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Abstract

Power grid operators decide where and how much power to generate based on
the current topology and demands of the network. The topology can change as
safety devices trigger (connecting or disconnecting parts of the network) or as lines
go down. Often, the operator cannot observe these events directly, but instead has
contemporary measurements and historical information about a subset of the line
flows and bus (node) properties. This information can be used in conjunction with
a computational model to infer the topology of the network. We present a Bayesian
approach to topological inference that considers a bank of possible topologies. The
solution provides a probability for each member in the model bank. The approach
has two important features. First, we build a statistical approximation, or emulator,
to the computational model, which is too computationally expensive to run a large
number of times. Second, we use the emulator in an importance sampling scheme to
estimate the probabilities. The resulting algorithm is fast enough to use in real time
and very accurate. This paper has supplementary online material.

Keywords: electric power, network modeling, simulator, surrogate model, emulator, impor-
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1 Introduction

This paper presents a Bayesian procedure for estimating unobserved power grid compo-

nents (downed lines, demands, intermittent generation) from a small set of direct obser-

vations of some network quantities. Modern electric power grid operations are heavily

dependent on understanding the topology of the network and the demands placed upon

it. For example, downed power lines may require altering the amount of power generation

at various locations across the grid in order to continue meeting projected demand. Grid

operators typically have only a partial observation of the state of the network (voltages,

flow, consumption, production, presence/absence of some lines), so the power engineering

community has devoted a lot of effort to the problem of estimating the remaining network

quantities given this partial observation (Singh et al. 2005; Wu and Liu 1989; Singh and

Glavitsch 1991; Singh and Alvarado 1995; Clements and Davis 1988; Vinod Kumar et al.

1996; Alves da Silva et al. 1991; Singh et al. 2010).

This state estimation problem can be succinctly stated as follows. Data on line flows,

demands, and generations are collected at a sparse subset of the grid’s nodes and lines.

These data are used to estimate the remaining flows, demands, and generations along with

possible downed lines and tripped safety devices. Operators use the state estimates as

the basis for a number of decisions such as optimal generation dispatch, inter-area power

exchange, and modification of the settings of automatic control devices. Further, these

estimators are important for applications like grid restoration and contingency planning for

assessing vulnerability of critical infrastructure, situations in which data are often the most

uncertain. This paper address the power grid state estimation problem using a rigorous

Bayesian formulation.

An important component of state estimation for power grids is the use of a power flow

solver. As explained in more detail below, the power flow solver uses certain known quanti-

ties (perhaps known only distributionally) to estimate unknown or unobserved quantities.

This presents a difficulty because the solver can be computationally slow, especially for

larger networks. Any state estimation procedure may need to use it sparingly in order to

provide predictions in real time. The methodology presented here is specifically designed

to meet this challenge.
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Many of these state estimation methods (e.g. Clements and Davis 1988; Wu and Liu

1989) are based on relatively simple statistical analysis that involves using least squares

methods and an assumed network topology and then greedily altering the topology in

response to large residuals. A critical assumption in all of these approaches is the existence

of a single best state estimate that is used as a deterministic input to a decision making

process. In practice, the operator is expected to provide a measure of quality control on the

state estimates and in general this approach has served the power engineering community

well. However, mistakes in this process can contribute to disastrous consequences, such

as the 2003 Northeast Blackout which affected 55 million people in the United States

and Canada (and led to some harrowing moments in the days immediately preceding the

wedding of one of the authors). This event was caused in part by state estimator problems

and operator error (U.S. - Canada Power System Outage Task Force 2004; Andersson et al.

2005). Outcomes like this provide motivation to develop a statistically sound approach to

predict the network state, particularly topology (the presence or absence of power lines).

A more recent approach in Singh et al. (2010) assumes that a bank of models contains all

of the important network topologies and attempts to estimate the most correct model based

on the available data. Their paper frames the problem in traditional Bayesian statistical

terms, which should naturally lead to a posterior distribution over possible states (versus

choosing a single state). Unfortunately, this paper presents a flawed implementation of the

Bayesian solution. The paper inappropriately applies the state estimation formula for a

hidden Markov model (Eq 8 in the reference) to the estimation of the network state despite

lacking the sequential data framework for which hidden Markov models are useful. The

misunderstanding is further demonstrated when the paper states that “[o]ver the iterations

one model has asymptotic probability equal to one while others have zero probabilities.”

Thus, the incorrect estimation scheme robs the Bayesian formulation of its most compelling

feature: the distribution over the possible states.

The key contribution of our paper is a Bayesian statistical approach to estimating the

probabilities for each member of a bank of possible power grid topologies based on in-

complete measurements of the network. This approach borrows ideas (but not the specific

statistical approach) from the computer experiments literature (Morris et al. 1993; Kennedy
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and O’Hagan 2001; Higdon et al. 2005, 2008) to create a computationally efficient approx-

imating surrogate model for use in place of the computationally expensive physics-based

power flow solver. The surrogate model is used as part of an importance sampling scheme

(Liu 2001) to estimate probabilities for each member of the model bank. Since the surro-

gate model is precomputed, the resulting scheme is fast enough to be used in real time.

