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Abstract

This paper considers the restoration of multiple inter-
dependent infrastructures after a man-made or natural
disaster. Modern infrastructures feature complex cyclic
interdependencies and require a holistic restoration pro-
cess. This paper presents the first scalable approach for
the last-mile restoration of the joint electrical power
and gas infrastructures. It builds on an earlier three-
stage decomposition for restoring the power network
that decouples the restoration ordering and the rout-
ing aspects. The key contributions of the paper are (1)
mixed-integer programming models for finding a min-
imal restoration set and a restoration ordering and (2)
a randomized adaptive decomposition to obtain high-
quality solutions within the required time constraints.
The approach is validated on a large selection of bench-
marks based on the United States infrastructures and
state-of-the-art weather and fragility simulation tools.
The results show significant improvements over current
field practices.

Background and Motivation
Restoring critical infrastructure after a significant disruption
(e.g., a natural or man-made disaster) is an important task
with consequences on both human and economic welfare.
Damaged components must be prioritized and repaired, to
restore service as quickly as possible without causing addi-
tional instability. Last-mile restoration considers infrastruc-
ture damages at the city or the state scale and is particu-
larly complex as it amounts to solving a pickup and delivery
routing problem, whose objective function minimizes loss of
service over time in an interdependent infrastructure. It con-
trasts with humanitarian relief efforts which are more con-
cerned with effectively establishing one-time supply chains.

Last-mile restoration has attracted increased attention in
recent years but the majority of the research is devoted to
single infrastructures, e.g., the power network or potable wa-
ter supply. However, modern infrastructures exhibit multi-
ple, often cyclic, interdependencies. For instance, the gas
network may fuel an electric generator or a gas compres-
sor may consume electricity to increase the pressure in
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pipelines. Therefore, it is critical to restore these infrastruc-
tures jointly to maximize the level of service over time.

This paper proposes the first last-mile restoration ap-
proach of multiple complex interdependent infrastructures.
It uses mixed-integer programs (MIP) for modeling interde-
pendent power and gas networks, combining the linearized
DC model for the power network and a flow model for the
gas network. The models are then integrated into the multi-
stage last-mile restoration approach proposed in (Van Hen-
tenryck, Coffrin, and Bent 2011) for the power network,
which is used to advise federal agencies when hurricanes
of category 3 or above approach the United States. The
infrastructure interdependencies induce computational dif-
ficulties for MIP solvers in the prioritization step, which
we address by using a randomized adaptive decomposition
(RAD) approach. The RAD approach iteratively improves a
restoration order by selecting smaller restoration subprob-
lems which are solved independently. The proposed ap-
proach was evaluated systematically on a large collection
of benchmarks generated with state-of-the-art hazard and
fragility simulation tools on the infrastructure of the United
States. The results demonstrate the scalability of the ap-
proach, which finds very high-quality solutions to large last-
mile restoration problems and brings significant improve-
ments over current field practices.

The rest of the paper describes the modeling of multi-
ple interdependent infrastructures and our approach for last-
mile restoration of such infrastructures. It presents the ex-
perimental results and concludes with a discussion of related
work in restoration of interdependent infrastructures.

Infrastructure Modeling
Power and gas infrastructures can be modeled and opti-
mized at various levels of abstraction. Linear approxima-
tions are typically used for applications involving topolog-
ical changes, a design choice followed by this paper as well.
This section presents a demand maximization model for in-
terdependent power and gas infrastructures, which is a key
building block for the restoration models.

The Power Infrastructure The power infrastructure is
modeled in terms of the Linearized DC Model (LDCM), a
standard tool in power systems (e.g., (Murillo-Sánchez and



Model 1 Power System Demand Maximization.
Inputs:
PN = 〈B,L, s〉 - the power network

Variables:
θi ∈ (−<,<) - phase angle on bus i (rad)
Eg

i ∈ (0, Êg
i ) - power injected by generator i

Eo
i ∈ (0, Êo

i ) - power consumed by load i
El

i ∈ (−Êl
i, Ê

l
i) - power flow on line i

MaximizeX
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i (M1.1)
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Gan 1997; Knight 1972; Wood and Wollenberg 1996; Pow-
ell 2004; Gomez-Exposito, Conejo, and Canizares 2008)).
In the LDCM, a power network PN is represented by a col-
lection of buses B and a collection of lines L connecting
the buses. Each bus i ∈ B may contain multiple generation
units Bg

i and multiple loads Bo
i and Bg =

⋃
i∈B B

g
i and

Bo =
⋃

i∈B B
o
i are used to denote the generators and loads

across all buses. Each generator j ∈ Bg has a maximum
generation value Êg

j and each load k ∈ Bo has a maximum
consumption value Êo

k . Each line i ∈ L is assigned a from
and to bus denoted by L+

i and L−i respectively and is char-
acterized by two parameters: a maximum capacity Êl

i and
a susceptance bi. LOj and LIj denote all the lines oriented
from or to a given bus j respectively. Lastly, one bus s is se-
lected arbitrarily as the slack-bus to remove numerical sym-
metries. Model 1 presents a LDCM for maximizing the load
of a power network PN = 〈B,L, s〉. The decision variables
are: (1) the phase angles of the buses θ; (2) the production
level of each generatorEg; (3) the consumption level of each
load Eo; (4) the flow on each line El which can be nega-
tive to model a flow in the reverse direction. The objective
(M1.1) maximizes the total load served. Constraint (M1.2)
fixes the phase angle of the slack bus. Constraint (M1.3) en-
sures flow conservation (i.e., Kirchhoff’s Current Law) at
each bus, and constraint (M1.4) ensures the line flows are
defined by line susceptances.

