.17 0.11955
30 13 (13) 5 (5) 192.86 (16) 128.21 0.06847
39 47 (47) 26 (26) 113.46 (8) 108.21 0.08713
57 49 (49) 1 (1) AC-PF did not converge

118 37 (37) 5 (5) 172.03 (17) 113.36 0.08198

LPAC-TNEP
Capacity vio. Vol. vio.

Case Cost Max (%) Avg. (%) Max
6 130 (5) 0 (0) 0.00 0.00347
24 689 (17) 101.02 (1) 101.02 0.00435
46 310688 (29) 102.96 (1) 102.96 0
9 2 (2) 104.45 (1) 104.45 0.01587
14 4 (4) 0 (0) 0.00 0
30 10 (10) 110.84 (5) 103.55 0.00303
39 28 (28) 103.01 (10) 100.80 0.01368
57 39 (39) 111.15 (2) 106.98 0.01785
118 7 (7) 116.97 (13) 105.96 0.00259

is evaluated using an AC power flow as discussed in Section
III-E. Each model was executed on a 2 x 2.00GHz Intel Quad
Core Xeon E5405 with 2x6MB Cache and 16 GB RAM using
GUROBI 5.5 on 4 cores.

The HAC-TNEP heuristic was run until completion without
a time limit, while the DC-TNEP and LPAC-TNEP algorithms
were terminated after 2 hours. Our analysis considers the fol-
lowing metrics to characterize the quality of a TNEP solution
(see Table IV): (1) the expansion cost (i.e., the objective value)
with the number of lines added in parenthesis; (2) for the
DC-TNEP and the LPAC-TNEP, the maximum and average
line violations with the number of lines with violations in
parenthesis, and (3) the maximum voltage bound violations.
Note that the AC power flow algorithm (AC-PF) used to
convert the DC-TNEP and the LPAC-TNEP plans into AC-
feasible solutions is not guaranteed to converge to a solution.
This is noted when it occurs.

Table IV shows that there is a significant gap in the cost
between the TNEP solution found by the HAC-TNEP heuristic
and the DC-TNEP models, confirming the results of [11].
The table also shows that DC-TNEP solutions have significant
violations to the original AC-TNEP constraints. In three cases,
the DC-TNEP solutions cannot be converted into a AC-
feasible plan. In contrast to the DC-TNEP, the LPAC-TNEP
solutions have significantly higher costs but also significantly
less violations in both maximum and average values. The
LPAC-TNEP model also produces significant improvements
over the HAC-TNEP heuristic.

When using an approximate TNEP solution method, it
is common to use a second corrective stage to eliminate
violations [16]. Here we propose an alternative approach called
constraint tightening, where the model constraints are modified
before the solution process. For example, reducing the line
capacity by 10% may mitigate small line loading violations
and lead to AC-feasible solutions. Table V evaluates the quality
of the DC-TNEP and LPAC-TNEP solutions when the line
capacities are reduced by 10%. In the DC-TNEP model, the
constraint-tightening procedure makes marginal improvements

TABLE V. SOLUTIONS PRODUCED BY HAC-TNEP, DC-TNEP, AND
LPAC-TNEP WITH LINE CAPACITIES REDUCED BY 10%.

HAC-TNEP DC-TNEP
Capacity vio. Vol. vio.

Case Cost Cost Max (%) Avg. (%) Max
6 160 (6) 130 (5) 105.91 (3) 105.91 0.05778
24 2378 (44) 266 (8) AC-PF did not converge
46 569810 (47) 130110 (13) AC-PF did not converge
9 3 (3) 2 (2) 126.24 (3) 121.07 0.17817
14 15 (15) 1 (1) 0 (0) 0.00 0.11628
30 21 (21) 8 (8) 158.68 (13) 119.80 0.07081
39 48 (48) 32 (32) 108.32 (1) 108.32 0.07016
57 50 (50) 4 (4) AC-PF did not converge
118 39 (39) 7 (7) 158.42 (6) 120.16 0.07591

LPAC-TNEP
Capacity vio. Vol. vio.