Further, it accurately assesses the uncertainty in the resulting state estimate.

The remainder of the paper is organized as follows. Section 2 provides a motivating

example from Singh et al. (2010) and provides an overview of power flow, measurements,

and the power flow solvers. Section 3 presents the surrogate model and importance sampling

methodology for computing model bank probabilities. Section 4 discusses results on the

motivating example. Section 5 considers an application to a larger network, an IEEE

benchmark network used for testing reliability methodology (Reliability Test System Task

Force 1999). Finally, Section 6 provides a discussion of the results and some ideas for the

future application of statistical methodology to power grid modeling.

2 Background and Formulation

We will explain the basic problem using the small network from Singh et al. (2010) shown

in Figure 1. This network consists of two subnets that are joined between node 9 of

network 1 and node 12 of network 2. Each node or bus in the network is represented by

a thick horizontal line. The triangles attached to some of the buses represent loads that

consume power. Several devices (denoted by squares) can trigger automatically in order

to disconnect parts of the network or link the two networks together. Power enters the

network at three places: the two hashed boxes represent other power grids and the circle

with a G represents a generator.

A network operator needs to make decisions on power generation and dispatch based on

the network’s performance and topology, in particular possible downed lines and tripped

safety devices. This topological information is usually not directly available and must be

inferred. Indirect information on performance and topology comes from three places. First,

data are collected from monitoring devices spread across the network in relatively small

numbers. In the case of our small example, power flow is monitored only on the lines

4
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In (9), is a diagonal matrix whose diagonal elements rep-
resent the inverse of the variances corresponding to the error
components in the error vector. Large value of the elements of

can magnify the model errors and cause the acceleration
of convergence to a single model. The error vector is given
by

(10)

where is the real measurement vector common to all
models and is the estimated value of the same real
measurement vector obtained from the estimated states of the
th model in the th iteration.

The algorithm proceeds recursively from an equal initial
probability assigned to each model. In each iteration the
new probabilities are computed according to (9). These new
probabilities are the improvements in the probabilities of the
previous iteration.

If a large number of iterations is considered, the model bank
asymptotically converges to a single model. Over the iterations
one model has asymptotic probability equal to one while others
have zero probabilities. However, in practice, for the identifi-
cation of the correct network configuration, asymptotic conver-
gence to a single model with unit probability is not required.
The algorithm can be terminated in few iterations as long as one
of the models attains a significantly higher probability than the
rest.

The main advantage of the recursive Bayesian approach is
that the identification is naturally constrained so the cases in
which the state estimation diverges are automatically rejected.
The rejection of a poor model is exponential and thus very fast.
Furthermore, the algorithm is computationally inexpensive and
hence a large number of models can be handled efficiently.

IV. STUDY SYSTEMS

Two 11 kV distribution networks, shown in Fig. 2, are consid-
ered. The networks are based on the U.K. Generic Distribution
System (UKGDS) [9], which was modified in order to demon-
strate the concept of the proposed approach.

Network 1 consists of 26 buses, 25 overhead lines, 13 loads,
and one distributed generator (DG), and Network 2 has 13 buses,
13 overhead lines, and eight loads. All loads are in the range
of 10 to 140 kW, apart from the load at bus #18 of Network
1 which is 930 kW. The generator is fixed at 700 kW at 0.95
power factor. The two networks are connected via a normally
open point which can be closed for maintenance or emergency
network reconfiguration. In addition, each network is equipped
with a protective device (recloser, sectionalizer, or fuse), a typ-
ical means of improving reliability and service continuity in
overhead lines.

Network parameters are obtained from [9]. The buses are
renumbered so the networks are easier to observe.

A. Model Bank Description

Two types of major contingencies are considered for the
model banks of the two study systems: topological changes

Fig. 2. Test network models.

that are associated with the operation of protective devices and
status change of normally open points, and injection changes
that are associated with loss of a DG or disconnection of a
major load.

It can be shown that disconnection of small loads has little im-
pact on the state estimation function. On the other hand, discon-
nection of large loads has significant effect on the accuracy of
the estimated quantities. Thus, loss of large load has been con-
sidered as critical change and hence included in the model bank.
Also line outages have not been considered individually as, in
effect, they cause the protective devices to operate, resulting in
one of the configurations included in the model banks.