The Gas Infrastructure We use a network flow model for
the gas system, which is also common in practice (e.g., (Car-
valho et al. 2009; Monforti and Szikszai 2010)). The gas
model is similar to the power model. A gas network GN is
represented by a collection of junctions J and a collection of
pipelines P connecting the junctions. Each junction i ∈ J
may contain multiple generation units Jg

i (aka well fields)
and multiple loads Jo

i (aka city gates) and we define Jg and
Jo as in the power system. Each generator j ∈ Jg has a max-
imum generation value Ĝg

j and each load k ∈ Jo has a max-
imum consumption value Ĝo

k. Each pipeline i ∈ P is asso-
ciated with a from and to junction which are denoted by P+

i

Model 2 Gas System Demand Maximization.
Inputs:
GN = 〈J, P 〉 - the gas network

Variables:
Gg

i ∈ (0, Ĝg
i ) - gas injected by well field i

Go
i ∈ (0, Ĝo

i ) - gas consumed by city gate i
Gp

i ∈ (−Ĝp
i , Ĝ

p
i ) - gas flow on pipeline p

MaximizeX
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i (M2.1)
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and P−i respectively and a flow limit of Ĝp
i . The sets POj

and PIj are defined as in the power system. Gas networks
also have compressors which are denoted by the set PC.
It is convenient to refer to the set of all pipelines attached
to a compressor i ∈ PC as P c

i . The effects of compres-
sors is only significant for the interdependent model and are
a perfect example of why modeling interdependencies are
so critical for finding high-quality restoration plans. Model
2 presents a linear program for maximizing the demand in a
gas network. The inputs are a gas network GN = 〈J, P 〉 and
the decision variables are: (1) the production level of each
generator Gg; (2) the consumption level of each load Go;
(3) the flow on each pipeline Gp which can be negative as
well. The objective (M2.1) maximizes the total loads served.
Constraint (M2.2) ensures flow conservation at each junc-
tion. Independently, both models are linear programs (LP).

The Interdependent Power and Gas Infrastructure The
power and gas networks have different types of interdepen-
dencies. Sink-source connections are common. For example,
a gas city gate Go can fuel a gas turbine engine which is an
electric generatorEg . Sink-sink connections also appear. For
example, a city gate Go requires some energy from a load
Eo to regulate its valves. All of these interdependencies can
be modeled in terms of implications a → c which indicate
that consequent c is not operational whenever antecedent a
is not served at full capacity. Pipeline compressors also in-
duce fundamental interdependencies. Indeed, compressors
consume electricity from a load Eo to increase the pressure
on a pipeline P , as sufficient line pressure is a feasibility
requirement for the gas network. This dependency is mod-
eled as a capacity reduction, since pressure is not captured
explicitly in the linear gas model.

An interdependent model is inherently multi-objective. In
practice however, policy makers typically think of infras-
tructure restoration in terms of financial or energy losses.
Both cases are naturally modeled as a linear combination of
the power and gas objectives. The objectives only consider
the set of loads in the networks which are not antecedent to
a dependency. We use T e ⊆ Bo and T g ⊆ Jo to denote the
filtered loads for the power and gas networks. IfW e andW g

are the weights of the infrastructures, then the joint objective
is W e

∑
i∈T e Eo

i + W g
∑

i∈T g Go
i . The maximal demand



Model 3 Interdependent Demand Maximization.
Inputs:
PN = 〈B,L, s〉 - the power network
GN = 〈J, P 〉 - the gas network
A,Ac, C - the interdependencies
T e, T g - the demand points
W e,W g - the demand weights

Variables:
yi ∈ {0, 1} - item i is activated
zi ∈ {0, 1} - item i is operational
fli ∈ {0, 1} - all of item i’s load is satisfied
θi ∈ (−<,<) - phase angle on bus i (rad)
Eg

i ∈ (0, Êg
i ) - power injected by generator i

Eo
i ∈ (0, Êo

i ) - power consumed by load i
El

i ∈ (−Êl
i, Ê

l
i) - power flow on line i

Gg
i ∈ (0, Ĝg

i ) - gas injected by well field i
Go

i ∈ (0, Ĝo
i ) - gas consumed by city gate i

Gp
i ∈ (−Ĝp

i , Ĝ
p
i ) - gas flow on pipeline p

Maximize
W e

X
d∈T e

Eo
d +W g

X
d∈T g
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d (M3.1)

Subject to:
yi = 1 ∀i ∈ N \ C (M3.2.1)
fli ⇔ Îo

i ≤ Io
i ∀i ∈ A (M3.2.2)

yi =
V
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i
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¬zi → Eg
i = 0 ∀i ∈ Bg (M3.3.6)

¬zi → Eo
i = 0 ∀i ∈ Bo (M3.3.7)

