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Abstract—Plug-in hybrid electric vehicles (PHEVs) are an
environmentally friendly technology that is expected to rapidly
penetrate the transportation system. Renewable energy sources
such as wind and solar have received considerable attentionas
clean power options for future generation expansion. However,
these sources are intermittent and increase the uncertainty in
the ability to generate power. The deployment of PHEVs in
a vehicle-to-grid (V2G) system provide a potential mechanism
for reducing the variability of renewable energy sources. For
example, PHEV supporting infrastructures like battery exchange
stations that provide battery service to PHEV customers could
be used as storage devices to stabilize the grid when renewable
energy production is fluctuating. In this paper, we study howto
best site these stations in terms of how they can support both
the transportation system and the power grid. To model this
problem we develop a two-stage stochastic program to optimally
locate the stations prior to the realization of battery demands,
loads, and generation capacity of renewable power sources.We
develop two test cases to study the benefits and the performance
of these systems.

NOMENCLATURE
Index/Set
G(N,E) power grid with bus setN and link setE
J set of traffic routes
I set of exchange stations
u = m(i) the bus,u, of stationi
Ω set of scenarios{ω1, ω2, . . .}

Deterministic Data
fi fixed cost to open an exchange station ati
ri storage cost per battery at stationi
Ui maximum number of batteries at stationi
Li minimum number of batteries at stationi
cij cost to use stationi from traffic routej
hj cost of unmet demand from traffic routej
a power per battery (MW)
Cuv line capacity of line(u, v)
gu load shedding cost at busu
buv reactance of line(u, v)

Stochastic Data (per scenarioω)
dωj demand for batteries from traffic routej
lωu load at busu
Gω

u generation capacity atu
oωu generation cost per MW atu

Variables
xi 0-1 variable siting an exchange station ati
wi number of batteries stored at stationi
tωi number of batteries for PHEV demand
sωj number of batteries discharged to the grid
qωi number of unserved batteries on routej

yωij number of batteries served at stationi from
routej

αω
uv power flow in line(u, v)

θωu phase angle at busu
δωu slack variable for unmet demand at busu
βω
u power generated at busu

I. I NTRODUCTION

Global warming and dependence on fossil fuels pose great
challenges to the nation’s energy infrastructures and future
energy consumption. Smart grid technologies and renewable
generation are often touted as central pieces to address these
challenges [2]. Indeed, there have been numerous recent
studies analyzing the cost-benefits of large penetration of
renewable generation into the power grid [6], [10], [19] andthe
implementation of vehicle-to-grid (V2G) [13], [11] systems for
PHEV to reduce fossil fuel consumption [4], [1], [12]. Recent
studies [14], [3], [5] on feasibility, cost-and-benefit, and impact
of PHEVs indicate that it is necessary to build supporting
PHEV infrastructures (charging stations (see Fig. 1 and [14])
and exchange stations (see Fig. 2 and [15])) if the adoption of
hybrid electric vehicles continues to increase at current rates.
There are challenges in implementing both systems: variability
in renewable generation and increased demand for power. In
this paper, we focus on how renewable technologies and V2G
exchange stations may be coupled to address these challenges.

The crucial connection between the two systems arises
from the observation that exchange stations are essentially
large battery banks where PHEV drivers can automatically
switch their batteries with fully charged batteries. The ex-
change station may choose to charge batteries during low
power usage times (off-peak) or when renewable power plants
are producing large amounts of power, thereby reducing the
demands a V2G system places on the grid. In addition, the
station may discharge batteries on to the grid during periods
of low renewable generation thereby reducing the variability
of renewable generation. Thus, there is considerable potential
that a coupling of the two systems will reduce the challenges
that arise when the systems are implemented independently.
The full potential of balancing the energy between systems
requires multi-dimensional analysis. This paper seeks to study
how to site the stations so that they benefit both the grid and
the V2G system. This problem shares many similarities to
the facility location problem [7], [16], [9], [20], [8]. In the
facility location problem, facilities are opened to serve aset of
customer demands, and the objective is to minimize the setup
cost of opening facilities and transportation cost for customers



Fig. 1. Commercial charging stations

Fig. 2. Commercial exchange stations

to use the facility. The crucial difference between this problem
and traditional facility location is that our problem contains
two networks, a transportation network and a power grid.