The model banks selected for the two study networks are sum-
marized in Table I. The model banks considered in this study
represent critical configuration changes that have a detrimental
effect on the state estimation output. In general, these configu-
rations are network specific and a detailed contingency study is
required for their identification. In other words, the number of
models in a model bank can be prevented from being excessive
by utilizing the critical contingencies, operators’ experience and
detailed reliability and risk analysis. However, the speed of the
proposed approach allows the use of models banks with large

Figure 1: UK Network. Original appears in Singh et al. (2010). The online version of this

figure is in color.
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between buses 1 and 2 of each subnet. This amounts to monitoring the power flowing

into the network from outside power grids. The relatively small number of monitoring

points is a notable feature of the data. All of the power engineering community’s recent

estimation work cited above assumes this limitation. Further, a recent Department of

Energy report (Department of Energy 2012) points out the continued sparsity of monitoring

devices despite a recent push toward more highly instrumented Smart Grids. The networks

are typically quite large and monitoring equipment still very new, so state estimation will

continue to operate in this regime for the foreseeable future.

Second, the operator knows historical information about unmonitored loads in the form

of prior distributions. The amount of power used by each load is not known exactly, but can

be summarized by a distribution. Typically, these distributions are described as Gaussian

with percentage errors. For example Singh et al. (2010) follow these conventions with load

standard deviations equal to 20% of the mean.

Finally, the operator can use a power flow solver to compute unknown network quantities

from known ones based on physical laws. The power flow solver allows the operator to match

unknown network quantities with observed data through the power flow equations. We will

consider two steady-state versions of these equations, the lossless alternating current (AC)

and direct current (DC) power flow models. We will describe these two models in some

detail below. In the next section, we will discuss how to build a statistical model around

them for comparing with data.

AC Power Flow

As the name implies, an alternating current is sinusoidal and is usually represented with a

complex number where the two terms, real and imaginary, are called the real and reactive

power. The lossless AC power flow equations (Glover et al. 2008, Ch. 6) describe the real

and reactive power flowing on the line between buses i and j:

Pi,j = |Vi||Vj| [Gi,j cos (θi − θj) +Bi,j sin (θi − θj)]

Qi,j = |Vi||Vj| [Gi,j sin (θi − θj)−Bi,j cos (θi − θj)] .

The parametersGi,j and Bi,j are known quantities related to line properties called resistance

and reactance and may be zero to indicate no line is present between a pair of buses. The
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voltage
|Vi| , θi

power inject
Pi , Qi

admittance:   Gi,j , Bi,j |Vj| , θj

Pj , Qj
power flow:   Pi,j , Qi,j

node i node jline i, j

Figure 2: Summary of bus and line related quantities. Admittances and flows are line

related parameters. Voltage quantities and power injections are nodal quantities.

parameter θi is the voltage angle at each bus i and |Vi| is the voltage magnitude at each

bus. The voltage angles and magnitudes are necessary to compute the Pi,j and Qi,j. The

power flow equations are written in terms of these line flows:

Pi =
N∑
j=1

Pi,j

Qi =
N∑
j=1

Qi,j.

Pi and Qi are the real and reactive power, respectively, at bus i. Individual buses are

generators (net power going out), loads (net power coming in), or neutral. The quantity

N is the total number of buses. Figure 2 summaries the quantities associated with lines

and buses.

There are some additional constraints on these equations. First, because these equations

assume that no power is lost, the sum of the power across all of the buses is zero,
∑N

i=1 Pi = 0

and
∑N

i=1Qi = 0. In other words, all of the power generated in the system is used by the

system. Second, the voltage angles only matter up to a rotation because they only enter the

equations through their differences. Finally, the voltage magnitudes are also not uniquely

identified. These restrictions inform the solution methodology and which parameters we

attempt to observe.

There are 2N AC power flow equations for any network and they are written in terms

of 4N quantities (again, Gi,j and Bi,j are known properties of the line). Given values for

2N of the variables, we can attempt to solve for the remaining 2N (in reality, this is not
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Bus Type Known Unknown

slack θ1 = 0, |V1| P1, Q1

generation Pi, |Vi| θi, Qi

non-generation Pi, Qi θi, |Vi|

Table 1: Elements of the AC power flow equations by bus type. (Glover et al. 2008, Ch. 6)

completely straightforward since the equations are nonlinear). For most buses, the real and

reactive power are treated as known. For buses with generation capacity, the real power

and voltage magnitude are treated as known. One bus, i = 1 without loss of generality, is

designated the slack bus. For the slack bus, the voltage angle and magnitude are assumed

to be known, with θ1 = 0 to remove degeneracies associated with constraints on the set of

voltage magnitudes and angles. Thus, each bus has two known quantities and the solver

seeks the remaining two. Table 1 summarizes the knowns and unknowns for the solver

(Glover et al. 2008, Ch. 6). Iterative solvers, like Newton-Raphson, are typically used, but

convergence is not guaranteed and the procedure can be time consuming.