¬zi → El
i = 0 ∀i ∈ L (M3.3.8)

zi → El
i = Bi(θL+

i
− θ

L−i
) ∀i ∈ L (M3.3.9)

zi = yi ∀i ∈ J ∪ PC (M3.4.1)
zi = yi ∧ yj ∀j ∈ J,∀i ∈ Jg

j ∪ J
o
j (M3.4.2)
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¬zi → Gg
i = 0 ∀i ∈ Jg (M3.4.5)

¬zi → Go
i = 0 ∀i ∈ Jo (M3.4.6)

¬zi → Gp
i = 0 ∀i ∈ P (M3.4.7)

¬zi → −G̃p
j ≤ G

p
j ≤ G̃

p
j ∀j ∈ P

c
i ∀i ∈ PC (M3.4.8)

satisfaction of each network is often useful, we use Me and
Mg to refer to the maximum power and gas demand satis-
faction respectively.

We are almost in a position to present the interdepen-
dent model. The missing piece of information is the recog-
nition that, whenever a component is not active, it may in-
duce other components to be non-operational as well. For
example, if a bus is inactive, then all of the components
connected to that bus (e.g., lines, generators, loads) be-
come non-operational. These intra-network dependencies,
which are modeled in terms of logical constraints, are not

present in the demand maximization model for a single in-
frastructure. Computationally, they imply that demand max-
imization of interdependent infrastructures becomes a MIP
model, instead of a LP. The complete demand maximiza-
tion model for the interdependent power and gas infras-
tructure is presented in Model 3. For clarity, we use the
logical constraints, not their linearizations which can be
obtained through standard transformations. The inputs are
specified in terms of following additional notations: N is
the collection of all of the infrastructure components, i.e.,
N = B ∪ Bg ∪ Bo ∪ L ∪ J ∪ Jg ∪ Jo ∪ P ∪ PC; The
sink-sink and sink-source interdependencies are specified by
antecedent and consequent relations. The setA is the collec-
tion of all antecedent items andC is the set of all consequent
items; for each consequent i ∈ C the setAc

i ⊆ A denotes all
antecedents of i. The collection of all load points in both in-
frastructures is Io = Go ∪ Eo, and Îo

i is the maximum load
of a resource i ∈ Io. The model inputs are then given by
the network IN = 〈PN ,GN , A,Ac, C, T e, T g,W e,W g〉.
The variables include those described in Models 1 and 2 and
the objective function (M3.1) was described earlier.

To model the effect of the interdependencies on the net-
work topologies, a binary variable yi is associated with each
component i ∈ N and denotes whether the component is
active. Another variable zi is associated with component i
to denote whether component i is operational. Most of the
yi variables are set to one: only those affected by interde-
pendencies may be zero, as per Constraint (M3.2.1). The
antecedent i of a dependency is always a load point and
is only operational when its load is at full capacity which
is captured by binary variable fli and Constraint (M3.2.2).
That is fli = 1 if and only if Îo

i ≤ Io
i . Constraint (M3.2.3)

specifies that each consequent i ∈ C is active if all of of
its antecedents Ac

i are at full capacity. Constraint (M3.4.8)
specifies the capacity reduction of a compressor-dependent
pipeline j ∈ P c

i when its compressor i ∈ PC is not opera-
tional, i.e., zi = 0. Note that the regular operating capacity
of pipeline j is Ĝp

j , while its reduced capacity is G̃p
j .

Constraints (M3.3.1–M3.3.9) model the power system.
Constraints (M3.3.1–M3.3.3) describe which components
are operational following the operational rules sketched
out previously. Constraints (M3.3.4) and (M3.3.5) are from
Model 1. Constraints (M3.3.6–M3.3.9) imposes restrictions
on power flow, consumption, and production depending on
the operational state: They ensure that a non-operational
generator, load, or line cannot produce, consume, or trans-
mit power. Constraints (M3.4.1–M3.4.8) model the gas sys-
tem. The principles are the same as the power system, except
for constraints (M3.4.8) which models the effects of non-
operational compressors which were discussed previously.

Joint Infrastructure Repair and Restoration
The joint repair and restoration of an interdependent in-
frastructure is extremely challenging computationally. It is
a multiple pickup and delivery vehicle routing problem,
whose objective function is defined in terms of a series of
demand maximization problems, one for each repair action.
Each of these demand maximizations is a MIP, which leads



MULTI-STAGE-IRVRP(Network IN , IRVRP G)
1 R ←MinimumRestorationSetProblem(G, IN )
2 O ← RestorationOrderProblem(IN ,R)
3 return PrecedenceRoutingProblem(G,O)

Figure 1: The Multi-Stage IRVRP Algorithm.

to an overall intractable formulation. Indeed, even for a sin-
gle infrastructure, where the demand maximization is a LP,
tackling the problem globally is beyond the scope of exist-
ing MIP solvers. For this reason, we follow the multi-stage
approach proposed in (Van Hentenryck, Coffrin, and Bent
2011), which was shown to produce high-quality solutions
to the joint repair and restoration of the power system, even
for large instances.

