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Abstract

Phasor measurement units (PMUs) are increasingly important for
monitoring the state of an electrical power grid and quickly detecting
topology changes caused by events such as lines going down or large
loads being dropped. Phasors are complex valued measurements of
voltage and current at various points of generation and consumption.
If a line goes down or a load is removed, power flows change through-
out the grid according to known physical laws and the probability
distribution of phasor measurements changes accordingly. This paper
develops a method to estimate the current topology of a power grid
from phasor measurements and considers the design goal of placing
PMUs at strategic points in a distribution system to achieve good
sensitivity to single-line outages. From a vector of phasor measure-
ments probabilities are computed corresponding to the scenario that
all power lines are operational and to alternate scenarios in which each
line goes down individually. These probabilities are functions of the
joint distributions of phasor measurements under each possible sce-
nario, obtained through Monte Carlo simulations with random load
profiles. We use log-spline densities to estimate marginal distributions
of phasor measurements and fold these into a multivariate Gaussian
copula to capture important correlations. Sensitivity to outages varies
according to which line goes down and where PMUs are placed on the
grid. A greedy search algorithm is demonstrated for placing PMUs at
locations that provide good sensitivity to single-line outages.
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1 Introduction

A power grid operator must know the grid topology and demand pro-
file in order to generate and dispatch power in the right locations
and to run the grid stably and securely. Transmission grid oper-
ators have a long history of using state estimation for supervisory
control and planning but in the distribution grid real-time measure-
ments are sparsely available and much must be inferred. State esti-
mation is a major research topic in the power engineering community
[20, 28, 22, 21, 4, 27, 1, 23]. The problem of estimating the state of the
grid is often divided into two interrelated phases. One phase is state
estimation proper in which analog quantities are estimated—voltages
at all bus locations and power flowing over all lines. The other phase
is topology processing and topology error detection in which breaker
status information is used to track the current topology of the grid and
errors in the calculated topology are detected and corrected. These
two stages iterate and the combined process is known as generalized
state estimation. Future smart grids will be more highly instrumented
with measurement devices, increasing the importance of bringing state
and topology estimation techniques into the distribution portion of the
electric grid. Reference [9] provides a good overview of state estima-
tion challenges that arise in the development of smart grids.

1.1 Contributions

Phasor measurement units (PMUs) are sensors placed at select nodes
in a power grid to collect synchronized measurements of electrical
waveforms in real time. Synchronized real-time measurements are
a contrast to traditional slowly sampled inject measurements with
time accuracy that is too coarse to resolve phase differences between
measured nodes. PMUs are revolutionizing methods for monitoring
and control of electric power grids.

This paper makes two contributions in the area of topology error
detection (e.g., detection of downed lines) in distribution grids. First,
we simplify and extend the model bank classification methods of [16]
to work with data from PMUs. Second, we use the new technique as
part of a simple procedure for determining good PMU locations.

Many topology error detectors use relatively simple statistical meth-
ods that start with an assumed topology and modify it based on an
examination of the state estimate residuals (e.g. [4, 28]). Recent work
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detects topology errors using a predefined bank of possible topolo-
gies [23, 16]. Bayesian methods estimate the probability distribution
over the model bank given the observed data. This paper also uses a
model bank and extends the idea of [16] in which the search for topol-
ogy errors proceeds with a sparse set of measurements insufficient to
determine the full analog state of the grid. We also demonstrate the
method as part of a technique for determining good PMU locations.

Power flow equations (discussed later) are important for estimating
the analog portion of the power system state. Solving these nonlin-
ear equations can be computationally demanding, especially for large
networks, and real-time solutions are generally not available. Fur-
thermore, measurements are too sparse in the distribution grid for
full state estimation that is routine in the transmission grid. The
method presented here meets these challenges by running the solver
in a pre-computation step to build a statistical approximation that
is used in real-time to detect unknown downed lines or other topol-
ogy errors with many fewer measurements than needed for full analog
state estimation.

The remainder of Section 1 gives an overview of work on the prob-
lems of topology error detection and optimal placement of PMUs.
Section 2 discusses some of the background on solving power flow
equations for electrical parameters, with loads generated randomly.
Section 3 describes Monte Carlo-based detection of topology faults
(i.e., downed lines) using log-spline copula models to represent the
joint distribution of phasor data under a known grid topology. Sec-
tion 4 applies downed line detection to a 37 bus distribution grid.
Section 5 provides a greedy method to select a set of buses to instru-
ment with PMUs for good sensitivity to single line outages. Section 6
applies PMU placement to the 37 bus network. Section 7 discusses
ideas for follow-on work to expand the usefulness of these methods.