DC Power Flow

Because of the complexity of the AC solution, power engineers often use a simplified set

of equations known as the DC power flow equations (Glover et al. 2008, Ch. 6). This

approach uses a number of standard simplifying assumptions. The reactive power is often

significantly smaller than the real power, so this equation is eliminated. The values of G are

also significantly smaller than B because of line properties, so the G terms are eliminated.

Differences in the voltage angles are usually small, so the cosine terms can be set to one

and the sine terms can be set to their argument. Finally, the voltage magnitudes are all

close to unity when the problem is solved for the per-unit system. The resulting equations

are given by

Pi =
N∑
j=1

Bi,j (θi − θj) , (1)

which is linear in the voltage angles. In matrix form we have P = bθ where the matrix b

is constructed from the reactance parameters to replicate (1). The constraint
∑N

i=1 Pi = 0

still holds, so again we use a slack bus and fix the voltage angle of the slack bus, θ1 = 0.
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The power at the remaining buses is treated as known. We can then eliminate the first row

and column of the matrix b and solve for the remaining voltage angles. These are used to

compute the power at the slack bus, as well as the power flowing on the lines, Bi,j (θi − θj).

This simplified model is commonly used, but the quality of the approximation to the AC

model is system and application specific (Stott et al. 2009; Overbye et al. 2004). Despite

this, the DC model can provide some insight that we will use in what follows.

3 Estimation for Model Bank Probabilities

This section discusses estimating probabilities for each topology in a bank of models using

the available data and the power flow solver.

As in Singh et al. (2010), the model bank consists of a set of m network topologies,

{s1, · · · , sm}, deemed interesting or important by the operator. Let Y be a vector of

measurements on d different network quantities. Although the set of possible measurements

is quite general, we consider only power flowing on a subset of the lines, so that each

element of Y is a measurement of Pi,j or Qi,j for some pair of buses i and j. Based on these

measurements, we want to estimate the probability that each member of the model bank

represents the network’s current configuration.

Assume that each measurement, Y`, is independently normally distributed with some

mean µ` and standard deviation given as a proportion ρ` of the mean (see Evans 2012 for

this error structure and values of ρ):

Y` ∼ N
(
µ`, ρ

2
`µ

2
`

)
. (2)

The mean itself is obtained by solving the power flow equations described earlier for the

unknowns in Table 1 (Glover et al. 2008, Ch. 6). The quantities listed as known in Table 1

are required as inputs to solve the equations, but they are typically imprecisely known and

summarized with a distribution. Let Z be the vector of nodal quantities used as inputs,

which we will generally refer to as injections (injections are loads and generations and these

comprise most of the quantities in Z). We assume that each injection follows a Gaussian

prior distribution with some known mean νi and standard deviation given as a proportion
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βi of the mean,

Zi ∼ N
(
νi, β

2
i ν

2
i

)
. (3)

For a given network topology sk and a given set of injections Z, the mean for measurement

Y` is a deterministic output of the power flow solver, µ`(sk, Z). Finally, assume that each

model bank member has some prior probability of occurrence given by π(sk).

Our goal is to estimate Pr{sk|Y = y}, therefore the injections, Z, are nuisance param-

eters that need to be integrated out. There are circumstances in which we would like to

estimate the posterior for Z given the observations, but this is left for future work. Consider

the integral for the probability of a topology sk,

Pr{sk|Y = y} ∝ π(sk)

∫
f(y|µ(sk, Z))π(Z)dZ = π(sk)f(y|sk), (4)

where f is the likelihood described in (2) and π(Z) is the prior for Z given in (3). Since

Z enters into the distribution for Y nonlinearly through the solver in µ(sk, Z), analytic

integration is not possible. However, it is simple to sample Z from its prior, so Monte Carlo

methods are a good approach. The straightforward approach estimates f(y|sk) by averaging

f(y|µ(sk, Z)) over independent draws of Z from its prior. Unfortunately, the distribution

for the injections induces a distribution on µ whose mass is very spread out compared to the

likelihood f(y|µ). This results in few draws for which f(y|µ) is significantly greater than

zero. An extremely large number of samples of Z could be required to estimate the integral

in (4). Calculating the solution to the power flow equations for potentially hundreds of

thousands of draws of Z and hundreds of model bank members quickly becomes infeasible.

This is true even for the DC model, especially for large networks. We consider a two part

improvement to the brute force approach: a statistical approximation to the power flow

solver and importance sampling.

Approximating the Power Flow Solver

The well-developed literature on computer experiments (Morris et al. 1993; Kennedy and

O’Hagan 2001; Higdon et al. 2005, 2008) is concerned with approximating a deterministic

and computationally expensive computer model with a statistical model. The computer

model is run at small number of carefully selected input settings, and an interpolating
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response surface, often a Gaussian process, is fit to the outputs. The response surface

can be used to predict the output of the computer model at untried input settings with

much less computational effort. This response surface, called an emulator, can be used

to maximize a response or estimate input settings that make the computer model match

experimental data.