The multi-stage approach consists of three steps and is de-
picted in Figure 1. As inputs, the Infrastructure Restoration
Vehicle Routing Problem (IRVRP) requires an infrastructure
network IN and an IRVRP instance G, which contains the
network damage information and other data necessary for
constructing the vehicle routing problem. The first step is
a minimum restoration set problem which determines the
smallest set of items to restore the infrastructure to full ca-
pacity. The second set is a restoration order problem, which
produces the order in which the components must be re-
paired. This order produces precedence constraints which
are injected into the pickup and delivery routing problem to
produce the restoration plan. Only the first two steps are af-
fected when an interdependent power and gas infrastructure
is considered and this paper only studies these two steps.

The Minimum Restoration Set Problem
The Minimum Restoration Set Problem (MRSP) determines
a smallest set of items needed to restore the network to
full capacity (Model 4). The optimization heavily builds on
Model 3 but it has four significant changes. First, additional
inputs are necessary, i.e., the set of damaged components
D ⊆ N . Second, the objective (M4.1) now minimizes the
number of repairs. Third, constraints (M4.2 and M4.3) en-
sure that the network will operate at full capacity. Fourth,
constraint (M4.4) ensures that only undamaged items are ac-
tivated. The remaining constraints are identical to (M3.2.2–
M3.4.8) in Model 3.

The Restoration Ordering Problem
Once a setR ⊆ D of items to repair is obtained, the Restora-
tion Ordering Problem (ROP) determines the best order in
which to repair the items. The ROP ignores the routing as-
pects and the duration to move from one location to another,
which would couple the routing and demand maximization
aspects. Instead, it views the restoration as a sequence of dis-
crete steps and chooses which item to restore at each step.
Model 5 depicts the ROP model for interdependent infras-
tructures. The ROP essentially duplicates Model 3 |R| times,
where R is the set of selected items to repair. These models
are linked through the decision variables yki which specify
whether item i is repaired at step k. Constraint (M5.2) en-
sures that undamaged items are activated, constraint (M5.3)

Model 4 The MRSP for Interdependent Infrastructures.
Inputs:

Me,Mg - the maximum demands in undamaged networks
D - the set of damaged items
All inputs from Model 3

Variables:
Identical to Model 3

MinimizeX
i∈D

yi (M4.1)

Subject to:X
d∈T e

Eo
d ≥Me (M4.2)X

d∈T g

Go
d ≥Mg (M4.3)

yi = 1 ∀i ∈ N \ (C ∪D) (M4.4)
Constraints (M3.2.2–M3.4.8) from Model 3

Model 5 The ROP Model for Interdependent Infrastructures.
Inputs:

R - the set of items to restore
D - the set of damaged items
All inputs from Model 3

Variables:
Variables of Model 3 replicated |R| times

Maximize
|R|X
k=1

W e
X

d∈T e

Eo
kd +W g

X
d∈T g

Go
kd (M5.1)

Subject to: (1 ≤ k ≤ |R|)
yki = 1 ∀i ∈ N \ (C ∪D) (M5.2)X
i∈R

yki = k (M5.3)

y(k−1)i ≤ yki ∀i ∈ R (M5.4)
|R| replicates of constraints (M3.2.2-M3.4.8) from Model 3

makes sure that at most one item is repaired at each step, and
constraint (M5.4) ensures that an item remains repaired in
subsequent steps. The objective (M5.1) maximizes the satis-
fied demands at each step. The remaining model constraints
are identical to (M3.2.2–M3.4.8) in Model 3 but are repli-
cated for each of the k models.

The ROP model is significantly more challenging for in-
terdependent infrastructures because the demand maximiza-
tion problem is now a MIP instead of a LP, which is the
case for a single infrastructure. MIP solvers have signifi-
cant scalability issues, mainly because the ROP generalizes
the transmission switching problem which is known to be
extremely challenging for state-of-the-art MIP solvers (e.g.,
(Fisher, O’Neill, and Ferris 2008)).

Randomized Adaptive Decompositions
To overcome these computational difficulties, we use a Ran-
domized Adaptive Decomposition (RAD) scheme. RAD
schemes have been found useful in a variety of applications
in logistics (Bent and Van Hentenryck 2007), scheduling
(Pacino and Hentenryck 2011), and disaster management
(Simon, Coffrin, and Hentenryck 2012).



ROP-RAD(R,D, [s..S])
1 O ← ROP-UTIL(R,D);
2 while ¬stoppingCriteria()
3 do 〈S1, . . . , Sl〉 ← RandomPartition(O, [s..S]);
4 O ← PROP(〈S1, . . . , Sl〉, D);
5 return O;

Figure 2: The RAD algorithm for the ROP.

Informal Presentation First observe that the ROP can be
viewed as a function ROP : R × D → O that, given a set
R of components to repair and a set of damage components
D (R ⊆ D), produces an ordering O of R maximizing the
satisfied demands over time. The RAD scheme repeats the
following two steps:

1. Partition the sequence O into the subsequences
S1, . . . , Sl, i.e., O = S1 :: S2 :: . . . :: Sl where ::
denotes sequence concatenation.

2. Solve an ROP problem, called the Priority Restoration Or-
der Problem (PROP), in which the items in Sj must be
scheduled before the items in Sj+1 (1 ≤ j < l).

Obviously, the PROP produces a lower bound to the ROP.
However, it enjoys a nice computational property: It can be
solved by solving a sequence of smaller decoupled ROPs
defined as

ROP (S1, D)
. . .
ROP (Si, D \ (S1 ∪ . . . ∪ Si−1))
. . .
ROP (Sl, D \ (S1 ∪ . . . ∪ Sl−1)).

