
Online Stochastic Reservation Systems

Pascal Van Hentenryck, Russell Bent, Luc Mercier, and Yannis Vergados
Department of Computer Science, Brown University,

Providence, RI 02912, USA

September 13, 2006

Abstract

This paper considers online stochastic reservation problems, where requests come online and must
be dynamically allocated to limited resources in order to maximize profit. Multi-knapsack problems with
or without overbooking are examples of such online stochastic reservations. The paper studies how to
adapt the online stochastic framework and the consensus andregret algorithms proposed earlier to online
stochastic reservation systems. On the theoretical side, it presents a constant sub-optimality approxima-
tion of multi-knapsack problems, leading to a regret algorithm that evaluates each scenario with a single
mathematical programming optimization followed by a smallnumber of dynamic programs for one-
dimensional knapsacks. It also proposes several integer programming models for handling cancellations
and proves their equivalence. On the experimental side, thepaper demonstrates the effectiveness of the
regret algorithm on multi-knapsack problems (with and without overbooking) based on the benchmarks
proposed earlier.

1 Introduction

In an increasingly interconnected and integrated world, online optimization problems are quickly becoming
pervasive and raise new challenges for optimization software. Moreover, in most applications, historical data
or statistical models are available, or can be learned, for sampling. This creates significant opportunities at
the intersection of online algorithms, combinatorial and stochastic optimization, and machine learning and
increasing attention has been devoted to these issues in a variety of communities (e.g., [10, 1, 6, 11, 9, 5, 8]).

This paper considers online stochastic reservation systems and, in particular, the online stochastic multi-
knapsack problems introduced in [1]. Typical applicationsinclude, for instance, reservation systems for
holiday centers and advertisement placements in web browsers. These problems differ from the stochastic
routing and scheduling considered in, say, [10, 6, 9, 5] in that online decisions are not about selecting the
best request to serve but rather about how best to serve a request.

The paper shows how to adapt our online stochastic framework, and the consensus and regret algo-
rithms, to online stochastic reservation systems. Moreover, in order to instantiate the regret algorithm,
the paper presents a constant-factor suboptimality approximation for multi-knapsack problems using one-
dimensional knapsack problems. As a result, on multi-knapsack problems with or without overbooking,
each online decision involves solving a mathematical program and a series of dynamic programs. The algo-
rithms were evaluated on the multi-knapsack problems proposed in [1] with and without overbooking. The
results indicate that the regret algorithm is particularlyeffective, providing significant benefits over heuris-
tic, consensus, and expectation approaches. It also dominates an earlier algorithm proposed in [1] (which
applies the best-fit heuristic within the expectation algorithm) as soon as the time constraints allows for 10
optimizations for each online decision or between each two online decisions. The results are particularly in-
teresting in our opinion, because the consensus and regret algorithms have now been applied generically and

1

successfully to online problems in scheduling, routing, and reservation using, at their core, either constraint
programming, mathematical programming, or dedicated polynomial algorithms.

The rest of the paper is organized as follows. Section 2 introduces online stochastic reservation prob-
lems in their simplest form and section 3 shows how to adapt our online stochastic algorithms for them.
Section 4 discusses several ways of dealing with cancellations and section 5 presents the sub-optimality
approximation. Section 6 describes the experimental results.

2 Online Stochastic Reservation Problems

2.1 The Offline Problem

The offline problem is defined in terms ofn binsB and each binb ∈ B has a capacityCb. It receives as input
a setR of requests. Each request is typically characterized by itscapacity and its reward, which may or may
not depend on which bin the request are allocated to. The goalis to find an assignment of a subsetT ⊆ R
of requests to the bins satisfying the problem-specific constraints and maximizing the objective function.

The Multi-Knapsack Problem The multi-knapsack problem is an example of a reservation problem.
Here each requestr is characterized by a rewardwr and a capacitycr. The goal is to allocate a subsetT of
the requestsR to the binsB so that the capacities of the bins are not exceeded and the objective function
w(T) =

∑

r∈T wr is maximized. A mathematical programming formulation of the problem associates
witch each requestr and binb a binary variablex[r, b] whose value is 1 when the request is allocated to bin
b and 0 otherwise. The integer program can be expressed as:

max
∑

r ∈ R, b ∈ B
wr xb

r

such that
∑

b∈B xb
r ≤ 1 (r ∈ R)

∑

r∈R cr xb
r ≤ Cb (b ∈ B)

xb
r ∈ {0, 1} (r ∈ R, b ∈ B)

The Multi-Knapsack Problem with Overbooking In practice, many reservation systems allow for over-
booking. The multi-knapsack problem with overbooking allows the bin capacities to be exceeded but over-
booking is penalized in the objective function. To adapt themathematical-programming formulation above,
it suffices to introduce a nonnegative variableyb representing the excess for each binb and to introduce a
penalty termα× yb in the objective function. The integer programming model now becomes

max
∑

r ∈ R, b ∈ B
wr xb

r −
∑

b∈B α yb

such that
∑

b∈B xb
r ≤ 1 (r ∈ R)

∑

r∈R cr xb
r ≤ Cb + yb (b ∈ B)

xb
r ∈ {0, 1} (r ∈ R, b ∈ B)

yb ≥ 0 (b ∈ B)

This is the offline problem considered in [1].

Compact Formulations When requests come from specific types (defined by their rewards and capacities,
more compact formulations are desirable. Requests of the same type are equivalent and the same variables
should be used for all of them. This avoids introducing symmetries in the model, which may significantly
slow the solvers down. Assuming that there are|K| types and there areRk requests of typek (k ∈ K), the
multi-knapsack problem then becomes

2

max
∑

k ∈ K, b ∈ B
wk xb

k

such that
∑

b∈B xb
k ≤ Rk (k ∈ K)

∑

k∈K ck xb
k ≤ Cb (b ∈ B)

xb
k ≥ 0 (k ∈ K, b ∈ B),

where variablexb
k represents the number of requests of typek assigned to binb. A similar formulation may

be used for the overbooking case as well.

Generic Formalization To formalize the online algorithms precisely and generically, it is convenient to
assume the existence of a dummy bin⊥ with infinite capacity to assign the non-selected requests and to
useB⊥ to denoteB ∪ {⊥}. A solutionσ can then be seen as a functionR → B⊥. The objective function
can be specified by a functionW over assignments and the problem-specific constraints can be specified
as a relation over assignments giving us the problemmaxσ: C(σ)W(σ). We useσ[r ← b] to denote the
assignment wherer is assigned to binb, i.e.,

σ[r ← b](r) = b
σ[r ← b](r′) = σ(r′) if r′ 6= r.

andσ ↓ R to denote the assignment where the requests inR are now unassigned, i.e.,

(σ ↓ R)(r) = ⊥ if r ∈ R
(σ ↓ R)(r) = σ(r) if r /∈ R.

Finally, we useσ⊥ to denote the assignment satisfying∀r ∈ R : σ(r) = ⊥.