Our problem is similar: we have a computational model, the power flow solver, that

takes the injections and the topology as inputs and produces deterministic line flows as

outputs. Our goal is to relate the topological input to the observed line flow data, and

the injections are merely a nuisance parameter. Our solution is to build an emulator that

integrates over the injections. Effectively, we view the power flow solver as a stochastic

computational model where the randomness arises from the injections and the topology is

the only input. One run of the solver takes a topology as an input, draws a set of injections

from their prior, and produces an output. Since we view our simulator as stochastic, we

will build a stochastic emulator as well. The stochastic emulator will produce outputs with

the same distribution as the solver.

In the DC power flow model, the voltage angles θ are the solution of the linear system

P = bθ. In this case, the P represents the nodal injections, the Z of our statistical model.

If these are normally distributed, then the solution for θ is also normally distributed.

Similarly, the predicted power on the line between any two buses i and j, Pi,j = bi,j(θi−θj)

is normally distributed. This last quantity plays the role of µ in our statistical model. Thus,

in the DC model, the Gaussian distribution on the Z induces a Gaussian distribution on

µ. This suggests that line flows for each scenario are well emulated by using a multivariate

Gaussian with the correct mean and covariance for each topology. Because the DC model

approximates the AC model, we anticipate that predictions from the AC model, particularly

the real power, might be approximately Gaussian. To be more general and to account for

unexpected behavior in reactive power, we assume that some transformation h(µ) follows a

normal distribution. Thus, our emulator for the power flow solver is a multivariate Gaussian

distribution for a transformation of the line flows:

η(µ|sk) ∝ |Σk|−1 exp

{
−1

2
[h (µ)− νk]T Σ−1

k [h (µ)− νk]

}
Jh (µ) ,

where Jh (µ) is the Jacobian of the transformation, which just involves derivatives of h(·).
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We fit the emulator by estimating the parameters of the multivariate Gaussian for each

topology and choosing a form for h(·) if necessary. We do this by taking a limited number

of draws of Z and computing the corresponding sample of µ for each topology. We use

exploratory data analysis to find a normalizing transformation h for the samples of µ and

then estimate νk and Σk from the transformed samples. This fitted distribution can then be

used for estimating the model bank probabilities. One important feature of this emulator

is that it can be precomputed and the solver need not be run in any monitoring situation.

Importance Sampling

Assume that we have the fitted emulator distributions η(µ|sk) for each network topology

sk. Assume also that we have some observation vector Y = y. Recall from (2) that y given

µ has density

f(y|µ) ∝
d∏

`=1

1

|ρ2`µ2
` |
φ

(
y` − µ`

|ρ`µ`|

)
,

where φ(·) is the density for a standard normal random variable.

We could now sample the µ directly from η, but this sample would still produce many

draws for which f(y|µ) is very close to zero leading to a Monte Carlo estimator that has

poor accuracy for a given number of samples. Thus, we turn to importance sampling

(e.g. Liu 2001), which draws a biased sample and weights it to obtain the correct average.

Sampling values of µ near the data point guarantees non-negligible values of f(y|µ). Thus,

let g(µ|Y = y) be the importance distribution chosen to be Gaussian with mean vector y

and diagonal covariance with diagonal entries given by (αρ`y`)
2:

g(µ|y) ∝
d∏

`=1

1

|αρ`y`|
φ

(
µ` − y`
|αρ`y`|

)
,

where α > 1 provides additional variation around the observation. Because the emulator

samples directly from the induced distribution on µ, it is much easier to formulate an im-

portance sampler than would be the case had we retained the dependence on the injections.

We use M samples from g(µ|y), µ1, . . . , µM , to estimate f(y|sk) with

f̃(y|sk) =
1

M

M∑
i=1

f(y|µi)
η(µi|sk)

g(µi|y)
. (5)

12



Finally, the estimated probability of scenario sk is P̃r{sk|Y = y} ∝ π(sk)f̃(y|sk).

To assess the efficiency of the importance sampling algorithm, consider a toy problem

that captures the features of the power problem. As in the larger problem, assume that

y ∼ N(µ, (.01µ)2) and µ ∼ N(0, 1). Consider an observation of y = 3 and that we

want to estimate the density of y at the value 3 independent of µ. Two approaches are

the importance sampling algorithm presented here and straightforward Monte Carlo. We

conducted a numerical test that computed the estimate under both algorithms 1000 times

and examined the variance of the resulting estimates. The importance sample estimates

are based on 1000 samples from the importance distribution. In order to produce estimates

with similar variance, the straightforward Monte Carlo method needs about 5000000 draws.

In summary, we propose the following scheme to estimate the probability of each mem-

ber of the model bank given an observation y.

Offline Precomputation

1. Draw a number of injection realizations from π(Z). This number can be as large as

desired since this need not be done in real time.