1.2 Overview of Topology Error Detection

Topology errors, in the power systems literature, are unexpected changes
in network interconnections that are not (or not yet) captured by the
topology processing system that receives breaker status data to track
which buses (nodes) are electrically connected to one another. Downed
lines, for example, are usually detected using breaker status data at
the control center. However, sometimes breaker status is in error and
a topology change is only detected in the analog measurements that

3



are available on the grid. Also, more highly instrumented smart dis-
tribution grids will need to identify abrupt changes more quickly than
current topology processing systems are capable of doing.

A traditional method [5] for identifying topology errors in a power
system compares residuals from estimation of the analog state (e.g. volt-
ages and flows) to the residuals expected from each of many possible
faults in the network. Another popular method [6] detects topology
errors using normalized Lagrange multipliers from a constrained non-
linear least squares formulation of the state estimation problem. The
Lagrange approach has been extended [18] to a more efficient method
that uses Bayesian hypothesis tests and avoids having to perform state
estimation for each of a large number of alternative topologies,

Recent advances in topology error detection are based on the avail-
ability of PMUs that provide voltage measurements with GPS time
stamps accurate enough to compare phases across multiple bus lo-
cations. Tracking algorithms, such as the unscented Kalman filter,
are being applied to PMU data streams [26] to dynamically estimate
the power system state and quickly detect anomalies such as sudden
changes caused by downed lines. A two level state estimator has been
proposed [29] in which PMU data are processed at substations to esti-
mate the local state of the grid and remove local topology errors. The
grid control center combines substation estimates into a higher level
estimate and also detects remaining topology errors.

1.3 Strategies for Placing PMUs

PMUs are expensive and are being installed incrementally. Recent
work on PMU placement [17] assumes known topology and uses a
greedy algorithm to achieve near-optimal placement of PMUs as mea-
sured by a mutual information criterion. This technique sequentially
places PMUs in locations that reduce uncertainty in estimates of the
analog system state. Section 5 solves a similar problem but with an
objective of better detecting topology changes such as downed lines.
Integer programming methods have been employed [3] to place an op-
timal combination of traditional power injection sensors and PMUs at
locations that are strategic for detecting topology errors at low cost.

For reliable operation of a modern transmission grid it is becom-
ing more important to detect and localize a fault within a fraction
of a second. New techniques [15] combine synchronized voltage mea-
surements at widely dispersed locations and use a traveling wave the-
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oretical framework to triangulate the location of a fault. Followup
work [14] places a minimum number of sensors at strategic locations
so that all possible faults become observable using the traveling-wave
technique. Many algorithms exist to localize faults in future smart
grids that will have vastly expanded measurement capability. In fact,
one new method [10] uses the current topology of the grid and avail-
ability of measurements to choose the best algorithm among several
choices for localizing a fault.

2 The Power Flow Equations and Pha-

sor Measurements

Figure 1 shows a oneline diagram of a power distribution grid. Labeled
segments are buses that attach to transmission lines, loads, and gen-
erators. Generators are shown as double arrows on eight of the buses
(e.g., two at bus 28 in the lower right of the diagram). Transformers
separate regions that operate at different voltages and are indicated by
pairs of squiggly lines. Loads are shown with arrows indicating real
and reactive power consumption, capacitor symbols represent shunt
capacitor banks that supply reactive power at large load buses to help
stabilize voltage (e.g., at node 44 in the lower left). Each of these
elements has associated electrical parameters such as the power out-
put of a generator and the resistance of a transmission line. A given
electrical parameter can affect power flow through every line on the
network.

Flow of power on an alternating current (AC) electrical grid is
described by complex-valued voltage and power. Figure 2 illustrates
the most important parameters related to power flow. Power injected
(i.e., net consumption or generation) at bus i is denoted by Pi (real)
and Qi (imaginary, reactive). Similarly, power flowing from bus i to
bus j is denoted by Pij (real) and Qij (reactive). Complex-valued
voltage at bus i is given in polar form by a voltage magnitude |Vi| and
angle θi. Flow across the grid is affected by two admittance parameters
of power lines, conductance, denoted Gi,j and susceptance, denoted
Bi,j (which are derived from the resistance and reactance properties
of the line); both are assumed known. Obviously, power grids have a
wide variety of elements and many other electrical characteristics, but
this simple description is sufficient to explore detection of line outages.