The RAD scheme then starts from a solution O0 obtained
by a standard utilization heuristic. At iteration i, the scheme
has a solution Oi which is partitioned to obtain a PROP Pi

which is solved by exploiting the decoupling to obtain a so-
lution Oi+1. The successive solutions satisfy

O0 ≤ O1 ≤ . . . ≤ Oi ≤ . . .
The RAD scheme also ensures that the random partition of
a solution σ into S1 :: S2 :: . . . :: Sl produces subsequences
of length between two parameters s and S in order to gener-
ate ROPs that are non-trivial and computationally tractable.

Formalization The RAD algorithm for the ROP is de-
picted in Figure 2. Observe that the partition uses the cur-
rent solution O and that the PROP never degrades the so-
lution quality since O is a solution to the PROP. The algo-
rithm could be easily generalized to a variable neighborhood
search (Hansen and Mladenovic 1998) by increasing the se-
quence size, e.g.,

S = (1 + α)S
when no improvement to the solution is found after several
iterations. This was not necessary to obtain high-quality so-
lutions on our benchmarks however. There are many possi-
bilities for the stoppingCriteria() function. We found that a
combination of a fixed time limit and a limit on the num-
ber of iterations without improvement saved time on easier
problems. The PROP is formally defined as follows.

Definition 1 (PROP). Given S1 ∪ . . . ∪ Sl ⊆ D, the Prior-
ity Restoration Order Problem PROP (〈S1, . . . , Sl〉, D) is
a ROP problem ROP (S1 ∪ . . . ∪ Sl, D) with the following
additional constraints (1 ≤ j ≤ l):

∀i ∈ Sj : yti = 1 where t =
j∑

n=1

|Sn| (1)

Observe that a consequence of these constraints is that all
items in S1, . . . , Sj are repaired before the items in Sj+1

(1 ≤ j < l). We now show that the PROP can be decom-
posed into a set of independent ROPs.
Theorem 1. A Priority Restoration Ordering Problem P =
PROP (〈S1, . . . , Sl〉, D) can be solved optimally by solving
l independent ROPs:

R1 = ROP (S1, D)
. . .
Ri = ROP (Si, D \ (S1 ∪ . . . ∪ Si−1))
. . .
Rl = ROP (Sl, D \ (S1 ∪ . . . ∪ Sl−1)).

Proof. It is sufficient to show that the union of the objec-
tives and constraints of the l independent ROPs is equiva-
lent to the original PROP P . The objective equivalence fol-
lows from the fact that the sum of the objective functions
of R1, . . . ,Rl is the objective function of P . The system of
constraints is more interesting. The additional constraints of
the PROP produce four properties. Consider a subsequence
Sj and let sj = 1 +

∑j−1
n=1 |Sn| and tj =

∑j
n=1 |Sn|: The

following properties hold:

ysi = 1 ∀i ∈ (S1 . . . ∪ Sj−1)
ysi = 0 ∀i ∈ (Sj . . . ∪ Sl)
yti = 1 ∀i ∈ (S1 . . . ∪ Sj)
yti = 0 ∀i ∈ (Sj+1 . . . ∪ Sl)

These follow from the PROP Constraints (1) and constraints
(M5.4) and are enforced in the l independent ROPs through
the selection of the restoration and damage sets, i.e.,

Rj = ROP (Sj , D \ (S1 ∪ . . . ∪ Sj−1)).

Substituting in the ROP model, Constraints (M5.2) yields

yki = 1 ∀i ∈ N \ (C ∪D \ (S1 ∪ . . . ∪ Sj−1))

which ensures all the y variables satisfy the first PROP prop-
erty at time s. By definition, the ROP will only restore the
items in the restoration set. Assigning the restoration set to
Sj ensures the remaining PROP properties hold.

Constraints (M5.4) in the PROP ensure that, once an item
is repaired, it remains repaired. The key observation for this
constraint is to look at the yki variables in s-t intervals, i.e.,
[s1..t1][s2..t2] . . . [sl..tl]. For one of these intervals [si..ti]
the ROPs enforce the precedence constraints

y(k−1)e ≤ yke ∀e ∈ Si k ∈ [si + 1..ti]

We now show that the remaining inequalities in the PROP
can be removed when the four PROP properties are en-
forced. First, we know that all elements in Si are repaired
after time ti, i.e.,

yke = 1 ∀e ∈ Si , k ≥ ti



Hence, all subsequent inequalities for Si are guaranteed to
be satisfied and can be removed. We also know that all ele-
ments in Si were not repaired before time si, i.e.,

yke = 0 ∀e ∈ Si , k < si

Hence, all the previous inequalities for Si are guaranteed to
be satisfied and can be removed. Applying these simplifica-
tions for all of the intervals 1 ≤ j ≤ l reveals that the ROPs
enforce all of the relevant constraints.

Constraints (M5.3) in the PROP ensures that at most one
item is repaired at every time step. Using arithmetic trans-
formations the original constraint∑

i∈R

yki = k ∀k ∈ [1..|R|]

can be rewritten in terms of the subsequences

l∑
j=1

∑
i∈Sj

yki = k ∀k ∈ [1..|R|].