2. For each topology, sk, use the solver to compute a sample for µ|sk from the sample

of Z.

3. For each sample of µ|sk, estimate a distribution η(µ|sk) composed of a transformation,

h(·) for µ and a Gaussian.

Online Real Time Monitoring

1. Draw a number of realizations of µimp from g(µ|y) which is N{y, diag[(αρ`y`)
2]}.

2. For each scenario, compute f̃(y|sk) using (5) with the sample µimp.

3. Multiply the estimates f̃(y|sk) by the prior and normalize to obtain model bank

probabilities.
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4 UK Network

Return now to the network in Figure 1. In Singh et al. (2010), the authors use this network

to demonstrate their model bank methodology. We do the same, with a focus on network

scenarios associated with network 1. As in Singh et al. (2010) the network is measured at

a single point: the line between buses 1 and 2 in network 1. The relevant model bank from

Singh et al. (2010) contains five network configurations:

1. Normal: normal operation.

2. B Opens: protective device B opens, separating the lower half of network 1.

3. E Closes: the two networks are connected by device E and network 2 consumes

power provided by network 1.

4. Lose Load 17: the generator at bus 17 is lost.

5. Lose Load 18: the large load at bus 18 is dropped.

To do the calculations, generate a large number of draws for each of the injections

(indicated by downward pointing triangles in Figure 1), as prescribed in the Offline Pre-

computation section of the algorithm summary at the end of Section 3. For each set of

injections, solve the power flow equations to obtain the prediction for the flow on the line

between buses 1 and 2 under each of the five scenarios. For each of these five samples of

µ corresponding to the five topologies in the model bank, estimate the parameters of a

Gaussian distribution.

In the DC model, the observations and the fitted Gaussian are univariate. The normal

quantile-quantile plots are shown in Figure 1 of the supplementary material. In the DC

model, the sample for µ is theoretically Gaussian, so the fit is expectedly good.

The AC model uses a bivariate observation of real and reactive power and we fit a

bivariate Gaussian to each of the five samples corresponding to the five topologies. Figure

2 of the supplementary material shows marginal normal quantile-quantile plots for the

samples of µ under the AC model. In this case, the Gaussian fit is an approximation, but

appears to be very good and no transformation is required.
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Truth

Normal B Opens E Closes Lose 17 Lose 18

Normal 0.61 0.02 0.31 0.03 0.01

B Opens 0.02 0.98 – – –

Estimate E Closes 0.33 – 0.45 0.22 –

Lose Load 17 0.03 – 0.23 0.75 –

Lose Load 18 0.01 – – – 0.99

Table 2: Confusion table for the UK network using the DC solver. For each topology

in the column headers, 1000 simulated observations are generated. For each observation,

the emulator-based importance sampling method is used to estimate probabilities for each

member of the model bank. The probabilities in each column are averaged over the esti-

mates for all the samples and sum to one.

First, consider simulating data from each of the five members of the model bank and

computing the probabilities for each sample. For each topology, we generate 1000 simu-

lated observations. For each observation, we apply the emulator-based importance sample

method to estimate probabilities for each member of the model bank. Table 2 shows the

results using the DC model for both simulation and prediction. The column labels give

the topology used to simulate data. The entries in each column are averaged over the

1000 simulated observations and each column sums to one. For example, with an obser-

vation simulated from the normal topology, the method assigns an average probability of

0.61 to the normal topology and an average probability of 0.33 to the E Closes scenario.

Comfortingly, the diagonal elements are the largest value in each column. Nevertheless,

there is still some ambiguity, as seen in the third column for device E closing, linking the

two networks. Concluding that a single topology is absolutely correct could lead to grid

operator mistakes. Table 3 gives the results obtained when using the AC model to simulate

and predict. In this case, the diagonal elements represent the bulk of the probability for

each scenario, rising dramatically in some cases, as compared with Table 2. This is likely

the result of the added information contained in the measurement of reactive power.
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Truth

Normal B Opens E Closes Lose 17 Lose 18

Normal 0.70 – 0.29 0.01 –

B Opens – 1.00 – – –

Estimate E Closes 0.29 – 0.70 0.01 –

Lose Load 17 0.01 – 0.01 0.98 –

Lose Load 18 – – – – 1.00

Table 3: Confusion table for the UK network using the AC solver. See the caption of Table

2 for details.

Figure 3 shows another summary for the DC model results. This plot shows the results

of the estimation scheme for a range of possible observations. For this simple network, this

plot could directly be used for diagnostic purposes. Suppose the monitoring device returns

the observation of real power yP . The user finds this value on the x-axis of the plot. The

vertical value of each of the five lines at this point on the x-axis gives the probability for

the corresponding topology. The sum of the values of the five lines at each point on the

x-axis is always one. For example, assume we see a measurement of yp ≈ 1. The figure

indicates that the topologies “E Closes” and “Lose Load 17” have probabilities just under

0.5 and the “Normal” topology has probability of about 0.05. The other two topologies

have zero probability. Although the possible observations can take values anywhere on the

real line, the range of the figure’s x-axis has been chosen to contain the vast majority of

possible observations under the prior distributions.