Power engineers make heavy use of the AC power flow equations

5



Figure 1: Oneline diagram of a 37-bus distribution system studied in [24]
and [25]. Buses 31, 40 and 44 (encircled) were selected for PMUs in [24].
PMUs placed at the ten buses labeled A through J provide good sensitivity
for detecting a downed line throughout most of the network (Section 6).
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Figure 2: Basic parameters that determine flow of power over the lines of an
electric grid.

that relate the real and reactive injections at each bus (i = 1, . . . , B)
to voltage magnitudes and phases at all buses in the grid.

Pi =

B∑
j=1

|Vi||Vj | [Gi,j cos (θi − θj) +Bi,j sin (θi − θj)]

Qi =
B∑
j=1

|Vi||Vj | [Gi,j sin (θi − θj)−Bi,j cos (θi − θj)] .

(1)

Individual terms in these sums represent power flowing into bus i on
line i, j. Thus, the real injection Pi is the sum real flows Pi,j into
bus i and the reactive injection Qi is the sum of reactive flows Qi,j

into bus i. Individual nodes can either be generators (net power going
out), loads (net power coming in), or neutral1.

There are some additional constraints on these equations. First, in
a lossless model, the sum of the power injects over all of the buses is
zero,

∑N
i=1 Pi = 0 and

∑N
i=1Qi = 0. In other words, all of the power

generated in the system is used by the system. More generally, line
losses constrain these sums to non-zero values. Second, the voltage
angles only matter up to a rotation because they enter the equations
only through their differences. Thus, solutions are invariant to adding
a constant to all angles.

Each bus provides two of the four power and voltage parameters
Pi, Qi, |Vi|, θi and the remaining two parameters are found by solving
the nonlinear power flow equations (1). Unfortunately, the nonlinear
equations can be difficult to solve. We assume the grid operator desig-

1Physically, a node can have both load and generation, e.g. Figure 1. However these
equations aggregate the load and generation at a node.
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Bus Includes Input Computed PMU Measurements
Slack θi = 0 Pi Ai|θi
Generator |Vi| Qi

Regular Pi θi Ai|θi
Generator |Vi| Qi

No Pi θi Ai|θi
Generator Qi |Vi| Mi|Vi

Table 1: Power flow equations (1) are set up with different input variables,
depending on the elements at each bus. The slack generator runs at a known
voltage magnitude and its voltage angle is take to be the reference, θi = 0.
A regular generator also runs with a known voltage and produces a known
amount of real power. For buses without a generator, the real and reactive
power are provided as inputs. In each case, the other two quantities are
computed. All PMUs provide angle measurements, whereas only PMUs at
non-generator buses provide useful measurements of voltage magnitude.

nates a single generator to pick up the slack between nominal levels of
consumption and generation and the actual levels at any given time.
The generator at the slack bus operates at a specified voltage mag-
nitude and its voltage angle is take to be the reference phase for the
whole grid.

Table 1 lists which parameters are given as inputs and which are
computed for three different types of bus. The bus with the slack
generator specifies the generator’s voltage magnitude |Vi| and sets the
reference voltage angle θi = 0. Any other bus with a generator specifies
the generator’s voltage magnitude |Vi| and real power output Pi as
inputs 2. A bus with no generator may have a load or capacitor bank
and these will determine non-zero values of Pi and Qi. If a bus has
no elements, its input quantities are Pi = Qi = 0. In each case, the
unspecified quantities are computed by solving the AC power flow
equations (1).

Power injections (Pi, Qi) are generally sums of

Pi = P load
i + P gen

i and Qi = Qload
i +Qgen

i +Qcap
i (2)

where “load” indicates power consumed, “gen” is power generated
and “cap” is reactive power injected by a capacitor bank. Bus 44 in

2If a generator is not voltage controlled, it is specified by Qi and Pi
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Figure 1 has all three components of injection whereas bus 41 has
none of them. The load terms are generally not known with certainty,
so we take them to be a priori independent Gaussian quantities with
20% standard deviations (as in [23]):

P load
i ∼ N [µi, (0.2µi)

2]

Qload
i ∼ N [νi, (0.2νi)

2]
(3)

where µi and νi are specified nominal loads. By contrast, P gen
i and

Qcap
i are specified deterministic quantities. Finally, each generator’s

reactive power output Qgen
i is determined by subtraction from the

computed injection Qi:

Qgen
i = Qi −Qload

i −Qcap
i .