2.2 The Online Problem

In the online problem, the requests are not known a priori butare revealed online during the execution of
the algorithm. For simplicity, we consider a time horizonH = [1, h] and we assume that a single request
arrives at each timet ∈ H. (It is easy to relax these assumptions). The algorithm thusreceives a sequence
of requestsξ = 〈ξ1, . . . , ξh〉 over the course of the execution. At timei, the sequenceξi = 〈ξ1, . . . , ξi〉
has been revealed, the requestsξ1, . . . , ξi−1 have been allocated in the assignmentσi−1 and the algorithm
must decide how to serve requestξi. More precisely, stepi produces an assignmentσi = σi−1[ξi ← b]
that assigns a binb to ξi keeping all other assignments fixed. The requests are assumed to be drawn from a
distributionI and the goal is to maximize the expected value

E

ξ
[W(σ⊥[ξ1 ← b1, . . . , ξh ← bh])

where the sequenceξ = 〈ξ1, . . . , ξh〉 is drawn fromI.
The online algorithms have at their disposal a procedure to solve , or approximate, the offline problem,

and the distributionI. The distribution is a black-box available for sampling.1 Practical applications often
include severe time constraints on the decision time and/oron the time between decisions. To model this
requirement, the algorithms may only use the optimization procedureO times at each time step.

It is interesting to contrast this online problem with thosestudied in [7, 5, 3]. In these applications,
the key issue was to select which request to serve at each step. Moreover, in the stochastic vehicle routing
applications, accepted requests did not have to be assigneda vehicle: the only constraint on the algorithm

1Our algorithms only require sampling and do not exploit other properties of the distribution which makes them applicable to
many applications. Additional information on the distribution could also be beneficial but is not considered here.

3

ONLINEOPTIMIZATION (ξ)
1 σ0 ← σ⊥;
2 for t ∈ H do
3 b← CHOOSEALLOCATION (σt−1, ξt);
4 σt ← σt−1[ξt ← b];
5 return σh;

Figure 1: The Generic Online Algorithm

was the promise to serve every accepted request. The online stochastic reservation problem is different. The
key issue is not which request to serve but rather whether andhow the incoming request must be served.
Indeed, whenever a request is accepted, it must be assigned aspecific bin and the algorithm is not allowed
to reshuffle the assignments subsequently.

The Generic Online Algorithm The algorithms in this paper share the same online optimization schema
depicted in Figure 1. They differ only in the way they implement function CHOOSEALLOCATION. The
online optimization schema receives a sequence of online requestsξ and starts with an empty allocation
(line 1). At each decision timet, the online algorithm considers the current allocationσt−1 and the current
requestξt and chooses the binb to allocate the request (line 3), which is then included in the new assignment
σt (line 4). The algorithm returns the last assignmentσh whose value isW(σh) (line 5). To implement
function CHOOSEALLOCATION, the algorithms have at their disposal two black-boxes:

1. a functionOPTSOL(σ,R) that, given an assignmentσ and aR of requests, returns an optimal alloca-
tion of the requests inR given the past decisions inσ. In other words,OPTSOL(σ,R) solves an offline
problem where the decision variables for the requests inσ have fixed values.

2. a functionGETSAMPLE(t) that returns a set of requests over the interval[t, h] by sampling the arrival
distribution.

To illustrate the framework, we specify a best-fit online algorithm as proposed in [1].

Best Fit (G): This algorithm assigns the requestξ to a bin that can accommodateξ and has the smallest
capacity given the assignmentσ:

CHOOSEALLOCATION-G(σ, ξ)
1 return argmin(b ∈ B⊥ : C(σ[ξ ← b])) Cb(σ);

whereCb(σ) denotes the remaining capacity of the binb ∈ B⊥ in σ, i.e.,

Cb(σ) = Cb −
∑

r∈R:σ(r)=b

cr.

3 Online Stochastic Algorithms

This section reviews the various online stochastic algorithms. It starts with the expectation algorithm and
shows how it can be adapted to incorporate time constraints.

4

Expectation (E): Informally speaking, algorithm E generates future requests by sampling and evaluates
each possible allocation against the samples. A simple implementation can be specified as follows:

CHOOSEALLOCATION-E(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b)← 0;
3 for i← 1 . . .O/|B⊥| do
4 Rt+1 ← GETSAMPLE(t + 1);
5 for b ∈ B⊥ : C(σt−1[ξt ← b]) do
6 σ∗ ← OPTSOL(σt−1[ξt ← b], Rt+1);
7 f(b)← f(b) +W(σ∗);
8 return argmax(b ∈ B⊥) f(b);

Lines 1-2 initialize the evaluationf(b) of each requestb. The algorithm then generatesO/|B⊥| samples
of future requests (lines 3–4). For each such sample, it successively considers each available binb that
can accommodate the requestξ given the assignmentσt−1 (line 5). For each such binb, it schedulesξt in
bin b and applies the optimization algorithm using the sampled requestsRt+1 (line 6). The evaluation of
bin b is incremented in line 7 with the weight of the optimal assignmentσ∗. Once all the bin allocations
are evaluated over all samples, the algorithm returns the bin b with the highest evaluation. Algorithm E
performsO optimizations but uses onlyO/|B⊥| samples. WhenO is small (due to the time constraints),
each request is only evaluated with respect to a small numberof samples and algorithm E does not yield
much information. To cope with tight time constraints, two approximations of E, consensus and regret, were
proposed.

Consensus (C): The consensus algorithm C was introduced in [7] as an abstraction of the sampling
method used in online vehicle routing [6]. Its key idea is to solve each sample once and thus to exam-
ineO samples instead ofO/|B⊥|. More precisely, instead of evaluating each possible bin attime t with
respect to each sample, algorithm C executes the optimization algorithm once per sample. The bin to which
requestξ is allocated in optimal solutionσ∗ is creditedW(σ∗) and all other bins receive no credit. Algo-
rithm C can be specified as follows:

CHOOSEALLOCATION-C(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b)← 0;
3 for i← 1 . . .O do
4 Rt ← {ξt} ∪ GETSAMPLE(t + 1);
5 σ∗ ← OPTSOL(σt−1, Rt);
6 f(σ∗(ξt))← f(σ∗(ξt)) +W(σ∗);
7 return argmax(b ∈ B⊥) f(b);

The core of the algorithm are once again lines 4–6. Line 4 defines the setRt of requests that now includes
ξt in addition to the sampled requests. Line 5 calls the optimization algorithm withσt−1 andRt. Line
6 increments only the binσ∗(ξt) The main appeal of Algorithm C is its ability to avoid partitioning the
available samples between the requests, which is a significant advantage whenO is small and/or when the
number of bins is large. Its main limitation is itselitism. Only the best allocatation is given some credit for
a given sample, while other bins are simply ignored.

5

Regret (R): The regret algorithm R is the recognition that, in many applications, it is possible to estimate
the loss of sub-optimal allocations (called regrets) quickly. In other words, once the optimal solutionσ∗ of
a scenario is computed, algorithm E can be approximated withone optimization [5, 2].

Definition 1 (Regret). Let σ be an assignment,R be a set of requests,r be a request inR, andb be a bin.
The regret of a bin allocationr ← b wrt σ andR, denoted byREGRET(σ,R, r ← b), is defined as

| W(OPTSOL(σ,R)) −W(OPTSOL(σ[r ← b], R \ {r}))) | .

