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Abstract

In recent years the expansion planning prob-
lem has become increasingly complex. As expan-
sion planning (sometimes called composite or inte-
grated resource planning) is a non-linear and non-
convex optimization problem, researchers have
traditionally focused on approximate models of
power flows to solve the problem. The prob-
lem has also been split into generation expansion
planning (GEP) and transmission network expan-
sion planning (TNEP) to improve computational
tractability. Until recently these approximations
have produced results that are straight-forward to
combine and adapt to the more complex and com-
plete problem. However, the power grid is evolv-
ing towards a state where the adaptations are no
longer easy (e.g. large amounts of limited con-
trol, renewable generation, comparable generation
and transmission construction costs) and necessi-
tates new approaches. Recent work on determin-
istic Discrepancy Bounded Local Search (DBLS)
has shown it to be quite effective in addressing the
TNEP. In this paper, we propose a generalization
of DBLS to handle simultaneous generation and
transmission planning.

Keywords - Generation Expansion Planning, Trans-
mission Network Expansion Planning, Renewable En-
ergy

1 Introduction

One of the major challenges facing the world in the
21st century is the problem of how to provide clean and
sustainable energy to meet increasing demand for electric
power. Many countries are actively seeking ways to ad-
dress this challenge, including the United States, where
the Department of Energy has stated a goal of having 20%
of the U.S.’s energy come from wind by 2030 [23]. One of
the difficulties of integrating large amounts of wind energy
into electric power systems is that often the areas with the
best potential to produce wind energy are located in areas
that are deficient in existing transmission infrastructure.
This has raised new challenges for expansion planners.

Typically, planners and investors are able to decouple
decisions on where to build new generation (generation
expansion planning (GEP)) from decisions on where to
build new transmission (transmission network expansion

planning (TNEP)). This is because the relative costs of
GEP and TNEP have been uncomparable (the cost to build
new generation often vastly exceeds the cost of transmis-
sion) and conventional generation can, in principle, be
built almost anywhere (if zoning restrictions, water re-
quirements, etc., are ignored). Generation and transmis-
sion expansion decisions are also often controlled by dis-
joint sets of stakeholders, which makes implementing a
combined approach difficult. However, in planning for
wind generation, the complete decoupling of the two prob-
lems is not necessarily the best approach. The potential to
generate energy is highly dependent on where the genera-
tors are built and the distances to connect wind power to
existing systems bring the relative costs of transmission
and generation closer in scale.

Planners often rely on approximate models of power
flow (typically linearized DC) when planning for expan-
sion. Such approximations are attractive due to their small
computational requirements and the fact that, in practice,
the approximations are sufficient for the needs of plan-
ners (demand for AC power is small, systems are well-
behaved, large amounts of dispatchable generation, etc.).
However, given the scale of system planning for integrat-
ing wind energy (e.g. the western United States) and wind
energy’s intermittency, such models do not fully capture
all the detrimental power flow behaviors that arise in such
situations (voltage drops, etc.). To address these ques-
tions, this paper presents a novel approach, referred to
as Discrepancy-Bounded Local Search (DBLS), for em-
bedding ideas from simulation optimization [8] in a local
search procedure. This procedure generalizes constructive
heuristics [3, 19], for various types of expansion planning,
utilizes constraint-based local search [12, 20], and is re-
lated to global search techniques such as limited discrep-
ancy search. [9, 10, 24] The key idea of the approach is
the encapsulation of the power flow model within a simu-
lation black box. The DBLS is allowed to query the black
box for power flow information about proposed expansion
plans. Unlike traditional simulation optimization that uses
the “black box” only for evaluation (objective function) or
feasibility checking, our approach uses information (i.e.
flows) from the simulation to help drive the choices of the
DBLS algorithm. In short, the key contributions of this
paper include:

• An expansion planning approach that abstracts the



details of how power flows are modeled.

• An expansion planning approach that uses non-
linear models of power flow.

• An algorithm that generalizes existing heuristics for
expansion planning.

• An algorithm that scales to large-scale, realistic
problems.

• An algorithm for combining generation and trans-
mission expansion (composite or integrated re-
source planning).

• A coupling of simulation and optimization that al-
lows the simulation results to influence the opti-
mization procedures.

• A demonstration of the merits of a combined ap-
proach to motivate generation and transmission ex-
pansion planners to coordinate efforts and provide
government entities with information to appropri-
ately target subsidies for renewable generation.