Phasor Measurement Units (PMUs) are devices with GPS clocks
that can measure complex-valued voltages and currents with precise
timestamps. The third column of Table 1 indicates voltage measure-
ments that a PMU would provide if installed. PMUs can measure
current and other quantities as well; we discuss voltage measurements
to illustrate their utility for topology estimation. A PMU provides
voltage angle measurements, Ai, on any bus and voltage magnitude
measurements, Mi, on a non-generator bus. For given parameters
θi and Vi the two types of voltage measurements are unbiased and
independent:

Ai | θi ∼ N [θi, 0.012]

Mi | |Vi| ∼ N [|Vi|, (0.001V0,i)
2]

(4)

where V0,i is the nominal voltage at bus i. Thus, voltage angles are
measured with standard deviation equal to 0.01◦ and voltage magni-
tudes are measured with standard deviation of 0.1% of nominal. These
are small but realistic measurements errors; see [7].

Although PMUs could, in theory, be placed at every bus on the
grid, this is not currently practical in distribution grids because of
PMUs are costly and communication lines are inadequate at some bus
locations. Full deployment of PMUs is a goal that lies many years
in the future. Measurements from PMUs placed on several buses in
a grid can be collected at a central Phasor Data Concentrator where
they are synchronized in time so that relative phases between buses
will provide valuable information to infer power flow over the grid.
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3 Topology Identification with Log-Spline

Copula Models

Denote by y the vector of PMU measurements from a given set of
buses on a distribution grid. Our goal is to use y to determine the
probability of each topological scenario in a predefined list. Given
y, the scenario probabilities are determined by combining their prior
probabilities with the probability density values for y under each sce-
nario and this motivates an effort to approximate the distributions of
y for each scenario of interest. Specifically, we illustrate the method
using a bank of topologies corresponding to all single-line down sce-
narios and the nominal case of no lines down. Other types of network
faults can be handled identically.

The distribution of y is not available analytically, but is driven by
propagating the prior distributions for the loads in (3) through the
power flow equations in (1) and adding the measurement noise in (4).
Following [16], we will obtain an offline Monte Carlo simulation of the
observed data and build a statistical approximation to the distribution
of y. That paper approximated solutions to the power flow equations
and used importance sampling to connect to data observed with mea-
surement error. Here, we simulate the data generation process all the
way through to the measurements and build an approximate model
for observed data. This eliminates the need for importance sampling
and makes the real-time part of the procedure even faster.

Assume that the slack generator is instrumented with a PMU and
that voltage angles are measured relative to that of the slack bus,
designated as bus i0. Thus, y contains measured angle differences
Ai − Ai0 for each bus i that is instrumented with a PMU, except i0.
In addition y has voltage magnitude measurements Mi for each non-
generator bus with a PMU, as indicated in the final column of Table 1.
A specific example is given for three PMUs in Section 4.

3.1 Log-spline Copula Models for PMU Mea-
surements

To classify the topology with too few measurements for full state esti-
mation, a flexible statistical model is needed to represent data gener-
ated under each scenario. A general purpose class of distributions with
dependent components can be constructed using log-spline densities to
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represent the univariate marginals of y and these can be folded into
a multivariate Gaussian copula to capture dependence amongst the
variables. Pairing copulas with flexible log-spline densities is a pow-
erful means of representing dependence among PMU measurements,
leading to a method for estimating the current topology of the grid.

Log-spline densities. A log-spline density is the exponential of
a natural cubic spline with k knots and constrained to integrate to 1.
It can be represented as

f(y; b, c) ∝ exp

[
b0y +

k∑
i=1

bi(y − ci)3+

]

where (·)+ ≡ max(0, ·), c = (c1, . . . , ck) are the knots, and the coeffi-
cients b = (b0, . . . , bk) have k degrees of because log f is constrained to
be linear outside the range of knots. Log-spline densities are flexible
for fitting a wide range of distributional shapes, while also having a
convent parametric form that is easy to store, reuse and evaluate.