The contributions of this paper are two-fold. First, we
develop the first mathematical model to site exchange stations
that accounts for impacts to transportation systems and electric
power systems. Second, we investigate variations of this model
to determine the necessity of accounting for both systems, the
conditions in which proper siting can be beneficial to both
systems, and potential trade-offs to both systems. The rest
of the paper is outlined as follows. A two-stage stochastic
program is developed for designing the location of exchange
stations in a V2G in Section II. In Section III, we investigate
the effect of exchange stations on power grids with renewable
generation and we conclude with Section IV.

II. A T WO-STAGE STOCHASTIC PROGRAM FORSITING

EXCHANGE STATIONS

In a V2G system, exchange stations can serve PHEVs and
provide storage services to reduce the variability introduced by
renewable generation sources. Thus, it is strategically impor-
tant to site exchange stations in locations that are convenient
for PHEV drivers and that can be connected to the grid without
requiring additional capacity expansion. In this section,we
introduce a two-stage stochastic program that integrates a
battery demand model and a power grid model to optimally
site exchange stations in a V2G system.

In our stochastic programming model, a time line is defined
over the decision variables and scenarios as follows. The
(first-stage) decisions on where to site exchanges stationsand
how many batteries to store at each station are made prior
to knowing the future demand for the batteries (scenarios).
The scenarios are drawn from discrete random variables that
characterize PHEV battery demands on each traffic route, the
load at buses, and production capacity of renewable generators.
After a scenario is realized, recourse (second-stage) decisions
are made to distribute batteries to satisfy PHEV demand and
discharge power back to the grid. The cost of the recourse

decisions is dependent on the first-stage decisions and the
random scenario. The overall objective function combines the
first-stage cost and the expected cost of recourse actions over
all scenarios.

We now formalize the model of the first stage variables. In
the first stage, the location and size of exchange stations are
decided. The long term decisions are made without knowing
the exact PHEV demands, loads, and generation capacities.
The objective function is to minimize the overall cost

min
x,w

∑

i∈I

(fixi + riwi) + EΩ[h(x,w, ξ)] (1)

In (1), the summation includesfixi andriwi which represents
the fixed cost to open exchange stationi and the cost to store
batteries ati. A first-stage constraint is represented by the
following equation:

lixi ≤ wi ≤ uixi, ∀i ∈ I. (2)

This constraint states that each exchange station can only store
batteries when it is open and must satisfy a lower and upper
bound on the storage capacity. The expectation term in the
objective represents the second-stage recourse costh(x,w, ξ)
of satisfying PHEV demands and meeting demands for power
over a setΩ of scenarios.

A scenario specifies a realization of the random variables.
For each scenario,ω, the second stage objectiveh(x,w, ξ) is
defined as

min
∑

i∈I,j∈J

cijy
ω
ij +

∑

j∈J

hω
j q

ω
j +

∑

u∈N

oωuβ
ω
u +

∑

u∈N

guδ
ω
u . (3)

The termcijy
ω
ij represents the cost of PHEV drivers on routej

to swap batteries at stationi. The penalty cost on unmet PHEV
battery demand from routej is stated withhω

j q
ω
j . The costcij

from routej to stationi is typically a function of the distance
a driver must divert from routej to reach stationi, andhω

i

implicitly controls the number of unserved battery demands.
For the power grid, the costs includeoωuβ

ω
u for generation

andguδ
ω
u for shedding loads, which are used to measure the

performance of the power grid and include the availability of
batteries to meet demand for power.

At each station, available batterieswi can be used to satisfy
PHEV demand (tωi ) or supply power to the grid (sωi ). The
following constraint links the two systems together and is used
to ensure that no station uses more batteries than are stored

sωi + tωi ≤ wi, i ∈ I. (4)

For the transportation system in the PHEV battery model,
we model traffic as routes. The traffic density at each route
is derived from activities which are based on demographic
surveys and activity surveys collected from real households
in the study areas. This approach has been used to simulate
metropolitan area traffic and a detailed description of the traffic
model is found in [18]. For each routej, there is a demand
dωj for PHEV batteries. In (5), the demand can be satisfied by
a battery at a station or be unsatisfied with some penalty,

∑

i∈I

yωij + qωj = dωj , .j ∈ J. (5)