Literature Review Up until the early 1990’s the literature
contained considerable research dedicated to the study
of integrated resource or composite expansion planning.
Reference [15] provides a survey of the state-of-the-art at
that time. Since deregulation, when transmission and gen-
eration ownership was split in the U.S. and other countries,
a comparatively smaller amount of the literature has been
devoted to this problem. As a result, some of the open
problems stated in [15] (e.g., determining which power
flow models should be used in planning) remained rel-
atively unexplored. Recently, however, attention has re-
turned to this problem as it has become clear that uncoor-
dinated expansion planning between generation and trans-
mission can lead to undesirable behavior such as loop back
flows [22] and negative generation prices [1]. Thus, papers
like [18] have begun to look at how to address this prob-
lem through mechanisms like better market design. We
consider another aspect of the problem, how to solve the
composite problem as a whole so that this solution can be
used to help guide market design and government incen-
tives.

The algorithm described in this paper is a generaliza-
tion of an algorithm for transmission expansion planning
presented in [2] that shares a number of similarities with
[11]. Both present a tree-based local search procedure
which contain a truncation or discrepancy criteria.

In this paper, we assume pessimistically that genera-
tion is fixed in order to model the worst case for expan-
sion planning (100% renewable generation with fixed out-
put and no load control). This is not unlike the assump-
tions of [7, 19], which assumed generation was fixed due
to market decisions. Also related is the work of [6, 14]
which is the basis for many of the results contained in

[23]. These papers provide the fundamental motivations
for the work of this paper. They studied how to best inte-
grate large amounts of wind power into power grids spread
over large geographic areas using transportation models of
power transmission.

The remainder of this paper is organized as follows.
Section 2 formally defines the expansion planning prob-
lem. Section 3 describes the algorithm used to generate
expansion plans and heuristics used to guide the algorithm
to reduce physical violations and cost. Section 4 discusses
the experimental results and Section 5 concludes this pa-
per.

2 Problem Definition

Buses The expansion planning problem is described in
terms of a set of buses, B, that represent geographically
located nodes in a power network e.g. generators, loads,
and substations. Each bus, i, is defined by parameters gi,
li, ι−i , ι+i , which represent generation, load (demand for
power), minimum voltage (per unit) and maximum volt-
age (per unit). P (gi) and Q(gi) are used to denote the
real and reactive power of a generator at i. Similarly,
P (li) and Q(li) are used to denote real and reactive com-
ponents of load. For simplicity, Pi = P (gi) − P (li)
and Qi = Q(gi) − Q(li) is used to denote the real and
reactive power injected at bus i. The decision variable
ci is used to define the number of generators at i each
with generation P (gi) and Q(gi). ci has discrete domain
{c−i , c

−
i +1, . . . , c+i −1, c+i }. c

−
i is defined as the number

of generators i starts with, ensuring that existing genera-
tors are included.
Transmission Corridors The expansion planning prob-
lem is also described by a set of edges, E , called trans-
mission corridors, connecting pairs of nodes. A transmis-
sion corridor i, j between buses i and j has a decision
variable ci,j that defines the number of circuits (power
lines) in the corridor. The variable has discrete domain
{c−i,j , c

−
i,j + 1, . . . , c+i,j − 1, c+i,j} where c−i,j is defined as

the number of circuits the corridor starts with. c+i,j = c−i,j
when no circuits may be added to a corridor. A circuit is
also defined by parameter ψi,j which denotes the capac-
ity of a single circuit in the corridor. Similarly, ri,j , xi,j ,
bi,j denote the resistance, reactance, and line charging of
a single circuit in the corridor.
Expansion Planning Solution A transmission network
solution, σ, is defined as a set of variable assignments⋃

i∈B ci ← di ∪
⋃

i,j∈E ci,j ← di,j , where di is drawn
from the domain of ci and di,j is drawn from the domain
of ci,j . By convention, unassigned variables are assumed
to be c−i and c−i,j , respectively. σ(ci) and σ(ci,j) are used
to denote the variable assignments for σ.
Simulation Expansion planning algorithms use a simula-
tor, S, for determining the behavior of power for σ. S(σ)
returns true when it is able to compute the behaviors. This



is important as some implementations of S use conver-
gence approaches (e.g. Newton’s method) that do not have
guarantees on whether or not they are able to obtain a so-
lution. SPgi

(σ) and SQgi
(σ) denote the real and reactive

power generated at bus i as provided by S (S may adjust
generation if a load imbalance occurs or through dispatch-
ing). Sfi,j (σ) denotes the flow in corridor i, j and Svi(σ)
the voltage at bus i. For simplicity, this notation is short-
ened to fi,j and vi when S(σ) is understood from context.