Definition 2 (Sub-Optimality Approximation). Letσ be an assignment,R be a set of requests,r be a request
in R, andb be a bin. Assume that algorithmOPTSOL(σ,R) runs in timeO(fo(R)). A sub-optimatily
approximation runs in timeO(fo(R)) and, given the solutionσ∗ = optSol(σ,R), returns, for each bin
b ∈ B⊥, an approximationSUBOPT(σ∗, σ,R, r ← b) to all regretsREGRET(σ,R, r ← b) such that

W(OPTSOL(σ[r ← b], R \ {r}))) ≤ c (W(OPTSOL(σ[r ← b], R \ {r}))) − SUBOPT(σ∗, σ,R, r ← b))

for some constantc ≥ 1.

Intuitively, the |B⊥| regrets must not take more time than the optimization. We areready to present the
regret algorithm R:

CHOOSEALLOCATION-R(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b)← 0;
3 for i← 1 . . .O do
4 Rt ← {ξt} ∪ GETSAMPLE(t + 1);
5 σ∗ ← OPTSOL(σt−1, Rt);
6 f(σ∗(ξt))← f(σ∗(ξt)) +W(σ∗);
7 for b ∈ B⊥ \ {σ(ξt) : C(σt−1[ξt ← b])} do
8 f(b)← f(b) + (W(σ∗)− SUBOPT(σ∗, σt−1, Rt, ξt ← b));
9 return argmax(b ∈ B⊥) f(b);

Its basic organization follows algorithm C. However, instead of assigning some credit only to the bin selected
by the optimal solution, algorithm R (lines 7-8) uses the sub-optimality approximation to compute, for each
available allocationξt ← b, an approximation of the best solution that allocatesξt to b. Hence every available
bin is given an evaluation for every sample at timet for the cost of a single optimization (asymptotically).
Observe that algorithm R performsO optimizations at timet.

Precomputation Many reservation systems require immediate responses to requests, giving only limited
time to the online algorithm for decision making. However, as is the case in vehicle routing, there is time
between decisions to generate scenarios and optimize them.This idea can be accommodated in the frame-
work by separating the optimization phase from the decision-making phase in the online algorithm. This
is especially attractive for consensus and regret where each scenario is solved exactly once. Details on this
separation can be found in [4] in the context of the original framework.

4 Cancellations

Most reservation systems allow requests to be cancelled after they are accepted. The online stochastic
framework can accommodate cancellations by simple enhancements to the generic online algorithm and the

6

ONLINEOPTIMIZATION (ξ, ζ)
1 σ0 ← σ⊥;
2 for t ∈ H do
3 σt−1 ← σt−1 ↓ ζt;
4 b← CHOOSEALLOCATION (σt−1, ξt);
5 σt ← σt−1[ξt ← b];
6 return σh;

Figure 2: The Generic Online Algorithm with Cancellations

CHOOSEALLOCATION-C(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b)← 0;
3 for i← 1 . . .O do
4 〈Rt+1, Zt+1〉 ← GETSAMPLE(t + 1);
5 σ∗ ← OPTSOL(σt−1 ↓ Zt+1, {ξt} ∪ Rt+1);
6 f(σ∗(ξt))← f(σ∗(ξt)) +W(σ∗);
7 return argmax(b ∈ B⊥) f(b);

Figure 3: The Consensus Algorithm with Cancellations

sampling procedure. It suffices to assume that an (often empty) set of cancellationsζt is revealed at stept
in addition to the requestξt and that the functionGETSAMPLE return pairs〈R,Z〉 of future requestsR and
cancellationsZ. Figure 2 presents a revised version of the generic online algorithm: its main modification
is in line 3 which removes the cancellationsζt from the current assignmentσt−1 before allocating a bin to
the new request.

Figure 3 shows the consensus algorithm with cancellations,illustrating the enhanced sampling procedure
(line 4) and how cancellations are taken into account when calling the optimization. The resulting multi-
knapsack is optimistic in that it releases the capacities ofthe cancellations at timet, although they may occur
much later. A pessimistic multi-knapsack may be obtained byreplacing line 5 in Figure 3 by

σ∗ ← OPTSOL(σt−1, {ξt} ∪ Rt+1);

where the capacities freed by future cancellations are not restored. It is however possible to specify the real
offline problem in presence of cancellations, which is called the multi-period/multi-knapsack problem in
this paper. The rest of this section studies various integer-programming formulations of this problem.

4.1 The Multi-Period/Multi-Knapsack Problem

The multi-period/multi-knapsack problem is a generalization of the multi-knapsack problem in which re-
quests arrive at various times and the capacities of the binsmay increase at specific times. The capacity
constraints must be respected at all times, i.e., a request can only be assigned to a bin if the bin can accom-
modate the request upon arrival. The complete input of the problem can be specifies as follows:

• A setB of bins.

• A setK of request types, a request of typek having a capacityck and a rewardwk.

7

• Time points:0 = t0 < t1 < · · · < tM < tM+1 = h. The time points correspond to the start time
(t0), the end time (tM+1), or a capacity increase for a bin (tk for m = 1, . . . ,M).

• Time points for binb: 0 = tb0 < · · · < tbMb
< tbMb+1 = h; for eachm ∈ {1, . . . ,M}, there is exactly

oneb and onep such thattm = tbp. In other words, thetm’s are obtained by merging thetbp’s.

• Capacity for binb: Cb
0 < · · · < Cb

Mb
, whereCb

p is the capacity of binb on the time interval[tbp, t
b
p+1)

(0 ≤ p ≤Mb).

• Form ∈ {0, . . . ,M}, andk ∈ K, there areRm,k requests of typek arriving betweentm andtm+1.

4.2 A Natural Model

The natural model is based upon the observation that the bin capacities do not change before the next
capacity increase. Hence, it is sufficient to post the capacity constraints for a bin just before its capacity
increases. The model thus features a decision variablexb

m,k for each binb, time intervalm, and request
typek: the variable represents the number of requests of typek assigned to binb during the time interval
(tm, tm+1). There are thus(M + 1)|B||K| variables. There areM + |B| capacity constraints: one for each
time tm (m ∈ {1, . . . ,M}) and|B| for the deadline (constraints of type 2). There are also|K| availability
constraints for each time interval in order to bound the number of requests of each type that can be selected
during the interval. The model(IP1) can thus be stated as:

(IP1)

Maximize
∑

b,m,k

wk xb
m,k (1)

Subject to:

∀b ∈ B, p ∈ {0, . . . ,Mi} :
∑

k∈K

∑

m|tm≤tbp

ck xb
m,k ≤ Cb

p (2)

∀m ∈ {0, . . . ,M} , k ∈ K :
∑

b∈B

xb
m,k ≤ Rm,k (3)

Model(IP1) contains many variables and may exhibit many symmetries. Inthe context of online reservation
systems, experimental results indicated that this multi-period/multi-knapsack model cannot be used to obtain
a fair comparison with the offline one-period model as it takes a significant time to reach the same accuracy.