By the PROP properties, for any subsequence Sj , we know
all of the elements in S1, . . . , Sj−1 have been set to 1 and all
of the elements in Sj+1, . . . , Sl have been set to 0. That is,

j−1∑
m=1

∑
i∈Sm

yki =
j−1∑
m=1

|Sm|

l∑
m=j+1

∑
i∈Sm

yki = 0.

The range 1..|R| can be partitioned into l s-t intervals,
[s1..t1], [s2..t2], . . . , [sl..tl] and combined with the previ-
ous formulas, then the PROP Constraints (M5.3) for sub-
sequence Sj become

j−1∑
m=1

|Sm|+
∑
i∈Sj

yki +
l∑

m=j+1

0 = k ∀k ∈ [sj ..tj ].

After expanding the definition of [sj ..tj ] the constant term∑j−1
m=1 |Sm| can be removed by changing the interval range

to obtain ∑
i∈Sj

yki = k ∀k ∈ [1..|Sj |].

Hence, constraints (M5.3) becomes j disjoint constraints in
the PROP model which are enforced in the ROPs.

The optimal solution of P can thus be obtained by
concatenating the optimal solutions of the subproblems
R1, . . . ,Rl.

The Utilization Heuristic The utilization heuristic used
by the RAD algorithm (Figure 2) is designed to approxi-
mate current best-practices for prioritizing repairs. In exist-
ing best-practices, each infrastructure provider works inde-
pendently and prioritizes their repairs based on the percent-
age of network flow that each element uses under normal op-
erating conditions. This measure is called the utilization of

the element. Because each utility works independently, each
infrastructure system is solved independently using Mod-
els 1 and 2. Given a flow on the power network fe or gas
network fg , the utilization of these components is fe/M

e

and fg/M
g respectively. Each infrastructure provider prior-

itizes repairs based on the greatest utilization values. Given
that the utilization value is unit-less, these restoration pri-
orities may be extended to the multi-infrastructure domain
by using the weighting factors W e and W g . This greedy
heuristic serves both as a seed for our hybrid optimization
approach and as the basis for comparison. The experimental
section will demonstrate that optimization brings significant
improvements over this current best-practice.

Computational Considerations The RAD approach
should be contrasted with a local search approach that
would swap items in the current ordering. Such a local
search is computationaly expensive, since a swap between
items in positions i and j requires the solving of (j − i+ 1)
Model 3 instances, which are MIP models. Moreover, the
complexity of these MIP models makes it hard to determine
which moves are attractive in the local search and thus
forces the local search to examine a large number of costly
moves. In contrast, the RAD scheme exploits temporal
locality, the subsequences are small, and the MIP solver
uses the linear relaxation to guide the large neighborhood
exploration.

Practical Considerations In practice, even some ROP
problems with fewer than 10 items can be challenging to
solve optimally and may take several minutes. For this rea-
son, our RAD scheme uses a time limit on the subproblems
and does not always solve the ROPs optimally. It is also use-
ful to point out that, in practice, all the decoupled ROPs can
be solved in parallel. This feature was not used in our imple-
mentation but would be highly beneficial in practice.

Experimental Results
The benchmarks were produced by Los Alamos National
Laboratory and are based on the power and gas infrastruc-
tures of the US. The disaster scenarios were generated us-
ing state-of-the-art hurricane simulation tools used by the
National Hurricane Center (FEMA 2010; Reed 2008). The
power network has 326 components and the gas network
has 93 components. Network damages range from 10 to
120 components. The experiments were run on Intel Xeon
2.8GHz processors on Debian Linux. The algorithms were
implemented in the COMET system using SCIP as a MIP
solver. The execution times were limited to 1 hour to be
compatible with the disaster recovery context. The weight-
ing parameters W e,W g were selected to balance the de-
mands of the networks in percentage (W e = 0.5/Me,W g =
0.5/Mg), these results are consistent for other weightings.
The subsequences in the decomposition are of sizes between
4 and 8. Our approach is compared to the utilization heuris-
tic which approximates the current best-practices in multi-
ple infrastructure restoration. The experiments only focus on
the ROP problem which is the bottleneck of the approach.



Table 1: Multiplicative Effects of ROP Algorithms
ROP MRSP+ROP

BM |D| MIP RAD |R| MIP RAD
1 10 1.42∗ 1.42 3 1.42∗ 1.42
2 12 4.594∗ 4.594 6 4.594∗ 4.594
3 14 2.277∗ 2.277 7 2.277∗ 2.277
4 14 2.967∗ 2.967 6 2.967∗ 2.967
5 14 2.928∗ 2.928 6 2.852∗ 2.852
6 14 2.856∗ 2.856 6 2.856∗ 2.856
7 15 2.056∗ 2.056 8 2.039∗ 2.039
8 17 1.536∗ 1.536 12 1.536∗ 1.536
9 17 1.567 1.57 11 1.57∗ 1.57