An expansion planning solution, σ, is feasible when
the following constraints are satisfied, i.e.

c−i,j ≤ ci,j ≤ c
+
i,j (i, j ∈ E) (1)

c−i ≤ ci ≤ c
+
i (i ∈ B) (2)

S(σ) = true (3)

Physical constraints are relaxed and incorporated into
the objective function in order to keep the search space
connected (similar to Lagrangian Relaxation). The over
capacity generation of σ is calculated as the sum of gen-
eration that exceeds the generation values of the buses,
i.e. %(σ) =

∑
i,j∈B(max(0,SP (gi)(σ)) − P (gi)) +

max(0,SQ(gi)(σ)) − Q(gi)) The overload of σ is cal-
culated as the sum of flow that exceeds the capacity of
the circuits, i.e. η(σ) =

∑
i,j∈E max(0, fi,j − ψi,jci,j).

The voltage violation of σ is calculated as the sum of
voltages that fall below ι−i or above ι+i , i.e. ν(σ) =∑

i∈B max(0, ι−i − vi, vi − ι+i ). Finally, the cost of σ is
defined by κ(σ) =

∑
i,j∈E ci,jκi,j +

∑
i∈B ciκi, where κi

is the cost of putting a generator at bus i and κi,j is the cost
of putting a circuit in corridor i, j. The objective function,
f(σ), is then a lexicographic multi-objective function of
the form min f(σ) = 〈%(σ), η(σ), ν(σ), κ(σ)〉

3 DBLS Algorithm

In reference [2] a branch and bound algorithm is pre-
sented for the TNEP. This algorithm builds on simulation
optimization ideas by encapsulating the behavior of the
network into a “black box” that may be queried by the al-
gorithm for information about how a solution behaves (i.e.
S(σ)) and embedding it in a discrepancy bounded local
search (DBLS) that limits the full exploration of a branch
and bound search tree. The intuition behind DBLS is to
generalize heuristics that make good decisions on how to
construct expansion plans, but make a few bad decisions
from time-to-time. DBLS embeds the heuristic in a search
tree as the branching heuristic and explores those solutions
that are within δ violations (discrepancies) of the heuris-
tic, where δ is a user-specified parameter. DBLS provides
a natural way to incorporate constructive heuristics from
the planning literature, e.g. [3, 19], into a more general
framework and is related to the approach of [11]. The for-
mal model of DBLS for expansion planning is presented
in Figure 1.

DBLS takes as arguments a starting solution σ, (of-
ten the current state of the network, i.e.

⋃
i∈B ci ←

c−i ∪
⋃

i,j∈E ci,j ← c−i,j), a set of variables, X , drawn from⋃
i∈B ci ∪

⋃
i,j∈E ci,j , a heuristic discrepancy parameter,

δ, a worsening discrepancy parameter α, and a divergence
discrepancy parameter β. The δ parameter is used to con-
trol the number of times the branching heuristic may be vi-
olated in the search and is decremented in line 16. As f(σ)
is non-monotonic, i.e. adding components can make η(σ)
and ν(σ) rise or fall (sometimes referred to as Braess’s
paradox), the parameter α is used to limit the number of
times in a row that f(σ) may worsen (lines 8-10). Finally,
as it is possible for S(σ) to fail (diverge) for a given σ, a
parameter β is introduced to limit the number of times in
a row that S(σ) may fail (lines 11-13).

Line 4 chooses a variable to explore based upon the re-
sults provided by S. It is here that the results of S drive the
search. Line 5 provides the heuristic for ordering the do-
main of x. When % > 0, η(σ) > 0 or ν(σ) > 0 the domain
is ordered by component additions, no change (σ(x)), and
component removals, i.e.〈

σ(x) + 1, . . . , x+, σ(x), σ(x)− 1, . . . , x−
〉

otherwise it is ordered in reverse, i.e.〈
σ(x)− 1, . . . , x−, σ(x), σ(x) + 1, . . . , x+

〉
Line 5 unassigns the current variable assignment of x

and lines 6-16 iterate over the ordered domain of the vari-
able. It is worth noting that line 7 implicitly updates at-
tributes associated with the new σ and is where S is exe-
cuted.

Restarts were also found to be productive when DBLS
was first presented in [2]. The restart procedure is de-
scribed in the function OPTIMIZEPLAN, where the algo-
rithm is continuously restarted until the solution no longer
improves.