4.3 An Improved Model

The key idea underlying the improve model(IP2) is to reduce the number of variables by considering only
the time intervals relevant to each bin. More precisely, model (IP2) uses a decision variableyb

p,k in (IP2) to

represent the number of requests of typek assigned to binb on interval[tbp, t
b
p+1). In other words, variable

yb
p,k corresponds to the sum of the variablesxb

s,k, x
b
s+1,k, . . . , x

b
e−1,k wherets and te are the unique time

points satisfyingts = tbp andte = tbp+1, that is

yb
p,k = xb

s,k + xb
s+1,k + . . . + . . . , xb

e−1,k. (4)

Figure 5(a) depicts the relationship between these variables visually. There are|K|
(
∑

b∈B(Mb + 1)
)

vari-
ables in(IP2) or, equivalently,|K||B|+ |K|M variables sinceM =

∑

b Mb.
The capacity constraints (6) are mostly similar but only usethe intervals pertinent to the request type.

The availability constraints (7) are however harder to express and more numerous. The idea is to consider

8

FROMYTOX(C,R, y)
1 x← 0;
2 while ∃b, p | yb

p 6= 0 do
3 (b, p)← argmin

{

tbp+1

∣

∣yb
p 6= 0

}

;

4 s← the unique index such thatta = tbp;

5 e← the unique index such thattb = tbp+1;
6 i← s
7 while yb

p 6= 0 do
8 if ti ≥ ts then
9 return FAILURE;

10 δ ← min(yb
p, Ri);

11 yb
p ← yb

p − δ;
12 Rc ← Rc − δ;
13 xb

i ← δ;
14 i← i + 1;
15 return x;

Figure 4: The Transformation from Model(IP2) to Model(IP1).

all pairs of time points(tm1
, tm2

) such thatm1 < m2 and to make sure that the variablesyb
p,k that can only

consume requests of typek in the intervals[tm1
, tm2

) do not request more requests than available. There
are thusO(M2|K|) availability constraints in(IP2) instead ofO(M |K|) in (IP1).

The model can thus be stated as follows:

(IP2)

Maximize
∑

b,p,k

wky
b
p,k. (5)

Subject to:

∀b ∈ B, p ∈ {0, . . . ,Mb} :
∑

k∈K

∑

m|tbm≤tbp

ck yb
m,k ≤ Cb

p. (6)

∀0 ≤ m1 < m2 ≤M + 1, k ∈ K :
∑

b∈B,p

tm1
≤tbp

tbp+1
≤tm2

yb
p,k ≤

m2−1
∑

m=m1

Rm,k (7)

4.4 Equivalence of the Models

Any solution to(IP1) can be transformed into a solution to(IP2): it suffices to use equation (4) to compute
the values of they variables. This section shows how to transform a solution to(IP2) into a solution
to (IP1). First, observe that the transformation can consider each request type independently and derive
the values of of variablesxb

s,k, x
b
s+1,k, . . . , . . . , x

b
e−1,k from the value of the variableyb

p,k. As a result, for
simplicity, the rest of section omits the subscriptk corresponding to the request type.

It remains to show how to derive the values ofxb
s, x

b
s+1, . . . , . . . , x

b
e−1 from the value ofyb

p. This
transformation is depicted in algorithm FROMYTOX. The algorithm considers the variablesyb

p 6= 0 by
increasing order oftbp+1, that is the endpoints of their time intervals. It greedily assigns the available requests
to the variablesxb

s, x
b
s+1, . . . , x

b
e−1 that correspond toyb

p. Each iteration of lines 8–14 considers variables

9

Figure 5: A Run of Algorithm FROMYTOX with a Feasible Input.

Figure 6: A Run of Algorithm FROMYTOX on an Infeasible Input.

xb
i , selects as many requests as possible fromRi (but not more thanyb

p), decreasesRi andyb
p, and assigns

xb
i . The algorithm fails if, at timete, the valueyb

p has not been driven down to zero, meaning that there are
too few requests to distributeyb

p amongxb
s, x

b
s+1, . . . , . . . , x

b
e−1.

Observe that, if (IP2) satisfies (6) and the transformation succeeds, then the assignments to thex vari-
ables satisfies the capacity constraints (2) because of line10. It remains to show that a failure cannot occur
when the constraints (7) are satisfied, meaning that lines 8–9 are redundant and that the algorithm always
succeeds in transforming a solution to(IP2) into a solution to(IP1) when the availability constraints (7)
are satisfied.

Figure 5 depicts a successful run of this algorithm. Part (a)depicts the variables and part (b) specifies the
inputs, that is the assignment of they variables. The remaining parts (c)–(f) depict the successive iterations
of the algorithm. The variables are selected in the ordery1

0 , y1
1, y2

1, andy1
2. The available requestsR0, . . . , R4

are shown in below. Observe how the algorithm assigns the value ofy1
1 to x1

2, sinceR1 = 0.
Figure 6 depicts a failing run of the algorithm. During the third iteration, the program returns, because

there are too few available requests to decreasey2
1 to zero. That means that the instance with the updated

values ofR2 violates the constraints (7) withm1 = 2,m2 = 4. In turn, this implies that they assignment
violates the constraints (7) on the original input withm1 = 1,m2 = 4. The figure also depicts how the
proof will construct the violated constraint. The intervals represented by short-dashed arrows correspond to
theyb

p considered during each iteration of the outermost loop. Thelong-dashed arrows represent an interval
violating the availability constraint after the iterationis completed. These two intervals are combined to
obtain an interval (shown by the plain arrows) violating theavailability constraints at the beginning of the
iteration. To obtain this last interval, the proof combinesthe two “dashed” intervals as follows. Whenever
the vectorR has been modified during the iteration at a position includedin the long-dashed interval, the
plain interval is the union of the two dashed one (this is the case on figure 6(c)). Otherwise, the plain interval
is the long-dashed one (this is the case on figure 6(b)).

Lemma 1. If algorithm FROMYTOX fails, there exist0 ≤ m1 < m2 ≤M violating constraint (7).

Proof. By induction on
∣

∣

{

(b, p)
∣

∣yb
p 6= 0

}
∣

∣. The base case is immediate. Assume that the lemma holds for
i non-zero variables. We show that it holds fori + 1 non-zero variables. Letyb0

p0
be the variable considered

during the first iteration of the outer loop and choosem′
1 = s andm′

2 = e, with s ande defined as in lines 4
and 5 of the algorithm.