Constraint (6) limits the number batteries used to satisfy PHEV
demand to the number of batteries allocated totωi at each
station. ∑

j∈J

yωij ≤ tωi , i ∈ I (6)

We use the so called linearized DC power flow equations
for modeling flow in the power grid. Constraints (7) and (9)
are the standard constraints for capacitated network problem:
(7) is the network flow balance constraint at each node and
(9) is the capacity constraint for each line. In (7), the extra
term

∑
i:m(i)=u as

ω
i accounts for the power supplied by the

batteries at stationi which is connected to busu. In this model,
constraint (8) captures the relationship between power flowon
a line and the phase angle difference at either end of the line.
At each generator, the generation capacity is enforced by the
constraint (10). For renewable generators, the capacitiesmay
vary between scenarios according to a distribution governing
the potential output of the generators. For non-renewable
generators, the capacity is fixed throughout the scenarios.

∑

v:(u,v)∈E

αω
uv = −lωu + δωu +βω

u +
∑

i:m(i)=u

asωi , ∀u ∈ N (7)

αω
uv = (θωu − θωv )/buv, ∀(u, v) ∈ E (8)

−Cuv ≤ αω
uv ≤ Cuv, ∀(u, v) ∈ E (9)

βω
u ≤ Gω

u , ∀u ∈ N (10)

The equations (1)–(10) define a two-stage stochastic pro-
gram for locating PHEV exchange stations in the V2G system,
and we denote this model asV2G-2STAGES.

III. C OMPUTATIONAL EXPERIMENTS

To evaluate the impact of exchange stations in a V2G system
and the power grid, we testV2G-2STAGESon a variation of
the IEEE RTS-79 [17] benchmark and a problem derived from
power grid and transportation data sets for Miami, Florida.
Before describing the details of the two case studies, we first
discuss the general settings and intended findings for both
studies. Load shedding and unmet battery demands are two
measures of the performance of the V2G system. Although the
V2G-2STAGES model optimally allocates exchange stations
to meet battery demands and stabilize a grid with renewable
energy resources, it is important to realize that the primary
purpose of exchange stations is to serve PHEVs. In our
case studies, we will investigate the trade-off between these
two objectives. Through these studies, we aim to answer
the following questions:1) What is the impact of exchange
stations in a V2G system that is connected to a power grid
with variable renewable generation, 2) What are the trade-
offs between the two objectives, and 3) Is it important to
consider both networks for strategic planning of exchange
station siting?

To model renewable generators, we vary renewable pen-
etration from 0 to 1 in increments of 0.1. For example
at renewable penetration level 0.3, each generator may be-
come a renewable source with probability 0.3. The PHEV

Fig. 3. Transportation grid and power grid

battery demand is derived from total population, vehicle-to-
population ratio (0.78), phev-to-vehicle ratio (0.1), and10%
of PHEVs requiring battery exchanges in any given scenario.
The demand is allocated to each traffic route weighted by the
route’s average utilization which is set to be same among all
routes in the studies. One hundred scenarios are generated
for the second stage. The random variables include battery
demand from PHEVs, demand for power, and generation
capacities of renewables. All random variables are assumed
to be independent (though in the future we plan to explore
dependencies in renewable generation capacities). For a given
renewable generator, its generation capacity can be 0, 0.5,or
1 of its maximum generation capacity. Load at a bus is a
uniform random variable between 0.5 and 1.0 of its peak load.
PHEVs demand on a traffic route is a uniform random variable
between 0.5 and 1.5 of the average battery demand.

For both case studies, we implementedV2G-2STAGES
in C++. The resulting mixed integer program is solved by
the branch-and-bound algorithm in CPLEX 11.0 with an
optimality gap of 0.01. The longest computing time was under
a minute on a standard desktop personal PC.