OPTIMIZEPLAN(σ,X , δ, α, β)
1 repeat
2 σ∗ ← σ;
3 σ ← DBLS(σ,X , δ, α, β);
4 until f(σ) ≥ f(σ∗);
5 return σ∗;

DBLS(σ,X , δ, α, β)
1 if δ ≤ 0 or α ≤ 0 or β ≤ 0
2 then return σ;
3 x← CHOOSEVARIABLE(X , σ);
4 〈d1, d2, . . . , dk〉 ← ORDERDOMAIN(x);
5 σ ← σ \ [x← σ(x)];
6 for i← 1 . . . k
7 do σi ← σ ∪ [x← di];
8 if f(σi) < f(σ)
9 then αi ← 0;

10 else αi = α− 1;
11 if S(σi)



12 then βi ← 0;
13 else βi = β − 1;
14 if f(σi) ≤ f(σ∗) and S(σi)
15 then σ∗ ← σi;
16 DBLS(σi,X \ x, δ − i, αi, βi);
17 return σ∗;

Figure 1: Discrepancy Bounded Local Search

In this paper three implementations of CHOOSEVARI-
ABLE are used. For ease of presentation, E(X ) is used to
denote those corridors that have circuit variables in X , i.e.⋃
i, j ∈ E | ci,j ∈ X . B(X ) is used to denote those buses

that have capacitor variables in X , i.e.
⋃
i ∈ B | ci ∈ X .

The first implementation is described in Figure 2. It
chooses the generator variable that can be increased the
cheapest and is invoked when %(σ) > 0.

CHOOSEVARIABLE-GENERATOROVERCAPACITY(X , σ)
1 i← arg mini∈B(X ) | σ(ci) < c+

i
κi;

2 return ci;

Figure 2: Generation Over Capacity Branching Heuristic

The second implementation is described in Figure 3
and is based upon the constructive heuristic presented in
[3]. It first chooses the variable corresponding to the corri-
dor that is most overloaded (lines 1-3), if one exists. Oth-
erwise the heuristic chooses the corridor within n = 1
hops of an overload that decreases an overload the most
(lines 7-16). It then iteratively tries n = 2, 3, 4, . . . up to
a user specified maximum until it finds a decreasing cir-
cuit addition (lines 6-17). If there are no corridors that
satisfy this criteria, the heuristic selects the bus with the
lowest voltage and chooses the variable for adding gener-
ators (lines 18-19). This heuristic is used when %(σ) = 0
and η(σ) > 0 or ν(σ) > 0.

CHOOSEVARIABLE-LINEOVERLOAD(X , σ)
1 i, j ← arg maxi,j∈E(X ) |fi,j | − ψi,jσ(ci,j);
2 if |fi,j | − ψi,jσ(ci,j) > 0
3 then return ci,j ;
4 Ê ← E ;
5 while |Ê | > 0
6 do for k ← 1 . . . n
7 do i, j ← arg maxi,j∈Ê |fi,j | − ψi,jσ(ci,j);
8 B̂ ← NEIGHBORS(i, n) ∪ NEIGHBORS(j, n);
9 Êi,j ← (B̂ × B̂) ∩ E(X );

10 for ˆi, j ∈ Êi,j
11 do σ̂ ← σ \ [c ˆi,j ← σ(c ˆi,j)];
12 σ̂ ← σ̂ ∪ [c ˆi,j ← min(c+ˆi,j , σ(c ˆi,j) + 1)];
13 ⊥ ˆi,j ← Sfi,j (σ̂);
14 ˆi, j ← arg max ˆi,j∈Êi,j

⊥ ˆi,j ;
15 if ⊥ ˆi,j ≤ Sfi,j

(σ)
16 then return c ˆi,j ;
17 Ê ← Ê \ i, j;

18 i← arg mini∈B(X ) vi;
19 return ci;

Figure 3: Line Overload Branching Heuristic

The third heuristic is based upon the standard cost
reduction stages of constructive heuristics [3, 19] and
chooses those variables whose removal of components
will decrease the cost the most (lines 1-2 of Figure 4). It
is used when %(σ) = η(σ) = ν(σ) = 0.