Figure 4 is similar to Figure 3, but corresponds to the AC model. An AC observation

is bivariate with both a real and reactive component. Each of the five panels corresponds

to a member of the model bank. Again, this plot could be used directly for diagnostic

purposes. Suppose the monitoring device returns an observation of real and reactive power

(yP , yQ). To obtain the probability of the “Normal” topology, the user finds the value of yP

on the x-axis and yQ on the y-axis of the panel labeled “Normal”. The color at this point

indicates the probability of this topology. Similarly for the other four topologies. The sum

of a particular point across the five panels is always one. Again, the ranges of the axes are

set to contain the vast majority of possible observations under the prior distributions.
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Figure 3: Estimated state probabilities for a range of possible observations, yP . Predictions

are made using the algorithm with the DC model for the UK network. At any observed

power, yP , the height of the five curves must sum to one. The online version of this figure

is in color.

Figure 5 shows the maximum probability for any topology over the observation space

(the maximum across the five panels in Figure 4 at each point). Previous state estimation

methods typically assume the ability to compute the correct answer with certainty. Most

of the region does favor some topology with probability near unity, but a significant portion

of the high density region of the observation space gives ambiguous results (with maximum

probabilities as low as 0.20) demonstrating the importance of considering the posterior

probability vector for the entire model bank.
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Figure 4: Results of the estimation scheme for a range of possible observations correspond-

ing to using the AC model for the UK network. At each (yP , yQ) location the shading

indicates the probability of the scenario indicated in the panel title. The sum of a par-

ticular point across the five panels is always one. The online version of this figure is in

color.
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Figure 5: Maximum topology probabilities as a function of the observation of the real yP

and reactive yQ power at the line between buses 1 and 2. The online version of this figure

is in color.
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Figure 6: 1996 IEEE Reliability Test System. This network consists of three identical

subnets that are connected by five lines indicated in bold. These five lines will serve as our

monitoring points. Figure is adapted from Reliability Test System Task Force (1979).

5 Reliability Test System 1996

The 1996 edition of the IEEE Reliability Test System (RTS-96) (Reliability Test System

Task Force 1999) is a 72 bus network designed as benchmark for comparing reliability

methodologies. As shown in Figure 6, it consists of three identical 24 bus networks con-

nected together. We consider monitoring the five lines that connect that the three identical

24 bus networks. This corresponds to measuring the inter-area exchanges of power between

connected networks. Our model bank contains 124 topologies consisting of normal oper-

ating conditions, all of the single line losses (except the monitored lines), and a subset

of two-line losses (those that share common transmission corridors). This is the set of

contingencies defined in Reliability Test System Task Force (1999).

As before and described in the Precomputation part of the algorithm, we draw a large
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number of samples, 10000, for each injection and solve the power flow equations for each

sample and each member of the model bank. In this case, the distribution of real power

is well-represented by a Gaussian, but the fit to the reactive power is not as good. We

transform the reactive power to improve the fit using a three parameter Gamma distribution

function and the inverse standard normal

hs(y`) = Φ−1 [F (y` − γs,`;αs,`, βs,`)] ,

where F (·) is the Gamma distribution function. This was chosen after some exploration

of the data. This transformation is specific to topology and measurement. Again, this

transformation is only applied to measurements ` that correspond to reactive power mea-

surements; real power measurements appear to be Gaussian without transformation. The

transformation parameters are estimated using the Exact Likelihood method discussed in

Meeker and Escobar (1994). This method assumes that data are only ever measured and

stored up to some precision and so are all actually discrete. The method is helpful in cases

where using the density could allow the likelihood to go to the infinity, which can be the

case in the three parameter Gamma with its lower threshold parameter. We discretized

the data into 1,000,000 evenly spaced bins over the range of each measurement. Multivari-

ate Gaussians are fit to the transformed sample for each model bank member giving 124

multivariate Gaussian fits for each of the DC and AC models. Gaussian quantile-quantile

plots for the AC results are shown in Figures 3 and 4 of the supplementary material. The

Gaussian appears to be a good fit.

For each of the 124 scenarios, we generate 1000 simulated observations from each topol-

ogy and compute the classification probabilities for each topology based on each sample.

This is done for both the DC and AC models. Note that this is 124000 runs of the im-

portance sampling scheme using precomputed Gaussian fits. Because of the precomputed

emulator and the efficient importance sampling, the computation of the probabilities for a

single observation under the AC is extremely fast, taking less than 1s. This demonstrates

the ability of the method to quickly estimate the probabilities for a larger network in an

online setting.