10

Suppose the algorithm fails during the first iteration. Thenthere are fewer thanyb
p available requests in

the interval[tm1
, tm2

) with m1 = m′
1 andm2 = m′

2 and the result holds.
Suppose now that the program fails in a subsequent iterationand letR, y the values of the vectorsR

andy after the first iteration of the outer loop (line 3–14). That means that the algorithm would have failed
with y andR as input. By induction, since

∣

∣

{

(b, p)
∣

∣yb
p 6= 0

}
∣

∣ = i, there existm′′
1 andm′′

2 such thaty andR
violate constraint (7). There are two cases to consider.

case 1. If Rm = Rm for all m′′
1 ≤ m < m′′

2, then the same interval[tm′′

1
, tm′′

2
) for which (7) was violated

with y and R also violates the constraint withy andR. As a consequence, the result holds with
m1 = m′′

1 andm2 = m′′
2.

case 2.Suppose there existsm⋆ such thatm′′
1 ≤ m⋆ < m′′

2 andRm⋆ < Rm⋆ . First, because the inner loop
modifiesR only in the range[m′

1,m
′
2), the intervals[m′

1,m
′
2 − 1] and [m′′

1 ,m
′′
2 − 1] intersect and

hence their union is also an interval. Denote this union by[m1,m2 − 1] and observe thatm2 = m′′
2

by line 3 of algorithm FROMYTOX. In addition, because the inner loop decreasesRm from left
to right (i.e., by increasing values ofm), we haveRm = 0 for all m such thatm′

1 ≤ m < m′′
1

(otherwise the inner loop would have stopped beforem and the first case would apply). This proves

that
∑m2−1

m=m1
Rm =

∑m′′

2−1

m=m′′

1

Rm,. As a consequence,

∑

b,p

tm1
≤tbp

tbp+1
≤tm2

yb
p = yb0

p0
+

∑

b,p

tm1
≤tbp

tbp+1
≤tm2

yb
p ≥ yb0

p0
+

∑

b,p

tm′′

1
≤tbp

tbp+1≤tm′′

2

yb
p > yb0

p0
+

m′′

2−1
∑

m=m′′

1

Rm = yb0
p0

+

m2−1
∑

m=m1

Rm =

m2−1
∑

m=m1

Rm.

and thus the constraint (7) is violated for the specifiedm1 andm2.

The following proposition summarizes the results of this section.

Proposition 1. The models(IP1) and(IP2) have the same optimal objective value.

In practice, this last model is very satisfying. On the benchmarks used in the experimental section, model
(IPb) is solved about 2.5 times slower than the corresponding (single-period) multi-knapsack (for the same
accuracy).

5 The Suboptimality Approximation

This section describes a sub-optimality algorithm approximating multi-knapsack problems within a constant
factor. Given a set of requestsR, a requestr ∈ R, and an optimal solutionσ∗ to the multi-knapsack problem,
the sub-optimality algorithm must return approximations to the regrets of allocatingr to bin b ∈ B⊥. The
sub-optimality algorithm must run within the time taken by aconstant number of optimizations.

The key idea behind the suboptimality algorithm is to solve asmall number of one-dimensional knapsack
problems (which takes pseudo-polynomial time). There are two main cases to study: either requestr is
allocated to a bin inB in solutionσ∗ or it is not allocated (that is, it is allocated to⊥). In the first case, the
algorithm must approximate the optimal solutions in whichr is allocated to other bins (procedureREGRET-
SWAP) or not allocated (procedureREGRET-SWAP-OUT). In the second case, the request must be swapped
in all the bins (procedureREGRET-SWAP-IN). The rest of this section presents algorithms for the non-
overbooking case; they generalize to the overbooking case.

11

REGRET-SWAP(i, 1, 2)
1 A← bin(1, σ∗) ∪ bin(2, σ∗) ∪ U(σ∗) \ {i};
2 if C1 − ci ≥ C2 then
3 bin(1, σa)← knapsack(A,C1 − ci) ∪ {i};
4 bin(2, σa)← knapsack(A \ bin(1, σa), C2);
5 else
6 bin(2, σa)← knapsack(A,C2);
7 bin(1, σa)← knapsack(A \ bin(2, σa), C1 − ci) ∪ {i};
8 e← argmax(r ∈ bin(1, σ∗) \ bin(1..2, σa) : cr > max(C1 − ci, C2)) cr;
9 if e exists& we > max(w(bin(1, σa)), w(bin(2, σa))) then

10 j ← argmax(j ∈ 3..n) Cj ;
11 bin(j, σa)← knapsack(bin(j, σa) ∪ {e}, Cj);

Figure 7: The Suboptimality Algorithm for the Knapsack Problem: Swappingi from Bin 2 to Bin 1.

Since the names of the bins have no importance, we assume thatthey are numbered1..n. Moreover,
without loss of generality, we formalize the algorithms to move requesti from bin 2 to bin 1, to swap
requesti out of bin 1, and to swap requesti into bin 1. We useσ∗ to represent the optimal solution to the
multi-knapsack problem,σs to denote the optimal solution in which requesti is assigned to bin 1 (REGRET-
SWAP andREGRET-SWAP-OUT) or is not allocated (REGRET-SWAP-IN), andσa to denote the sub-optimality
approximation. We also usebin(b, σ) to denote the requests allocated to binb and generalize the notation
to sets of bins. The solution to the one-dimensional knapsack problem onR for a bin with capacityC is
denoted byknapsack(R,C). We also usec(R) to denote the sum of the capacities of the requests inR,
w(R) to denote the sum of the rewards of the requests inR, andU(σ∗) the requests that are not allocated in
the optimal solutionσ∗.

Swapping a Request Between Two Bins Figure 7 depicts the algorithm to swap requesti from bin 1 to bin
2. The key idea is to consider all requests allocated to bins 1and 2 inσ∗ and to solve two one-dimensional
problems for bin 1 (without the capacity taken by requesti) and bin 2. The algorithm always starts with the
bin whose remaining capacity is largest. After solving these two one-dimensional knapsacks, if there exists
a requeste ∈ bin(1, σ∗) not allocated inbin(1..2, σa) and whose value is higher than the values of these
two bins, the algorithm solves a third knapsack problem to place this request in another bin if appropriate.
This is important if requeste is of high value but cannot be allocated in bin 1 due to the capacity taken by
requesti.

Theorem 3. AlgorithmREGRET-SWAP is a constant-factor approximation, that is, ifσs be the sub-optimal
solution andσa be the regret solution, there exists a constantc ≥ 1 such thatw(σs) ≤ c w(σa).

Proof. Let σs be the sub-optimal solution,σa be the regret solution, andσ∗ be the optimal solution. Con-
sider the following sets

I1 = σs ∩ σa I7 = (bin(2, σs) \ σa) ∩ bin(1, σ∗)
I2 = (bin(1, σs) \ σa) ∩ U(σ∗) I8 = (bin(2, σs) \ σa) ∩ bin(2, σ∗)
I3 = (bin(2, σs) \ σa) ∩ U(σ∗) I9 = (bin(3..n, σs) \ σa) ∩ bin(1, σ∗)
I4 = (bin(3..n, σs) \ σa) ∩ U(σ∗) I10 = (bin(3..n, σs) \ σa) ∩ bin(2, σ∗)
I5 = (bin(1, σs) \ σa) ∩ bin(1, σ∗) I11 = (bin(1..n, σs) \ σa) ∩ bin(3..n, σ∗)
I6 = (bin(1, σs) \ σa) ∩ bin(2, σ∗).

12

The suboptimal solutionσs can be partitioned intoσs =
⋃11

k=1 Ik and the proof shows thatw(Ik) ≤
ck w(σa) (1 ≤ k ≤ 11) which implies thatw(σs) ≤ c w(σa) for some constantc = c1 + . . . c11.
The proof of each inequality typically separates two cases:

A: C1 − ci ≥ C2;

B: C1 − ci < C2.