CHOOSEVARIABLE-COST(X , σ)
1 i, j ← arg maxi,j∈E(X ) | σ(ci,j) > c−i,j

κi,j ;
2 i← arg maxi∈B(X ) | σ(ci) > c−i

κi;
3 if κi,j ≥ κi

4 then return ci,j ;
5 return ci;

Figure 4: Cost Reduction Branching Heuristic

4 Experimental Results

The generalized DBLS approach is tested on a varia-
tion of the RTS-96 IEEE problem and on a model of New
Mexico’s transmission network.
RTS-96 Benchmark In order to evaluate our approach
we considered the expansion planning benchmarks from
the TNEP literature [7] that are based on the RTS-79 and
RTS-96 problems of [16, 17]. The problems allow up to 3
additional circuits in the 34 existing corridors and up to 3
circuits in each of 7 new corridors. The benchmarks pes-
simistically assume that generation cannot be dispatched.
This is a worst case scenario, e.g. all generation is wind-
based. The parameters for the circuit expansions are in-
cluded in references [2, 7, 19]. The demand is from prob-
lem G0 in [7]. The initial generation values are taken from
[17]. The possible generation expansions are listed in Ta-
ble 1. The first column provides the bus where generation
may be added. The second and third columns provide the
real and reactive generation capacity additions. The fourth
column provides the generation cost, which is designed to
be similar scale to line capacity expansion costs. The final
column provides the maximum number of times genera-
tion capacity can be added. The total maximum capacity
is roughly the same as generation capacity in [7].

Bus MW MVar Cost Max
1 100 32 10000 4
2 100 16 20000 4
7 165 72 39600 4

13 200 160 75000 8
14 0 14 140 4
15 100 .08 9000 4
16 100 34 5000 4
18 200 140 100000 4
21 200 108 120000 4
22 150 -30 49500 4
23 265 120 159000 4

Table 1: Generator expansion options for RTS benchmarks.

The first results on this problem consider the case
where S is implemented using the linear DC power flow



model. DBLS is very quickly able to find an expansion
plan that eliminates all generator overloads (after explor-
ing 10 nodes in the search tree) and line overloads (after
exploring 20 nodes in the search tree) regardless of the pa-
rameters of DBLS. This provides a strong indication that
the branching heuristic used to guide the search towards
feasible solutions is very good. However, the strength of
the search strategy is seen when minimizing κ. Figure
5 shows the performance of the algorithm on κ for dif-
ferent settings of δ and α = β = 2. The x-axis plots
the execution time of the algorithm in terms of number
of search tree nodes visited (expansion plans evaluated).
The y-axis plots the best κ value seen in the search so far.
There are two interesting observations. First, the search
is able to find high quality solutions very quickly when
δ = 1 or 2. This provides some evidence that the branch-
ing heuristics used in the literature obtain reasonable so-
lutions. Second, it is interesting to see that δ = 4, 5 out-
performs δ = 3 for a period of time. This indicates that
in the δ = 3 search tree, there are some good solutions
that are pruned early because of δ being too small (and
δ = 4, 5 discovers them). However, as the search pro-
gresses, δ = 4, 5 spends more time in unproductive parts
of the search tree and δ = 3 eventually outperforms the
higher discrepancy parameters. These results would sug-
gest a strategy of incrementing δ in order to balance the
ability to find high quality solutions quickly with the abil-
ity to perform a more complete search.

Figure 5: A comparison of DBLS for different choices of δ on the DC
flow model.

The second set of experimental results consider the
case where S is implemented with the full non-linear
AC power flow equations as encapsulated by [5]. Given
the difficulty in solving the initial problem with [5], the
search starts with the expansion plan obtained using the
DC power flow model (with the ability to undo any ex-
pansion proposed by the DC solution). The results here
are striking. Unlike with the DC power flow example, the
search has a difficult time addressing line capacity vio-
lations. This matches the observations of [2]. Figure 6

shows the performance of DBLS for different parameter
settings of δ and α = β = 2. Unlike the previous results,
for small δ values the search does not find high quality
solutions. This indicates that the branching heuristics de-
veloped for DC power flow models are not as strong of a
guide for finding high quality solutions (though still a rea-
sonable guide as there exists a solution with no overloads
for δ = 5 after searching more than 10,000 nodes in the
search tree.)

Figure 6: A comparison of DBLS for different choices of δ on the AC
flow model.

Finally, it is interesting to compare the solutions ob-
tained under the DC power flow model and the nonlinear
AC power flow model. First, the best expansion plan for
% = η = ν = 0 costs 2,077K. The solution for the AC
power flow model costs 2,836K, a 36% increase in costs.
Table 2 and 3 describe the solutions to the two problems.
Notice that the DC solution needs considerable modifica-
tion to produce a solution that does not violate any of the
constraints under AC conditions. This supports the ob-
servations in [2] that it can be difficult to modify a plan
based upon DC power flows to meet the requirements of
AC power flows.