Case Cost Max (%) Avg. (%) Max
6 130 (5) 0 (0) 0.00 0.00498
24 681 (15) 0 (0) 0.00 0.00484
46 316551 (30) 0 (0) 0.00 0.00097
9 3 (3) 0 (0) 0.00 0.01219
14 4 (4) 0 (0) 0.00 0
30 12 (12) 106.62 (2) 105.03 0.0057
39 34 (34) 0 (0) 0.00 0.00696
57 42 (42) 0 (0) 0.00 0.01268
118 11 (11) 112.99 (2) 107.70 0.00294

in the violations and the solutions still have major issues
with AC-PF feasibility. In contrast, the constraint-tightening
procedure has a great impact on the LPAC-TNEP solutions.
It reduces the line violations in all cases and eliminates the
violations in most cases. The violations occurring on the 30
and 118 cases can be reduced further by a more aggressive
tightening than 10%.

Tables IV and V highlight three key points: (1) the DC-
TNEP may significantly underestimate the expansion cost; (2)
the LPAC-TNEP provides a nice compromise between accu-
racy and computational complexity; (3) constraint tightening
is effective for eliminating line-loading violations in LPAC-
TNEP. It is thus reasonable to conclude that LPAC-TNEP is
an excellent vehicle for studies in transmission planning.

VI. TNEP WITH VAR COMPENSATION

The classic TNEP formulation presented in Section II
assumes that transmission lines are the only components to be
added to the network. Section IV indicated that tight voltage
magnitude bounds may necessitate the addition of a significant
number of lines. Although the AC-TNEP with voltage bounds
is a common AC-TNEP formulation [11], [12], [16], tight
voltage magnitude constraints may be unrealistic. As noted
in [20], VAr compensation equipment is much cheaper than
transmission lines and may be installed throughout a network
to satisfy voltage magnitude bounds. Inspired by [20], this
section investigates the transmission models assuming unlim-
ited VAr compensation at every bus, which can be modeled
by transforming every bus into a synchronous condenser with
unlimited reactive injection capacity and a voltage set-point of
1.0. We call this model the perfect voltage profile AC power
flow (AC-PVP) and our goal is to study how the DC-TNEP and
LPAC-TNEP behave, and how much cheaper a TNEP solution
might be in this context. The DC-PVP-TNEP has the same first
step as the DC-TNEP: It is only when converting the resulting
expansion plan that the VAr compensation plays a role. In
contrast, the LPAC-PVP-TNEP exploits VAr compensation in



TABLE VI. SOLUTIONS PRODUCED BY HAC-PVP-TNEP,
DC-PVP-TNEP, AND LPAC-PVP-TNEP

HAC-PVP-TNEP DC-PVP-TNEP
Capacity vio. Vol. vio.

Case Cost Cost Max (%) Avg. (%) Max
6 130 (5) 110 (4) 104.65 (4) 104.52 0

24 573 (10) 152 (5) 111.97 (9) 104.79 0
46 277592 (22) 89889 (9) 129.86 (10) 108.26 0
9 2 (2) 2 (2) 105.86 (4) 102.36 0

14 2 (2) 1 (1) 113.41 (2) 108.38 0
30 8 (8) 5 (5) 119.61 (9) 109.88 0
39 24 (24) 20 (20) 100.41 (7) 100.31 0
57 2 (2) 0 (0) 122.95 (3) 112.11 0
118 2 (2) 1 (1) 160.31 (17) 113.99 0

LPAC-PVP-TNEP
Capacity vio. Vol. vio.

Case Cost Max (%) Avg. (%) Max
6 130 (5) 0 (0) 0.00 0
24 218 (6) 0 (0) 0.00 0
46 128948 (13) 100.41 (1) 100.41 0
9 2 (2) 0 (0) 0.00 0
14 1 (1) 0 (0) 0.00 0
30 7 (7) 100.49 (2) 100.49 0
39 22 (22) 0 (0) 0.00 0
57 2 (2) 0 (0) 0.00 0

118 2 (2) 0 (0) 0.00 0

TABLE VII. POWER INJECTION FOR SOLUTIONS TO THE PERFECT
VOLTAGE PROFILE BENCHMARKS.