10 19 – 1.739 9 – 1.739
11 20 – 1.058 13 – 1.058
12 23 1.818 1.882 10 1.849∗ 1.849
13 23 5.191 6.724 6 6.721∗ 6.721
14 24 7.392 7.392 4 7.392∗ 7.392
15 26 – 1.345 13 1.333∗ 1.333
16 26 1.66 1.956 10 1.953∗ 1.953
17 27 – 2.507 13 – 2.486
18 29 1.355 2.342 12 2.379∗ 2.379
19 31 – 1.595 18 1.595 1.595
20 31 2.155 3.52 8 3.585∗ 3.585
21 33 – 2.333 17 – 2.136
22 36 1.678 1.796 13 1.711 1.799
23 43 – 2.283 24 – 2.356
24 46 – 2.49 28 2.163 2.558
25 49 – 2.029 22 2.076∗ 2.076
26 56 – 2.596 28 2.495 2.593
27 57 – 2.622 29 – 2.49
28 61 – 2.38 25 1.788 2.45
29 73 – 2.628 40 – 2.57
30 79 – 2.234 39 – 3.189
31 92 – 1.761 55 – 2.015
32 92 – 1.968 52 – 2.255
33 120 – 1.536 73 – 1.722

MIP-µ 2.716 2.988 2.981 2.987
MSRP MIP-µ 2.721 2.689 2.719

RAD-µ 2.513 2.558
Large RAD-µ 2.23 2.389

As mentioned earlier, the final routing is not affected by
considering multiple interdependent infrastructures. Tables
1 and 2 present the quality and runtime data from the vari-
ous ROP algorithms on 33 damage scenarios. The results are
first grouped into ROP and MRSP+ROP, to show the benefits
of including the MRSP stage. Column |D| is the number of
damaged items, MIP is the restoration result using Model 5,
RAD is the restoration result using the decomposition from
Figure 2, and |R| is the restoration set size after using the
MRSP. The values in the MIP and RAD columns indicate
the multiplicative improvement over the utilization heuristic.
For example, a value of 2.0 indicates that the optimization
algorithm doubled the amount of satisfied demands over the
time of the restoration (e.g., reduces the size of the power
and gas “blackout” by 2). An asterisk indicates a proof of
optimality. Entries are omitted for the MIP when no solu-
tion was found within the time constraints. The aggregate
statistics at the bottom of the Table 1 summarize the results.
Due to the incomplete MIP data, several subsets are of inter-

Table 2: ROP Algorithm Runtimes (seconds)
ROP MRSP+ROP

BM |D| MIP RAD |R| MIP RAD
1 10 178.8 147.6 3 5.192 26.47
2 12 503.5 538.2 6 46.11 454.6
3 14 214.7 160.1 7 33.65 59.94
4 14 153.8 134.1 6 13.32 38.17
5 14 402.2 127.5 6 41.43 45.71
6 14 570.7 468.4 6 37.03 233.3
7 15 1101 850.4 8 135.7 243.5
8 17 496.9 250.4 12 129 142.9
9 17 3614 1224 11 502.1 428.3
10 19 – 880.7 9 – 264.9
11 20 – 885.9 13 – 577.6
12 23 3619 1142 10 408.5 354.1
13 23 3619 1276 6 22.54 141.5
14 24 3615 435.3 4 7.029 57.8
15 26 – 864 13 763.5 389
16 26 3618 740.2 10 180.9 469.9
17 27 – 2007 13 – 529.1
18 29 3620 1739 12 1102 506.7
19 31 – 1782 18 3615 713.7
20 31 3626 1047 8 52.22 84.65
21 33 – 1249 17 – 466.1
22 36 3632 901.1 13 3615 201
23 43 – 3646 24 – 2481
24 46 – 3708 28 3618 1983
25 49 – 3446 22 1425 484.4
26 56 – 3693 28 3618 1874
27 57 – 3647 29 – 1784
28 61 – 2611 25 3620 517.9
29 73 – 3691 40 – 3685
30 79 – 3722 39 – 2965
31 92 – 3730 55 – 3682
32 92 – 3679 52 – 3679
33 120 – 3758 73 – 3709

Proved 8 17
ROP Proof Time µ 452.7 46.21

Early Finish 24 29
Finish Time µ 1038 256.3

est: “MIP-µ” is the set of instances that the MIP can solve;
“MRSP MIP-µ” is the set of instances that the MIP can solve
when the MRSP is used; “RAD-µ” is the set of all instances;
and “Large RAD-µ” is the set of instances where |D| ≥ 40.
To provide an intuition behind the numbers reported in Table
1, Figure 3 depicts the detailed restoration plans on Bench-
mark 20 for the utilization heuristic, the MIP approach, and
the RAD algorithm. The figure shows the significant bene-
fits provided by optimization technologies in general and the
RAD approach in particular.

Overall, the results indicate that the RAD approach sig-
nificantly improves the practice in the field, and more than
doubles the level of service within the time constraints. The
instances without the MRSP stage are particularly interest-
ing, since they illustrate the scalability issues better. The
statistics indicate that the RAD algorithm consistently out-
performs the MIP approach, improving the solution quality
from 2.716 to 2.988 on average. The MIP approach also has
severe difficulties on the larger instances. The detailed data



0 5 10 15 20 25 30

85
90

95
10

0
 Restoration Order

Restoration Number

P
er

ce
nt

 D
em

an
ds

 S
at

is
fie

d

●

● ● ●

●

● ●

● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

Utilization
MIP
RAD

Figure 3: Restoration Plans on Benchmark 20.

reveals that the RAD algorithm always matches the optimal
solutions and, in cases where optimal solutions are not ob-
tained, it often improves over the (suboptimal) MIP solution.
The results also show that the RAD algorithm is significantly
faster than the MIP approach.