Stone and Kooperberg [12, 13] develop a method for fitting log-
spline densities, including choice of k. We interfaced Kooperberg’s
[11] C++ library to work within Matlab [19] in order to evaluate
log-spline densities within an existing computing environment that
simulates electric power loads and solves power flow equations.

Gaussian Copula Each element of y is modeled with a log-spline
density yi ∼ fi ≡ f(y; bi, ci) with Fi as its corresponding CDF. Tak-
ing the probability integral transform of each coordinate produces a
random vector u(y) = (F1(y1), . . . , Fp(yp)) that has uniform U(0,1)
marginals.

Copulas are multivariate distributions with U(0,1) marginals. The
Gaussian copula has joint cumulative distribution function equal to

CGauss(u; 0,Σ) = Φp

[(
Φ−11 (u1), . . .Φ

−1
1 (up)

)
; 0,Σ

]
(5)

where Σ is a correlation matrix, Φp(·;µ,Σ) is the multivariate Gaus-
sian CDF with mean µ and variance Σ, and Φ1 is the standard uni-
variate Gaussian CDF. Our models actually use the more general
distribution CGauss(u;µ,Σ) where non-zero µ and general positive-
semidefinite covariance Σ are permitted. The more general form is
not necessary but the extra degrees of freedom over (5) will not harm
the multivariate fit when an adequate Monte Carlo sample is used.
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Modeling u(y) ∼ C(u;µ,Σ) implies that the density of y is

g(y;θ) = φp(z(y);µ,Σ)

p∏
i=1

∣∣∣∣f(yi; bi, ci)

φ1(zi(yi))

∣∣∣∣ (6)

with parameters θ ≡ (µ,Σ,b1, c1 . . . ,bp, cp) and where

z(y) ≡
[(

Φ−11 (F1(y1)), . . . ,Φ
−1
1 (Fp(yp)

)]
(7)

and φp is the density of Φp. Notice that this model implies z(y) ∼
Np(µ,Σ). In particular, the construction implies that each component
of z is approximately N1(0, 1), which provides a basis for checking
goodness of fit for the marginal distributions of y; see the example of
Section 4.

Numerical evaluation of g(y;θ) requires evaluation of p log-spline
densities and standard Gaussian densities along with a multivariate
Gaussian density in which Σ−1 can be pre-computed. Additionally,
evaluation of the quantities z(y) requires evaluation of p log-spline
CDFs and standard Gaussian inverse CDFs. These computations are
straightforward, although the log-spline CDFs rely on one-dimensional
quadrature for numerical integration. All told the combination of log-
spline densities and a Gaussian copula is an efficient and flexible tool
for modeling the distribution of a general measurement vector y and
computing its density.

Algorithm 1 steps through the process of estimating scenario-specific
distributions of the measurement vector y. For each scenario s the
algorithm produces a set of simulated measurement vectors Ys =
{y1, . . . ,yJ}, corresponding to PMUs on a set of buses B. Ys is ob-
tained by repeatedly drawing independent random loads, solving the
power flow equations (1), and collecting random PMU measurements
of voltage angles and magnitudes. Log-spline copulas are fit to each
scenario-specific measurement set, producing a corresponding param-
eters vector θs.

3.2 Topology Estimation

Estimated distributions of y for each possible scenario provide a direct
means of estimating the current topology of the grid based on a new
set of measurements y. Let gs(y;θs) denote the density of y under
the Gaussian log-spline copula Cs for scenario s. Let π(s) represent a
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Algorithm 1 Estimate Scenario-Specific Distributions of y

for all s ∈ {nominal and single line down scenarios} do
for j = 1, . . . , J do

draw random loads P load
i , Qload

i as in Equation (3)
compute Pi, Qi for non-generator buses from Equation (2)
set two of Pi, Qi, θi, |Vi| as inputs according to Table 1
solve power flow Equations (1) under scenario s
draw PMU measurements Ai | θi,Mi | |Vi| as in Equation (4)
form y from measurements Ai − Ai0 and Mi

end for
fit Cs = Gaussian log-spline copula to Ys = {y1, . . . ,yJ}

end for

prior probability that the topology of the grid is given by scenario s.
Then the posterior probability of scenario s is

Pr(s |y) =
π(s)gs(y;θs)∑
s′ π(s′)gs′(y;θs′)

. (8)

Equation (8) gives the probability of each topological scenario
amongst the set of possibilities. Let S represent the number of scenar-
ios (i.e. topologies) under consideration. The ability of PMU measure-
ments to identify the current topological scenario is summarized by an
S ×S confusion matrix, C, containing probabilities of classifying into
one scenario when observations are generated under another scenario.
The s, s′ element of C is

Cs,s′ = Es Pr(s′ |y) (9)

where Es denotes expectation for y generated according to scenario
s. Diagonal elements of the confusion matrix, called sensitivities, are
probabilities of correct classification under each given scenario.