HAC-PVP-TNEP DC-PVP-TNEP LPAC-PVP-TNEP
Case P (MW) Q (MVAr) P Q P Q

6 772.79 279.9 781.9 370.98 772.46 276.58
24 8819.93 4140.34 8802.53 3979.02 8758.64 3824.76
46 7313.82 3618.02 7806.4 5740.78 7549.26 4443.6
9 977.22 659.86 973.11 635.66 965.52 626.66

14 826.62 630.82 821.3 510.91 785.68 414.99
30 586.74 671.41 595.57 695.46 586.61 623.85
39 18932.56 8398.51 18937.74 8249.37 18937.61 8518.99
57 3890.33 1985.7 3926.14 2113.43 3900.46 1986.25
118 13170.39 7615.2 13249.42 8023.94 13047.29 7067.46

the first stage as well, since it models reactive power and
voltage magnitudes.

Table VI revisits the evaluation of Section V with the AC-
PVP model. Since the AC-PVP model integrates the nominal
voltage assumption of the DC power flow, it is no surprise
that the gap between the HAC-PVP-TNEP solution is much
smaller than in Section V. However, despite the gap reduction,
there are still significant violations in the DC-PVP-TNEP
solutions. In contrast, the LPAC-PVP-TNEP does amazingly
well and has almost no violations without constraint tightening.
Although the cost of line expansion is greatly reduced in
these PVP solutions, the amount of required reactive injection
capability is significant: Table VII indicates that the total
reactive injection capacity is roughly half the total active
injection. Depending on the cost of VAr compensation devices,
it may be advantageous to jointly optimize of expansion lines
and VAr compensation as in [13], [15]. The main message
however is that LPAC model is an excellent vehicle for these
studies, given its accuracy and computational advantages.

The classic TNEP formulation and the PVP-TNEP for-
mulation are special cases of a multi-objective optimization
problem. The former assumes lines are cheap and VAr compen-
sation is very expensive, while the later assumes the reverse. It
is possible to enumerate some of the solutions along the Pareto
Frontier to understand the tradeoff between line expansions
and VAr compensation. Table VIII uses a scaling parameter

TABLE VIII. SOLUTIONS PRODUCED BY LPAC-PVP-TNEP ALONG
THE PARETO FRONTIER ON THE 24 BUS CASE.

LPAC-PVP-TNEP
Q injection Capacity vio. (%) Vol. vio.

λ Cost (MVar) Max Avg. Max
0 10834 (204) 231.82 0 (0) 0.00 0

0.1 5609 (112) 1201.39 0 (0) 0.00 0
0.2 2310 (51) 1856.36 0 (0) 0.00 0
0.3 1642 (39) 2126.24 0 (0) 0.00 0
0.4 1376 (34) 2270.73 0 (0) 0.00 0
0.5 1214 (29) 2344.62 0 (0) 0.00 0
0.6 910 (21) 2511.46 0 (0) 0.00 0
0.7 745 (17) 2620.82 0 (0) 0.00 0
0.8 645 (15) 2672.72 0 (0) 0.00 0
0.9 573 (14) 2722.19 0 (0) 0.00 0

1 509 (13) 2810.23 0 (0) 0.00 0

Fig. 2. Pareto frontier for 6 bus case (left) and 24 bus case (right).

λ to balance the tradeoff between expansion costs an VAr
compensation. The classic TNEP formulation is captured by
λ = 1 while an extreme VAr minimization model is captured
by λ = 0. The Table illustrates that there is a huge range of
network design possibilities spanning from as few as 13 new
lines to an amazing 200 new lines. However, in all of these
design possibilities, the LPAC-TNEP is producing high-quality
solutions with no violations.

To illustrate the tradeoff of joint line and VAr expansion
further, Figure 2 shows part of the Pareto frontier for the 6
and 24 bus cases as found using the LPAC-TNEP model. The
non-linear shape of both plots suggests that the tradeoff of
line expansions and VAr compensation is non-trivial and the
resulting network expansion plan may be heavily influenced
by the cost models of line expansion and VAr compensation.
Hence, it is best to optimize these two quantities jointly
(e.g., [13], [15]), possibly under several cost models.