The MRSP stage significantly reduces the damage set |D|
(close to a factor of 2). The results with the MRSP (i.e., the
last three columns of Tables 1 and 2) indicate the MRSP
brings significant improvements to the MIP model. The av-
erage quality on the smaller benchmarks is improved from
2.716 to 2.981 and 6 more benchmarks become feasible. The
runtime benefits to the MIP model are also significant, as 9
more instances can be proven optimal and the proof runtimes
are reduced by a factor of 10. The quality improvements
of the MRSP to the RAD algorithm are negligible, except
for the largest benchmarks. For the largest benchmarks, the
MRSP increases solution quality from 2.23 to 2.389. The
MRSP also produces runtime benefits, as the RAD algo-
rithm terminates early on 29 benchmarks and the average
early completion time is reduced by a factor of 5, to less
than 5 minutes.

The decoupling of the ROP problem into the MRSP+ROP
problems may remove the optimal ROP solution as bench-
mark 5 indicates. However such effects become insignificant
as the damage size grows and the challenge of finding a high
quality ROP solution increases. The decoupling is thus valu-
able both in terms of solution quality and runtimes.

Related Work
Disaster management and, in particular, the restoration of in-
terdependent infrastructures are inherently interdisciplinary
as they span the fields of reliability engineering, vulner-
ability management, artificial intelligence, and modeling
of complex systems. The importance of interdependent in-
frastructure restoration was recognized soon after the 2001
World Trade Center Attack (Wallace et al. 2003) and this

recognition continued to spread across several areas in the
past decade (Cho 2007; Dueas-Osorio and Vemuru 2009;
Buldyrev et al. 2010). Interdependence studies in the reli-
ability engineering area (Dueas-Osorio and Vemuru 2009;
Ouyang and Dueas-Osorio 2011) have primarily focused
on topological properties such as betweenness and con-
nectivity loss. In the area of artificial intelligence, to the
best of our knowledge, restoration of interdependent in-
frastructures have not been studied. However, power sys-
tem restoration has been considered (Bertoli et al. 2002;
Hadzic and Andersen 2005; Bell et al. 2009). Although these
methods are an excellent application of planning, configu-
ration, and diagnosis techniques, they also use connectivity
as the primary power model. These topological metrics pro-
vide some sufficient conditions for infrastructure operations.
However, their fidelity is insufficient to incorporate line ca-
pacity constraints which are critical to model the pipeline
compressor interdependencies studied here. Furthermore,
the accuracy of topological metrics for models of infrastruc-
ture systems has recently been questioned (Hines, Cotilla-
Sanchez, and Blumsack 2010) and the benefits of flow-based
models of infrastructure systems is increasingly recognized
by the reliability engineering community (Dueas-Osorio and
Hernandez-Fajardo 2008).

References (Lee, Mitchell, and Wallace 2004; 2007; Gong
et al. 2009; Cavdaroglu et al. 2011) are the closest related
work and warrant a detailed review. Our approach funda-
mentally differs from these earlier studies: It uses the more
accurate LDCM for power systems, it scales to large in-
stances, and it models cyclic interdependencies. Reference
(Lee, Mitchell, and Wallace 2004) provides a good back-
ground paper on the nature and classification of various in-
terdependencies. Early work focused on solving the MRSP
(Lee, Mitchell, and Wallace 2007) and considered the power,
telephone, and subway infrastructure in New York City, but
focused only on restoring the power infrastructure. (Gong et
al. 2009) assumed that restoration tasks have predefined due
dates and developed a logic-based benders decomposition
for a weighted sum of different competing objectives. The
impact on the actual infrastructure is not taken into account.
(Cavdaroglu et al. 2011) tried to jointly solve the multi-
machine model of (Gong et al. 2009) and the MRSP (Lee,
Mitchell, and Wallace 2007). Although their model incor-
porated interdependencies, only damage and restoration of
the power grid was studied. Computation times are between
3 and 18 hours, with optimality gaps of 0.4% and 3.0% re-
spectively. They report that using the MRSP instead of the
full damage decreases the quality of the solution by 4.5%.
The worst-case effect in our formulation is similar. How-
ever, in damage scenarios for which the optimal solution is
known, our MRSP/ROP decoupling rarely cuts off the opti-
mal solution.

Conclusion
This paper considered the restoration of multiple interde-
pendent infrastructures after a man-made or natural disas-
ter. It presented the first scalable approach for the last-mile
restoration of the joint electrical power and gas infrastruc-
tures, which features complex cyclic interdependencies. The



underlying algorithms build on an earlier three-stage decom-
position for restoring the power network that decouples the
restoration ordering and the routing aspects. At the technical
level, the key contributions of the paper are mixed-integer
programming models for finding a minimal restoration set,
restoration ordering, and a randomized adaptive decompo-
sition scheme that obtains high-quality solutions within the
required time limits. The approach is validated on a large
selection of benchmarks based on the United States infras-
tructures and state-of-the-art weather and fragility simula-
tion tools. The results show significant improvements over
current field practices.
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