Figure 7 summarizes the results of these calculations for the AC model. There is one

point for each of the 124 topologies. The points show the posterior probability of the
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data-generating topology over the 1000 simulated observations plotted against the largest

average probability for an incorrect model. The circles represent results in which the true

topology has the highest average probability. For cases in which the true topology does not

have the highest average probability, an “x” is plotted. In 59 of the 124 scenarios, the true

topology has the highest average probability. In 110 of the scenarios, the true topology is

among the top five highest probabilities. All of the x points fall near the 45◦ line. This

suggests that in the scenarios for which the true topology is not given the highest average

probability, there is some ambiguity in which the true topology is in a group of topologies

all of which have similar probabilities. More monitoring points, or more carefully selected

monitoring points, would likely increase these probabilities and will be the subject of future

work.

Compared to the DC results, the average probability for the true topology is larger under

the AC model in 98 of the 124 cases and the probability of the truth is on average twice as

big. Figure 5 in the supplementary materials compares the average probability for the true

topology under the DC and AC power flow models. Figure 6 in the supplementary material

shows the posterior probability of the data-generating topology over the 1000 simulated

observations plotted against the largest average probability for an incorrect model for the

DC power flow model (similar to Figure 7 shown here for the AC power flow model). Using

the DC model, the true scenario is identified with the highest average probability only 34

times out of 124, with the remaining cases giving results in which the truth has a similar

probability to a number of other models. In this case, the AC model is clearly superior for

identifying the topology, so it is important that the algorithm is able to produce real-time

estimates of the probability using the more realistic model.

6 Discussion

This paper presents a formulation for the power grid model bank problem and a scheme for

computing the model bank probabilities. We build a multivariate distribution to emulate

the output of the power flow solver and use it in an importance sampling scheme for com-

puting model bank probabilities. The resulting algorithm is extremely fast and accurate.

In many ways, this problem is just the tip of the iceberg for statistical modeling in power

22



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Largest Average Probability of an Incorrect Topology

Av
er

ag
e 

Pr
ob

ab
ilit

y 
of

 T
ru

e 
To

po
lo

gy

 

 
True Topology has Highest Average
Incorrect Topology has Highest Average

Figure 7: Classification probability for the data generating topology averaged over 1000

simulated observations for each of 124 scenarios plotted against the highest average proba-

bility of an incorrect model. These results are based on the AC power flow equations. The

online version of this figure is in color.
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engineering applications. There are several important extensions to using a model bank

and moving beyond it.

The model bank probabilities aid the network operator in making decisions about net-

work function, but we haven’t yet considered the posterior distribution of the injections,

Z, given the data and a particular member of the model bank. The conditional distribu-

tions for the injections, and thus the power on each line, could differ greatly depending on

which model bank member is assumed. If the operator is making decisions using the wrong

configuration, he could take actions that lead to line overloads and grid failures. Thus,

one important future research direction is to accurately infer the posterior distributions of

the injections for all of the relevant network configurations. It is possible that a number

of configurations have high probability, but very different distributions for injections and

line flows. Currently, given knowledge of the network topology and the load profile, an

optimization procedure is used to decide how much power each generator should produce.

In cases where there is ambiguity about the network topology and large differences in the

load profile between possible configurations, new techniques are needed to solve the gen-

erator dispatch problem accounting for uncertainty. A third direction is testing whether

data arise from a scenario that is outside the model bank.

Another important extension involves choosing monitoring points in the network. In

the Smart Grid era, monitoring devices are becoming more readily available. Their utility

is maximized by considering how additional pieces of information aid in the ability to

distinguish one configuration from another. The measurement points chosen in our example

were based on reasonable choices, but obviously leave room for improvement. Perhaps

more importantly, as sensors become ubiquitous, the amount of data outpaces the ability

to process it. Another outcome of this extension will be the determination of which data

are most helpful for state estimation.

In this paper, we discuss a very simple emulation approach: the distribution of the line

predictions for each network configuration is approximated as a Gaussian, possibly after

transformation. More complex choices could be made as well. First, a simple extension is

to use mixtures of Gaussians, which might be useful in the event that the approximation

for the AC solver breaks down or when the priors for the injections have more complex
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forms. Both of these methods effectively integrate out the injections by sampling from

their priors, but the injections could be incorporated in a more complex emulator, perhaps

based on Gaussian processes, using the injections as inputs to predict flows more directly

and precisely.

Finally, the model bank is necessarily limited, and it seems likely that data arising from

outside the bank indicate a serious problem requiring quick diagnosis. Thus, a major goal

is to move beyond the model bank and use the data to estimate the state of the network

and its graph directly. This is a challenging problem due to the combinatorial nature of

the space of graphs.

Supplementary Material

Normal quantile-quantile plots and additional RTS 96 results referenced in the main paper

(pdf file).
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