VII. POWER MARKET CONSIDERATIONS

Since the LPAC-TNEP provides an appealing tradeoff be-
tween solution quality and computational efficiency, it can used
for studies of more complex models of transmission expansion,
producing results that can be trusted in contrast to the DC-
TNEP. This section provides such an illustration. As observed
in [1], the classic TNEP formulation presented in Section
II is meaningful for a power system based on a regulated
monopoly. However, its solutions may not be suitable for
emerging competitive power markets, as physical transmission
limitations may prevent competitive power generators from
entering the market. In [1], an economic model was used to
build four different competitive generation scenarios (called
g1, g2, g3, and g4). Each scenario indicates the relative con-
tribution of each generator to supplying the required demand
(called contribution factors). These contribution factors amount



TABLE IX. LPAC-TNEP SOLUTIONS WITH
CAPACITIES REDUCED BY 10%.

LPAC-TNEP
Capacity vio. Vol. vio.

Case Cost Max (%) Avg. (%) Max
24 g1 1065 (25) 0 (0) 0.00 0.00296
24 g2 1171 (29) 0 (0) 0.00 0.00133
24 g3 1007 (21) 0 (0) 0.00 0.00458
24 g4 1084 (23) 0 (0) 0.00 0.00038
24 gf 705 (15) 0 (0) 0.00 0.00562

to placing an additional constraint in Model 1 (a lower bound
on the active generation pgn), and hence they can only increase
the cost of the expansion plan. Consider, for instance, the
application of these contribution factors to our 24 bus case
and the effect on solution cost depicted in Table IX (the last
line indicates the cost without contribution factors). The table
illustrates that the cost of expansion can increase as much as
50% when a competitive market is introduced. This suggest
that, as power systems move from monopolies to competitive
markets, the TNEP must also move from the static TNEP
(i.e., Model 1) to a more dynamic expansion model based on
generation scenarios [1], incorporating an economic dispatch
model or probabilistic formulations [21], [22] grounded in
robust optimization.

VIII. CONCLUSION

This paper revisited the gap between the Transmission
Network Expansion Planning (TNEP) solutions produced by
using the DC power flow approximation and AC power flow
heuristics. It was shown that the TNEP solutions produced by
the DC power flow approximation significantly underestimate
the expansion costs and have significant violations in the
AC power flow model. The recent LPAC power flow model
was proposed to bridge the gap between infeasible DC-TNEP
solutions and AC heuristics. It was demonstrated that the
LPAC-TNEP solutions have minimal constraint violations and,
with a constraint tightening procedure, these violations can
often be eliminated entirely.

The strength of the LPAC formulation was further demon-
strated on additional studies on the joint optimization of line
expansion and VAr compensation, as well as a competitive
market study. The VAr planning study showed that the gap
between the DC approximation and AC heuristics may be
reduced through two-stage VAr planning, but significant AC
violations still remain. In contrast, the LPAC-TNEP solutions
have no violations in this two-stage approach. A study on the
co-optimization of line expansions and VAr planning enabled
by the LPAC-TNEP formulation illustrated the delicate balance
of line and VAr cost models on the resulting expansion plans.
Finally, a competitive market study indicated that the cost of
the TNEP solutions may increase significantly to accommodate
emerging energy markets.

Overall, this study indicates that the LPAC power flow
model provides a good tradeoff between computational benefits
and model accuracy for solving TNEP problems. Furthermore,
it indicated that AC feasible expansion plans can be heavily
influenced by the underlying TNEP formulation (e.g., adding
VAr planning or market considerations). Great care should
be taken in selecting an appropriate TNEP formulation for
the study at hand. Future works utilizing the LPAC TNEP

model should consider extending the models proposed here by
incorporating network faults with recourse to ensure N–1 relia-
bility as well as incorporating multiple generation and loading
scenarios to produce more flexible and robust expansion plans.
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