4 Topology Estimation in a 37 Bus Net-

work

The system in Figure 1 consists of 37 buses, 57 lines, 24 loads, and 9
generators. It originally appeared in [8, Ex. 13.9] and was analyzed
in [24] and [25]. This section demonstrates estimation of the system
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topology using log-spline copulas built from Monte Carlo simulations
of PMU measurements as in Algorithm 1. The prior distribution of
topology is taken to be uniform over the nominal (no fault) topology
and each single line down scenario. In actual usage, the nominal
topology would probably be given a much higher prior probability.

To facilitate a number of investigations, Algorithm 1 was applied
to Monte Carlo simulations with virtual PMUs at each of the 37 buses.
Results are based on J = 4600 simulated measurement vectors y for
the nominal scenario and each of the 57 single line down scenarios. In
constructing y, all 36 non-slack buses contribute voltage angle differ-
ences, Ai − Ai0 and the 30 non-generator buses also contribute mea-
surements of voltage magnitude. Therefore, y has 66 components for
a grid that is fully instrumented with PMUs. The slack generator is
at bus 31.

Figure 3 has panels with normal probability plots of (A3, A17, A30)−
A31 (left) and of M3,M17,M30 (right). Each panel contains 58 curves,
one for each scenario. The three buses were selected to illustrate the
variety of distributions across all 37 buses in the grid. Voltage mag-
nitudes are normalized to the nominal voltage of each bus. Voltage
angle measurements are clearly non-normal, whereas magnitude mea-
surements are essentially normal. Nevertheless, all measurements were
fit with log-spline densities to illustrate that log-spline fits do no harm
to Gaussian data.

Figure 4 shows normal probability plots of z(y), the measured
angles and magnitudes after transforming to normality by way of log-
spline density fits and Equation (7). All distributions are essentially
standard normal, demonstrating that fitted log-spline densities are
good marginal approximations to the Monte Carlo data sets. Fitting
multivariate normal distributions to the simulated sets of z(y) for each
scenario completes the log-spline copula modeling of PMU data.

As a simple example, consider the problem on the 37-bus system
from [24]. In a manner similar to [24], the system will be monitored
with PMUs located at buses B = {31, 40, 44} with bus 31 designated
as the slack generator, 40 as a non-generator load bus, and 44 as a
regular generator bus. Recall that voltage angle measurements in y
are differences from the measured slack bus voltage angle. Therefore,
the full vector of measurements is

y(B) = (A40 −A31, A44 −A31,M40)
T .

Subtraction of A31 from the other angles is a source of correlation
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Figure 3: Normal probability plots of measured voltage angles (Ai, left) and
magnitudes (Mi, right) at three representative buses in the 37-bus system
of Figure 1. Fifty-eight scenarios are represented by the collection of curves
in each panel, corresponding to the nominal topology and 57 single line sce-
narios. Voltage angles are decidedly non-normal. Marginal distributions for
most of the scenarios are greatly overlapped with a few standouts. Cor-
relations amongst measurements are important for estimating the current
topology of the grid from such measurements.
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Figure 5: Top ten candidates for a single line outage when line 32-29 is down
and PMU measurements are available from buses 31, 40 and 44. Probabilities
are averaged over 4600 Monte Carlo samples of the measurements. These
results are comparable to [24] who demonstrated that changes in voltage
angles can finger the correct downed line, but with some ambiguity among
other candidates.

among elements of y and this is modeled by the covariance Σ in
the log-spline copula distributions gs(y;θs) associated with B. In
[24], only the voltage angle measurements were used to demonstrate
a method of detecting and locating a single line outage. They did
not use the voltage magnitude measurement M40, that we assume is
available from the non-generator bus.

Figure 5 is a bar plot of the top ten candidates for a single line out-
age when line 32-39 is down. Each bar represents a confusion element
Cs,s′ from Equation (9) with the true scenario s = line 32-39 down.
The largest bar is the correct scenario, showing that three PMUs at
buses 31, 40 and 44 have about 23% sensitivity for discovering this
particular line outage.