Bus DC Gen Added DC Cost AC Gen Added AC Cost
1 4 40K 4 40K
2 4 80K 4 80K
7 4 158K 4 158K
13 8 600K 8 600K
14 0 0K 0 0K
15 4 36K 4 36K
16 3 15K 3 15K
18 2 200K 3 300K
21 0 0K 0 0K
22 3 148K 3 148K
23 4 636K 3 477K

Total 36 1913K 36 1854K

Table 2: Generator Expansions: DC vs. AC



Circuit DC Lines Added DC Cost AC Lines Added AC Cost
1,2 0 0K 1 3K
1,5 0 0K 1 22K
2,4 0 0K 1 33K
2,6 0 0K 3 150K

3,24 0 0K 1 50K
5,10 0 0K 3 69K
6,7 0 0K 3 150K

6,10 1 16K 0 0k
7,8 2 32K 3 48K

8,10 0 0K 3 129K
10,12 1 50K 0 0K
10,11 0 0K 2 100K
11,13 1 66K 1 66K
14,16 0 0K 1 54K
15,24 0 0K 1 72K
16,17 0 0K 1 36K
Total 5 164K 25 982K

Table 3: Line Expansions: DC vs. AC. Circuits that have no additions
in either solution are omitted.

New Mexico Our final set of experiments considers the
power grid of the state of New Mexico in the United
States. According to reference [21], New Mexico has ex-
tensive plans to incorporate wind and solar generation into
its grid in order to satisfy demand for power within the
state and to export power to other states. In this scenario,
the circuit variables and costs are assumed to be the same
as [21]. Renewable energy generation may be added to
nine areas in the state (2 solar and 7 wind) with a range
of capacity factors, also included in reference [21]. Using
industry data, we assume that it costs 1.75 million to build
1 MW of name plate capacity for wind and 4 million for
1 MW of name plate capacity for solar. This cost is re-
duced considerably when subsidies (currently .018 cents
per kilowatt hour in the United States and an additional
.01 cents in New Mexico) and other factors are considered.
For the purposes of this study, these reductions are not
used as these are subject to change. In this scenario, we
wish to build enough renewable generation such that 10%
of the current demand can be satisfied by renewable en-
ergy. The existing grid for New Mexico is used with 10%
of existing generation is removed, uniformly at random.
This provides a setting to test DBLS on realistic models.
Using these cost numbers, the combined cost to construct
transmission and generation to meet this goal is roughly
7.3 billion dollars (this would be considerably less if sub-
sidies are included in the construction cost estimates). It is
interesting to note that under DC power flow models, the
joint cost estimate is around 300 million dollars, a sub-
stantial decrease.

In this planning scenario, the bulk of the wind gener-
ation added is in the Guadalupe and Springer areas [21],
that are close to existing capacity and have high capacity
factors. When all generation is added, there is as much
as 800 MVA of overloads in the system in 30 transmis-
sion corridors. The overloads are alleviated by adding 53
circuits in 41 corridors. The solution is shown in Figure 7.

(a) (b)
Figure 7: Expansion solution for New Mexico. The map on the left (a)
shows the initial expansion plan. Red indicates physical violations or ar-
eas that shed load (the analogue of generation over capacity). The map
on the right (b) shows the final plan. Blue lines represent added circuits
and blue circles represent added generators.

5 Conclusion

The electric power system is currently undergoing a
revolutionary transformation that requires new approaches
for solving the expansion planning problem. The in-
creased desire and need to incorporate sustainable power
generation (wind and solar) that is less controllable has
created a situation where it is important to account for
joint planning and more complex power flow models.
Prior work has shown that DBLS is a powerful approach
for solving problems with non-linear representations for
the TNEP. This paper has shown that generalizing DBLS
to include generation expansion decisions is an effective
approach to solve this problem. A core contribution of the
algorithm is a general search procedure that decouples the
model used for flows and achieves solutions to the expan-
sion planning problem using non-linear models of power
grids.

Given the success of the approach described in this pa-
per, it will be interesting to explore how to generalize this
approach to more types of expansion options such as volt-
age upgrades. Second, it will also be important to account
for uncertainty in the planning process as described in [4],
[13], in particular as it relates to the intermittent output
of renewable energy. Finally, it will be important to the
study the effects on expansion solution quality when dis-
patchable generation, storage, or load management is in-
cluded in S. This could dramatically change how power
grid expansion is planned.
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