Observe also that the proof thatw(I1) ≤ w(σa) is immediate. We now give the proofs for the remaining
sets. In the proofs,C ′

1 denotesC1 − ci andK(E,C) is defined as follows:

K(E,C) = w(knapsack(E,C)).

I2.A : By definition ofI2 and by definition ofbin(1, σa) in line 3,

K(I2, C
′
1) ≤ K(U(σ∗), C ′

1) ≤ K(bin(1, σa), C ′
1) ≤ w(σa).

I2.B : By definition ofI2, C ′
1 < C2, and by definition ofbin(2, σa) in line 6

K(I2, C
′
1) ≤ K(U(σ∗), C ′

1) ≤ K(U(σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I3.A : By definition ofI3, C ′
1 ≥ C2, and by definition ofbin(1, σa) in line 3

K(I3, C2) ≤ K(U(σ∗), C2) ≤ K(U(σ∗), C ′
1) ≤ K(bin(1, σa), C ′

1) ≤ w(σa).

I3.B : By definition ofI3 and by definition ofbin(2, σa) in line 6

K(I3, C2) ≤ K(U(σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I4 : Assume thatw(I4) > w(σa). This implies

w(I4) > w(bin(1, σa)) + w(bin(2, σa)) + w(bin(3..n, σa))

> w(bin(3..n, σa)) > w(bin(3..n, σ∗))

which contradicts the optimality ofσ∗ sinceI4 ⊆ U(σ∗).

I5.A : By definition ofI5 and line 3 of the algorithm

K(I5, C
′
1) ≤ K(bin(1, σ∗), C ′

1) ≤ K(A,C ′
1) ≤ w(bin(1, σa)) ≤ w(σa).

I5.B : By definition ofI5, C ′
1 ≥ C2, and line 6 of the algorithm

K(I5, C
′
1) ≤ K(bin(1, σ∗), C ′

1) ≤ K(bin(1, σ∗), C2) ≤ K(A,C2)

≤ K(bin(2, σa), C2) ≤ w(σa)

I6.A : By definition ofI6 and line 3 of the algorithm

K(I6, C
′
1) ≤ K(bin(2, σ∗) \ {i}, C ′

1) ≤ K(bin(1, σa), C ′
1) ≤ w(σa)

I6.B : By definition ofI6 and line 6 of the algorithm.

K(I6, C
′
1) ≤ K(bin(2, σ∗) \ {i}, C2) ≤ K(bin(2, σa), C2) ≤ w(σa)

13

I7.A : by definition ofI7, C2 ≤ C ′
1, and line 3 of the algorithm,

K(I7, C2) ≤ K(I7, C
′
1) ≤ K(bin(1, σ∗), C ′

1) ≤ K(bin(1, σa), C ′
1) ≤ w(σa).

I7.B : By definition ofI7, C2 > C ′
1, and line 6 of the algorithm

K(I7, C2) ≤ K(bin(1, σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I8.A : By definition ofI8, C2 ≤ C ′
1, and line 3 of the algorithm

K(I8, C2) ≤ K(I8, C
′
1) ≤ K(bin(2, σ∗), C ′

1) ≤ K(bin(1, σa), C ′
1) ≤ w(σa)

I8.B : by definition ofI8, C2 > C ′
1, and line 6 of the algorithm,

K(I8, C2) ≤ K(bin(2, σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I9.A : Consider

T = knapsack(bin(1, σ∗), C ′
1);

L = bin(1, σ∗) \ T

and let e = argmaxe∈L we. By optimality of T , we know thatc(T) + c(e) > C ′
1 and, since

bin(1, σ∗) = T ∪ L, we have thatc(L \ {e}) < ci.

If we ≤ max(w(bin(1, σa)), w(bin(2, σa))), then

w(I9) ≤ w(T) + w(L \ {e}) + we

≤ w(bin(1, σa)) + w(bin(2, σa)) + we

≤ 2(w(bin(1, σa)) + w(bin(2, σa))) ≤ 2w(σa).

Otherwise, by optimality ofbin(1, σa) andbin(2, σa), we have that

c(e) > C ′
1 & c(e) > C2

and the algorithm executes lines 10–11. Ifc(e) ≤ Cj, then

w(I9) ≤ w(T) + w(L \ {e}) + we

≤ w(bin(1, σa)) + w(bin(2, σa)) + w(bin(j, σa)) ≤ w(σa).

Otherwise, ifc(e) > Cj , e /∈ σs and

w(I9) ≤ w(T) + w(L \ {e}) ≤ w(bin(1, σa)) + w(bin(2, σa)) ≤ w(σa).

I9.B : Consider

T = knapsack(bin(1, σ∗), C2);

L = bin(1, σ∗) \ T

and lete = argmaxe∈L we. If w(T) ≥ w(L), we have that

w(bin(1, σ∗)) ≤ 2w(T) ≤ 2w(bin(2, σa)) ≤ 2w(σa).

14

REGRET-SWAP-OUT(i, 1)
1 A← bin(1, σ∗) ∪ U(σ∗) \ {i};
2 bin(1, σa)← knapsack(A,C1);

Figure 8: The Suboptimality Algorithm for the Knapsack Problem: Swappingi out of Bin 1.

Otherwise,c(L) > C2 by optimality ofT and thusc(L) > ci sinceC2 ≥ ci. By optimality of T ,
c(T ∪ {e}) > C2 > C ′

1 and, sincebin(1, σ∗) = T ∪ L, it follows that c(L \ {e}) ≤ ci Hence
w(L \ {e}) ≤ w(T) by optimality ofT and

w(I9) ≤ w(T) + w(L \ {e}) + we ≤ 2w(T) + we ≤ 2w(bin(2, σa)) + we.

If we ≤ w(bin(2, σa)), w(I9) ≤ 3w(bin(2, σa)) ≤ 3w(σa) and the result follows. Otherwise, by
optimality of bin(2, σa), c(e) > C2 ≥ C ′

1 and the algorithm executes lines 10–11. Ifc(e) ≤ Cj, then

w(I9) ≤ 2w(bin(1, σa)) + w(bin(j, σa)) ≤ w(σa).

Otherwise, ifc(e) > Cj , e /∈ σs and

w(I9) ≤ w(T) + w(L \ {e}) ≤ 2w(bin(2, σa)) ≤ 2w(σa).

I10.A : By definition ofI10, C ′
1 ≥ C2, and line 3 of the algorithm

w(I10) ≤ w(bin(2, σ∗))− w(i) ≤ w(bin(1, σa)) ≤ w(σa).

I10.B : By definition ofI10 and by line 6 of the algorithm

w(I10) ≤ w(bin(2, σ∗))− w(i) ≤ w(bin(2, σa)) ≤ w(σa).

I11 : By definition of the algorithm,K(bin(3..n, σ∗)) ≤ K(3..n, σa).

Swapping a Request Out of a Bin The algorithm to swap a requesti out of bin 1 is depicted in Figure 8.
It consists of solving a one-dimensional knapsack with the requests already in that bin and the unallocated
requests. The proof is similar, but simpler, to the proof of Theorem 3.