These results are qualitatively comparable to those of [24, Table 2]
in which a certain quality of fit score correctly identified the line out-
age with several other candidates obtaining substantially worse fits.
The method of [24] monitors PMU time series data, responding to
step changes in the level of the series by matching changes in voltage
angles with what would be expected from line outages. On each bus
instrumented with a PMU, the most recent phasor angle measure-
ment is subtracted from the corresponding phasor angle measured at
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a previous point in time. An outage is signaled if a lagged difference
exceeds a predetermined threshold. Post-processing then determines
time steps that are before and after the outage and computes voltage
angle changes between those times. Voltage angle changes are com-
pared to what is expected from each single line down scenario with the
best fitting scenario (measured by a quality of fit score) flagged as the
most likely outage. This method makes effective use of the unfolding
time series of PMU measurements, whereas our results have focused
on a vector of PMU measurements at a single point in time.

5 Selection of buses for PMUs

PMUs are becoming more common but are not yet widely installed in
the U.S. [2], especially in the distribution portions of the power grid.
Operators need to decide where to place PMUs, and sensitivity to line
outages is an important consideration. This section discusses placing
PMUs so that their measurements have good sensitivity to single line
failures.

Let C(B) denote the confusion matrix associated with observations
y from PMUs at a subset B of the buses. Average sensitivity

S(B) =
1

S
tr (C(B)) (10)

is a sensible figure of merit for selecting a good subset of buses to
instrument with PMUs.

Optimal selection of a subset of buses is combinatorially hard and
the associated computations can only be performed for small numbers
of PMUs. Greedy stepwise placement is a tractable alternative. Given
a reference starting bus j0, Algorithm 2 sequentially adds a PMU
to the next most advantageous bus for improving average sensitivity.
This is known as greedy or forward-stepwise selection. The reference
bus can be selected using a variety of factors such as a bus that already
has a PMU installed or availability of communication lines to a central
Phasor Data Concentrator. Alternatively, the algorithm could begin
with the best small subset of buses, chosen by exhaustive search, or a
subset of buses that are already fitted with PMUs.

Each forward step (i) of Algorithm 2 adds the most advantageous
bus to the current set of buses Bi. The best bus to add is determined
from estimates of average sensitivity Ŝ(Bij) attained by sequentially
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Algorithm 2 Stepwise Selection of PMU Locations

recall Y1, . . . ,YS, simulated measurement sets from Algorithm 1
B1 ← {j0 = reference bus}
for i ∈ {2, . . . , B − 1} do

for j ∈ {1, . . . , B} \Bi−1 do
Bij ← Bi ∪ {j}
for s ∈ {1, . . . , S} do

Ys(Bij)← rows of Ys corresponding to buses in Bij
Ĉs,s(Bij)← Equation (8) averaged over sample Ys(Bij)

end for
Ŝ(Bij)←

∑
s Ĉs,s(Bij)/S . sensitivity to add bus j

end for
Bi ← Bi−1 ∪ {arg maxj Ŝ(Bij)} . add max sensitivity bus

end for
Stepwise PMU sets are B2, . . . ,BB

trying a PMU on each available bus j with the current set Bi. Eval-
uation of Ŝ(Bij) requires, for each scenario s, averaging Pr(s|y) (8)
over all y ∈ Ys. Recall that Ys is the Monte Carlo measurement
set produced in Algorithm 1 to estimate the multivariate density of
all-possible PMU measurements under scenario s.

Within the innermost loop of Algorithm 2 each realization of com-
plete measurements y ∈ Ys is reduced to a vector containing mea-
surements only on the subset of PMUs under consideration, Bij . Cor-
respondingly, the log-spline copula model is reduced for evaluation of
the confusion matrix associated with Bij . These subsetting operations
are straightforward and do not require refitting of any univariate log-
spline densities or Gaussian copulas. However, if inverse covariance
matrices are stored with the copulas, these will need to be recomputed
for each different subset of variables entertained in the stepwise loops
over i and j. Some computational efficiency can be gained by forming
inverse covariance matrices of the Gaussian copula for Bij as a one
dimensional expansion of the inverse covariance matrix for the copula
associated with Bi.
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Figure 6: Sensitivities for each of 66 single-line down scenarios with mea-
surements from two sets of three PMUs—forward stepwise selection (buses
31, 33, 10) versus the placement of [24] (buses 31, 40, 44). Stepwise PMU
selection improves sensitivity for 43 of 58 outage scenarios.