A. Case Study: IEEE RTS-79

Our first case study considers a synthetic city based on the
IEEE RTS-79 benchmark designed to mimic the structure of
Los Alamos, New Mexico. In this data set, there are 25 buses
and 38 power lines. Loads are distributed at 24 buses and
there are 11 buses which have generation capacity, with up
to 6 generators located at a single bus. The maximum load
and generation capacity are provided for every bus in the
data set. The total generation capacity is 2999 MW, and the
total demand is 2880 MW. We used an 8 by 11 lattice as the
transportation network and created the synthetic city (Fig. 3)
by connecting the lattice and power grid. The connection
between the transportation network and the power grid was
done by assigning the nearest bus to each of the 88 nodes in the
transportation network. The population for the synthetic city
is set to 344,850 which was derived from the population-load
ratio of Los Alamos, New Mexico. Twenty-eight nodes were
randomly selected from the lattice as possible locations for
exchange stations. Ten traffic routes were created by randomly
selecting ten origin-destination pairs and finding a shortest
path for each pair. This synthetic city is a model of a city
with some power consuming industries and a relatively low
population.
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Fig. 4. RTS-79 load shedding and unmet battery demands in
generation expansion model with renewables from 0 to 100 percent

In order to understand how V2G batteries may maximally
improve the performance of a power grid with variable re-
newable generation, we removed PHEV demands and reduced
V2G-2STAGES to a generation expansion model. In the base
case (GE-1 in Fig. 4), no additional generation resources (ex-
change stations) were added and the grid was evaluated with
different renewable penetration levels. With renewable levels
lower than 30%, there is no loading shedding due to renewable
generation variability. For higher renewable penetrationlevel,
load shedding can reach as high as 33%. In cases GE-2 to GE-
5, we varied the load shedding penalty to stimulate the opening
of exchange stations as generation capacity reserve. We ran
all cases with 11 different renewable penetration levels from
0 to 100 percent. When load shedding penalties are increased,
there is some reduction in load shedding. Load shedding is
reduced to below 10% with renewable penetration levels less
than 80%. The reduction is mostly caused by opening 25 out
of 28 stations. The opening of additional stations does not
reduce load shedding due to other limits, e.g., line capacity,
of the grid.

Fig. 5 shows the simulations ofV2G-2STAGES for the
entire V2G system (including both PHEV battery demands
and power grid). First, we usedV2G-2STAGES to determine
that the optimal solution to satisfy all battery demands is 6
stations. In simulation V2G-1, we fixed the station locations
to this optimal solution and added the power grid. There was
some reduction in load shedding, but there is a trade-off in
unsatisfied PHEV demand. In simulation V2G-2 to V2G-5,
we relaxed the location of the stations and allowed the total
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Fig. 5. RTS-79: load shedding and unmet battery demands inV2G-
2STAGES with renewables from 0 to 100 percent

number of opened stations to be 6, 8, 10, and 12 stations
respectively. The actual number of opened stations from these
simulations are shown in Fig. 6. The improvement of load
shedding is limited as the optimal solutions of GE-3 to GE-5 in
Fig. 4 show that to have significant reduction in load shedding
we require as many as 25 stations. In V2G-2 to V2G-4 the
increase in unmet battery demands is large when compared
to V2G-1. The reason for this is that in V2G-1, the locations
of stations were fixed to the optimal solution of the PHEV
only system. These locations severely limited the discharge
capability of the exchange stations due to the associated line
capacities. This result demonstrates that in order for the V2G
to benefit both PHEV and the power grid, both models must
be considered when determining locations to site exchange
stations. In V2G-5, a sufficient number of stations are opened
such that both load shedding and unmet battery demands are
smaller than in V2G-1.

In conclusion, at low renewable penetration levels, the
V2G system can reduce load shedding caused by renewable
generation variability and meet the demand for PHEV battery
exchanges. For higher levels of renewables, the benefit of
V2G is not as obvious. In general, the trade-offs between load
shedding and unmet battery demands are quite high. These
discrepancies may be caused by the relatively low population
to load ratio, i.e. there is not enough PHEV demand and only
a small number of exchange stations are required.

B. Case Study: Miami, Florida

In our second case, we use Los Alamos National Labora-
tory’s data sets on power grid and transportation networks in
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Fig. 6. RTS-79: allocation of exchange stations inV2G-2STAGES
with renewables from 0 to 100 percent

Miami, Florida. The transmission power system in the greater
Miami area consists of more than 200 buses and over 275
power lines. For this case study, we used peak load data and
maximum generation capacity. The overall load is over 6400
MW, and the overall generation and import capacity is greater
than 8200 MW. In each of 100 scenarios, loads and generation
capacities are independently generated in the same fashionas
the first scenario.