Theorem 4. AlgorithmREGRET-SWAP-OUT is a constant-factor approximation.

Swapping a Request Into a Bin Figure 9 depicts the algorithm for swapping a requesti in bin 1, which
is essentially similarREGRET-SWAP but only uses one bin. It assumes that requesti can be placed in at
least two bins since otherwise a single additional optimization suffices to compute all the regrets. Once
again, it solves a one-dimensional knapsack for bin 1 (afterhaving allocated requesti) with all the requests
in bin(1, σ∗) and the unallocated requests. If the resulting knapsack is of low quality (i.e., the remain-
ing requests frombin(1, σ∗) have a higher value thanbin(1, σa)), REGRET-SWAP-IN solves an additional
knapsack problem for the largest available bin. The proof isonce again similar to the proof of Theorem 3.

Theorem 5. Assuming that itemi can be placed in at least two bins, AlgorithmREGRET-SWAP-IN is a
constant-factor approximation.

15

REGRET-SWAP-IN (i, 1)
1 A← bin(1, σ∗) ∪ U(σ∗);
2 bin(1, R)← knapsack(A,C1 − ci) ∪ {i};
3 L← bin(1, σ∗) \ bin(1, σa);
4 if w(L) > w(bin(1, σa)) then
5 j ← argmax(j ∈ 2..n) Cj ;
6 bin(j, σa)← knapsack(bin(j, σa) ∪ L,Cj);

Figure 9: The Suboptimality Algorithm for the Knapsack Problem: Swappingi into Bin 1.

6 Experimental Results

6.1 The Instances

The experimental results use the benchmarks proposed in [1]. Requests are classified ink types. Each type
is characterized by a weight, a value, two exponential distributions indicating how frequently requests of that
type arrive and are cancelled, and an overbooking penalty. We generated ten instances based on the master
problem proposed in [1]. The goal was to try to produce a diverse set of problems revealing strengths and
weaknesses of the various algorithms. The ten problems are named (A-J) here. Problem A scales the master
problem by doubling the weight and value of the request typesin the master problem, as well as halving
the number of items that arrive. Problem B further scales problem A by increasing the weight and value of
the types. Problem C considers 7 types of items whose cost ratio takes the form of a bell shape. Problem
D looks at the master problem and doubles the number of bins while dividing their capacity by 2. Problem
E considers a version of the master problem with bins of variable capacity. Problem F depicts a version
of the master problem whose items arrive three times as oftenand cancel three times as often. Problem G
considers a much larger problem with 35 requests types who cost ratio is also shaped in a bell. Problem H is
like problem G, the main difference is that the cost ratio shape is reversed. Problem I is a version of G with
an extra bin. Problem J is a version of H with fewer bins.

The mathematical programs are solved with CPLEX 9.0 with a time limit of 10 seconds. The optimal
solutions can be found within the time limit for all instances but I and J. Every instance is executed under
various time constraints, i.e.,O = 1, 5, 10, 25, 50, or 100, and the results are the average of 10 executions.
The default algorithm for cancellations uses the pessimistic multi-knapsack, which is slighly superior to the
optimistic multi-knapsack.

It is important to highlight that, on the master problem and its variations, the best-fit heuristic performs
quite well. On the offline problems, it is 5% off the optimum inthe average and is never worse than 10%
off. This will be discussed again when the regret algorithm is compared to earlier results.

6.2 Comparison of the Algorithms

Figure 10 describes the average profit (a) and loss (b) of the various online algorithms as a percentage of
the optimal offline solution. The loss sums the weights of therejected requests and the overbooking penalty
(if any); it is often used in comparing online algorithms as it gives a sense of the “price” of uncertainty.
The results clearly show the value of stochastic information as algorithms R, C, E recovers most of the
gap between the online best-fit heuristic (G) and the offline optimum (which cannot typically be achieved
in an online setting). Moreover, they show that algorithms Rand C achieve excellent results even with
small number of available optimizations (tight time constraints). In particular, algorithm R achieves about
89% of the offline optimum with only 10 samples and 91% with 50 optimizations. It also achieves a loss
of 28% over the offline optimum for 25 optimizations and 34% for 10 optimizations. The regret algorithm

16

(a) Average Profit

(b) Average Loss

Figure 10: Experimental Results over All Instances with Overbooking Allowed.

17

(a) Average Profit

(b) Average Loss

Figure 11: Experimental Results over All Instances with Overbooking Disallowed.

18

clearly dominates the expectation algorithm E which performs poorly for tight time constraints. It becomes
reasonable for 50 optimizations and reaches the quality of the regret algorithm for 100 optimizations.

Figure 11 shows the same results when no overbooking is allowed. These instances are easier in the
sense that fewer optimizations are necessary for the algorithms to converge. But they exhibit the same
pattern as when overbooking is allowed. These results are quite interesting and shows that the benefits of
the regret algorithm increase with the problem complexity but are significant even on easier instances.

6.3 Comparison with Earlier Results

As mentioned earlier, the best-fit algorithm is only 5% belowthe optimal offline solution in these problems.
It is thus tempting to replace the IP solver in algorithm E by the best-fit heuristic to evaluate more samples.
The algorithm, denoted by BF EXP, was proposed in [1] and was shown to be superior to several approaches
including yield management and an hybridization with Markov Models [12]. Because the best-fit algorithm
is so fast, BF EXP can easily be run with 10,000 samples and remedies the limitations of algorithm E under
tight time constraints.

Figure 12 compares algorithms BF EXP, R, and C when overbooking is allowed. The results show that
BF EXP indeed produces excellent results but is quickly dominatedby R as time increases. In particular,
the loss of BF EXP is above 40%, although it goes down to 34% for 10 optimizations and 28% for 25 opti-
mizations in algorithm R. Similarly, the profit increases by4% in the average starting at 25 optimizations.
BF EXP is also dominated by algorithm C but only for 50 optimizations or more.

What is quite remarkable here is that the 5% difference in quality between the best-fit heuristic and the
offline algorithm translates into a similar difference in quality in the online setting. Moreover, when looking
at specific instances, one can see that BF EXP is often comparable to R but its loss (resp. profit) may be
significantly higher (resp. lower) on instances that seem particularly difficult. This is the case for instances
E and G, where the gap between the offline solutions and the solutions by algorithm R is larger. This seems
to indicate that the harder the problems the more beneficial algorithm R becomes. This in fact confirms our
earlier results on stochastic vehicle routing where the algorithms use a large neighborhood heuristic [3, 13].
Indeed, using a simpler, lower-quality, heuristic on more samples did not produce high-quality results in
an online setting. The results presented here also show thatthe additional information produced by a more
sophisticated solver quickly amortizes its computationalcost, making algorithm R particularly effective and
robust for many problems.