6 PMU Placement in the 37 Bus Net-

work

Algorithm 2 was used to place PMUs at buses in the 37 bus network
studied by [24], beginning with a PMU at the slack bus i0 = 31, shown
with a label A in Figure 1. With stepwise selection, bus 33 was added
first and bus 10 was added next; these are labeled B, and C in the
figure.

Recall that [24] used PMUs at buses {31, 40, 44}, as did our demon-
stration of outage detection. Figure 6 plots sensitivities for each of
the 58 scenarios for two placements of three PMUs—stepwise selec-
tion B3 = {31, 33, 10} on the vertical axis verses buses {31, 40, 44} on
the horizontal axis. Average sensitivity is 0.250 for stepwise compare
to 0.168 for the choice of [24]. Forty-three of the 58 single line out-
ages are easier to detect with the three stepwise PMUs; two outages
are substantially more difficult to detect. In either case substantial
uncertainty remains with PMUs at only three buses.

Stepwise bus selection continued from three PMUs to all 37 buses.
The lower-right plot in Figure 7 show the average sensitivity verses
step number. After placing about 10 PMUs on this grid, little addi-
tional information is gained for detecting single line outages. In part
this is due to parallel lines in the power system that have different
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properties. It can be difficult to distinguish which line has failed. The
other three plots in Figure 7 show sensitivity traces for each of the 58
scenarios, grouped into four qualitatively different behaviors: traces in
the top-left plot have either high sensitivity or low sensitivity, that is
largely unaffected by PMU placement. Traces in the top-right panel
have low sensitivity with two PMUs but their sensitivities quickly
climb to a high level with some number of PMUs no larger than 10.
Traces in the lower-left have more gradual increase in sensitivity as
PMUs are added.

The first 10 PMUs added by stepwise selection are shown in Fig-
ure 1 by labels A through J. These appear to be sequentially well-
spread throughout the network. Recall that bus 31 was selected for
PMU placement because it is the slack bus. Notice that none of the
next nine buses has a generator attached. The reason is apparently
related to PMUs at non-generator buses providing two measurements,
Ai and Mi, whereas PMUs at generator provide only a single mea-
surement, Ai.

7 Future Work

We have presented a method for identifying the probabilities of pos-
sible power grid topologies based on PMU data. We have also used
this method to discover good PMU locations. There are a number of
interesting additional research directions to pursue.

One possible direction is to consider the time series of PMU mea-
surements as done by [24, 25]. Our model bank formation could be
extended by building it into a hidden Markov model with transitions
between the topologies in the model bank. This formulation would be
a natural fit to PMU data and would likely help distinguish some of
the more ambiguous observations. An important possible component
of this model is that the prior for loads may exhibit diurnal patterns
or include correlations based, for example, on weather.

A second direction for new research would be exploring other meth-
ods of PMU placement. Here, we use the method of forward selection
from the variable selection literature. Following this further, two ad-
ditional methods, backward elimination and forward-backward step-
wise, should be investigated. We used the average sensitivity across
the model bank, but there may be better choices. Further, for small
numbers of PMUs, these heuristics need to be evaluated by compari-
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Figure 7: Sensitivity traces for the single-line down scenarios as a function
of number of PMUs in the measurement set. Some outages (top left) are
detected easily (5 lines) or poorly (14 lines), regardless of how many PMUs
are used. Others (top right, 23 lines) have large jumps in sensitivity as the
first 10 PMUs are placed. Still others (bottom left, 14 lines) improve more
slowly with increasing numbers of PMUs. The lower right plot shows that
the average sensitivity climbs readily at first but eventually additional PMUs
improve outage identification only slightly.
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son with an exhaustive search of the best locations.
PMUs also provide more data than we and others in the literature

have used. Specifically, they can also provide measurements of the
current flowing on the lines connected to the PMU’s node. This pro-
vides indirect information about the voltage magnitudes and angles
at neighboring nodes. We need to explore the utility of this seemingly
valuable information.

Finally, we would like to move beyond the model bank formulation,
which is necessarily limiting. This would mean developing methodol-
ogy for searching over the more general space of possible topologies.
Such a search would present computational challenges, but would pro-
vide more reliable estimation.
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