In the transportation network, there are over 2500 locations
and over 3800 roads. A data set consisting of the gas station
locations in the Miami area is used to identify 316 potential
locations for exchange stations in the transportation network.
One hundred traffic routes were created by the same method
in the last case study. In 2008, the population of Miami
was estimated to be 5,414,712, which yields an estimated
422,348 requests for PHEV batteries based upon the set of
ratios described earlier. For each of the 100 scenarios, battery
demand of a route is generated randomly and independently
with respect to a uniform distribution between 0.5 and 1.5
of the average demand. Miami represents a city with a high
population-to-load ratio when compared to the synthetic city
created in the first case study.

Once again, by setting the penalty cost,h, of unmet PHEV
demands to zero, we reduceV2G-2STAGES to a stochastic
generation expansion model. This allows us to understand the
maximal benefit V2G could provide to this grid. We tested
this generation expansion model on five different cases GE1-
5 in Fig. 7. GE-1 is the base case where no batteries are
provided by the exchange stations. In GE-2 to GE-4 we applied
different penalty costs on shedding load to investigate the
effect of additional exchange stations. With the 11 different
renewable penetration levels, the load shedding is not always
non-decreasing with respect to the renewable level becauseof
constraints in the power system and the stochastic choice for
renewable generation locations. In the results, the location of
generators is a key factor in the ability deliver power. Excess
generation capacity at certain locations may not be able to
supply loads in the other part of the grid due to capacity
constraints. To elaborate this point, we observed that in GE-1,
even without the renewable generation, there was a 2% load
shed even though the overall generation capacity exceeded the
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Fig. 7. Miami: load shedding and allocation of exchange stations in
generation expansion model with renewables from 0 to 100 percent

overall loads. As the grid includes more renewables as power
sources, the load shedding increases and in the worst case,
the load shed reaches 33%. Increasing the number of exchange
station did reduce the load shed. In GE3-GE5, load shedding is
reduced to under 5% for all renewable levels, but the reduction
is the result of opening many stations. One interesting case
is GE-2 where only 2 to 4 stations are opened and the load
shedding is reduced to below 5% with renewable penetration
at 50% or lower. For high renewable penetration levels, a large
number of stations are required to reduce load shed caused by
the generation variability.

Using similar steps to the synthetic city case, we removed
the power grid fromV2G-2STAGES, to determine the optimal
allocation of the stations (106) to serve all the battery demands.
Next, we evaluated the performance of the full V2G system
with respect to this optimal allocation. First, we applied the
optimal allocation to the power grid and the result is V2G-
1 shown in Fig. 8. Importantly, the load shed is less than
the base case GE-1; however, the unmet battery demands
increased even at low renewable levels. In V2G-2, the total
number of opened stations is still set to 106, butV2G-
2STAGES model can freely choose the locations of stations.
The load shed is slightly better in V2G-2 than V2G-1 and
at the same time the unmet battery demands drop to almost
zero for low renewable penetration levels. This indicates that
it is important to combine both traffic and grid models when
determining the sites to open stations. For V2G-3 to V2G-5,
we allowed the number of stations to increase by 10%, 20%,
and 50% respectively from 106. With 10% increase, V2G-3
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Fig. 8. Miami: load shedding and unmet battery demands inV2G-
2STAGES with renewables from 0 to 100 percent

shows thatV2G-2STAGESis able to select locations such that
both load shed and unmet battery demands are very low for
the renewable penetration level less than and equal to 50%,
indicating that a small amount of additional V2G infrastructure
construction can significantly help the power grid.

In conclusion, with low to medium renewable penetration
levels (≤ 50%), the V2G system of the greater Miami area can
reduce the variability of renewable sources while maintaining
the service to PHEVs. The location of stations is important for
the performance of a V2G system, and integrating both grid
and traffic models is important to the planning process. The
performance of the V2G system is much better in the Miami
case study than in the synthetic city. The difference appears to
be a result of Miami having high population to load ratio, and
this high ratio leads to more battery demand, more options for
siting exchange stations and greater opportunity to benefitthe
power grid.

IV. CONCLUSION

In this paper, we investigated the effect of a V2G system
on reducing load shed caused by generation variability of
renewables. After introducing a two-stage stochastic program-
ming model to site exchange stations, we applied the model
to analyze the V2G system through two case studies.
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