6.4 The Impact of the IP Model

Figure 13 reports some experimental results on the impact ofthe IP model. It depicts the distributions of the
distibution of ratios online/offline, depicting the maximum, the median, as well as the .75-tile and .25-tile.
The minimum ratio does not appear, as it is always lower than .86. Notches represent a 95% confidence
interval on the median. The data is obtained on 50 instances based on the master problem (no overbooking)
and 20 runs per instances, accounting for 1,000 runs. Figure13[a] compares the pessimistic multi-knapsack
approach where the capacities of the cancelled requests is not restored (noCan) with the multi-period/multi-
knapsack approach using model(IP2) to take into account cancellations exactly. These two approaches are
compared on 10, 25, and 50 scenarios per decision using the regret algorithm. The results indicate that the
multi-period/multi-knapsack model definitely improves over the pessimistic multi-knapsack approach as the
confidence interval around the median do not intersect. The ratio online/offline moves from 92% to 93%,
which is not negligible given the fact that the algorithms are already producing very high-quality decisions.
Figure 13[b] gives similar results for both the expectationand regret algorithm using 25 scenarios.

19

(a) Average Profit

(b) Average Loss

Figure 12: Comparison with Earlier Results: Average Results for Instances with Overbooking

20

(a) Varying The Number of Scenarios. (b) Varying The Algorithm for 25 Scenarios.

Figure 13: The Impact of the Integer Programming Model.

6.5 The Quality of the Regret Algorithm

Figure 14 reports experimental results on the quality of theregret algorithm. It depicts the frequencies of
the differences between the optimal solution and the regretevaluation on all possible bin allocations for all
scenarios, both the pessimistic knapsack and the multi-period/multi-knapsack approaches. What the results
indicates is that the difference in evaluation is almost always very small, demonstrating experimentally the
quality of the regret algorithm. For the pessimistic offline, the regret algorithm produces the optimal value
80% of the time and is at most 5 off the optimal value about 90% of the time. The results are slightly inferior
for the multi-period offline, since the regret algorithm hasless flexibility. Note that negative differences
come from the tolerance used by CPLEX, which is not guaranteed to find the exact optimum. Also the gaps
in the histogram are due to reward values: not all the differences between reward values are possible.

Figure 15 compares the quality of the decisions taken by the regret algorithms as a function of the
consensus rate, that is the percentage of scenarios whose optimal bin allocation at a timet is the same as the
decision taken by the expectation algorithm at timet. The experimental results are for 10 scenarios: They
indicate that there is perfect agreement between the scenarios 60% of the time (the rightmost column) and
that, 20% of the time, there is a 90% agreement (the next column on the right). The quality of the decisions
is measured by the disagreements between algorithms E and R,that is the difference in quality between
the decisions taken by algorithms E and R over all scenarios.The experimental results, depicted by the
blue curve, show that the disagreements are always very small (less than 0.44 for a consensus rate of 50%)
and decrease significantly when the consensus rate increases. This highlights a fundamental property of the
regret algorithm: it is optimal for the optimal decision. Hence, when the consensus rate is large, it is optimal
for a large number of scenarios and the disagreement decreases.

7 Conclusion

This paper adapted our online stochastic framework and algorithms to the online stochastic reservation
problems initially proposed in [1]. These problems, whose core can be modelled as multi-knapsacks, are
significant in practice and are also different from the scheduling and routing applications we studied earlier.
Indeed the main decision is not which request to select next but rather how best to serve a request given
limited resources. The paper shows that the framework and its associated algorithms naturally apply to on-
line reservation systems and it presented a constant-factor sub-optimality approximation of multi-knapsack

21

Figure 14: The Quality of the Regret Algorithm.

problems that only solves one-dimensional knapsack problems, leading to a regret algorithm that uses both
mathematical programming and dynamic programming algorithms. It also proposed several approaches to
deal with cancellations and studied IP models to solve the multi-period/multi-knapsack problem. The algo-
rithms were evaluated on the multi-knapsack problems proposed in [1] with and without overbooking. The
results indicate that the regret algorithm is particularlyeffective, providing significant benefits over heuris-
tic, consensus, and expectation approaches. It also dominates an earlier algorithm proposed in [1] (which
applies the best-fit heuristic with algorithm E) as soon as the time constraints allows for 10 optimizations
at decision time or between decisions. The experimental results show that the regret algorithm closely ap-
proximates the expectation algorithm at a fraction of the cost. Even more interesting perhaps, the regret
algorithm has now been applied to online stochastic problems where the offline problem is solved by either
constraint programming, integer programming, or (special-purpose) polynomial algorithms, indicating its
versatility and benefits for a wide variety of applications.

References

[1] T. Benoist, E. Bourreau, Y. Caseau, and B. Rottembourg. Towards stochastic constraint programming:
A study of online multi-choice knapsack with deadlines. InProceedings of the Seventh International
Conference on Principles and Practice of Constraint Programming (CP’01), pages 61–76, London,
UK, 2001. Springer-Verlag.

[2] R. Bent, I. Katriel, and P. Van Hentenryck. Sub-Optimality Approximation. InEleventh International
Conference on Principles and Practice of Constraint Programming, Stiges, Spain, 2005.

[3] R. Bent and P. Van Hentenryck. A Two-Stage Hybrid Local Search for the Vehicle Routing Problem
with Time Windows.Transportation Science, 8(4):515–530, 2004.

[4] R. Bent and P. Van Hentenryck. Online Stochastic and Robust Optimization. InProceeding of the 9th
Asian Computing Science Conference (ASIAN’04), Chiang Mai University, Thailand, December 2004.

22

Figure 15: The Quality of the Decisions Taken by the Regret Algorithm.

[5] R. Bent and P. Van Hentenryck. Regrets Only. Online Stochastic Optimization under Time Constraints.
In Proceedings of the 19th National Conference on Artificial Intelligence (AAAI’04), San Jose, CA,
July 2004.

[6] R. Bent and P. Van Hentenryck. Scenario Based Planning for Partially Dynamic Vehicle Routing
Problems with Stochastic Customers.Operations Research, 52(6), 2004.

[7] R. Bent and P. Van Hentenryck. The Value of Consensus in Online Stochastic Scheduling. InPro-
ceedings of the 14th International Conference on AutomatedPlanning & Scheduling (ICAPS 2004),
Whistler, British Columbia, Canada, 2004.

[8] R. Bent and P. Van Hentenryck. Online Stochastic Optimization without Distributions . InProceedings
of the 15th International Conference on Automated Planning& Scheduling (ICAPS 2005), Monterey,
CA, 2005.

[9] A. Campbell and M. Savelsbergh. Decision Support for Consumer Direct Grocery Initiatives.Report
TLI-02-09, Georgia Institute of Technology, 2002.

[10] H. Chang, R. Givan, and E. Chong. On-line Scheduling ViaSampling.Artificial Intelligence Planning
and Scheduling (AIPS’00), pages 62–71, 2000.

[11] B. Dean, M.X. Goemans, and J. Vondrak. Approximating the Stochastic Knapsack Problem: The Ben-
efit of Adaptivity. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 208–217, Rome, Italy, 2004.

[12] M. Puterman.Markov Decision Processes. John Wiley & Sons, New York, 1994.

[13] P. Shaw. Using Constraint Programming and Local SearchMethods to Solve Vehicle Routing Prob-
lems. InProceedings of Fourth International Conference on the Principles and Practice of Constraint
Programming (CP’98), pages 417–431, Pisa, October 1998.

23

