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Abstract—This paper studies the applicability of the linearized
DC model in optimizing power restoration after significant
network disruptions. In such circumstances, no AC base-point
solution exists and the objective is to maximize the served load.
The paper demonstrates that the accuracy of the linearized
DC model degrades with the size of the disaster and that
it can significantly underestimate active and apparent power.
To remedy these limitations, the paper proposes an Angle-
Constrained DC Power Flow (ACDCPF) model that enforces
constraints on the line phase angles and has the ability to shed
load and generation across the network. Experimental results on
N-3 contingencies in the IEEE30 network and power restoration
instances from disaster recovery show that the ACDCPF model
provides significantly more accurate approximations of active
and apparent power. In the restoration context, the ACDCPF
model is shown to be much more reliable and produces significant
reduction in the size of the blackouts.

Index Terms—power flow, dc power flow, power system anal-
ysis, power system restoration.

NOMENCLATURE

||Ṽi|| Voltage magnitude of bus i, volts
θ◦i Phase angle of bus i, radians
θ◦ij Phase angle for line i to j, i.e., θ◦i − θ◦j
Z̃ Impedance
x Reactance
Ỹbus The nodal admittance matrix
by(i, j) A susceptance from the Ỹbus(i, j) matrix
gy(i, j) A conductance from the Ỹbus(i, j) matrix
pi Active power at bus i, MW
qj Reactive power at bus i, MVar
pij Active power on a line from i to j, MW
qij Reactive power on a line from i to j, MVar
c(i, j) Capacity on a line from i to j, MVA
PN A power network
N A set of buses from a power network
L A set of lines from a power network

I. INTRODUCTION

RESTORING a power system after a significant disruption
(e.g., a cascading blackout or a seasonal hurricane) is

an important task with consequences on both human and
economic welfare. Power system components must be repaired
and then re-energized without causing additional network
instability. The restoration effort should be prioritized to
minimize the size of the blackout by jointly optimizing repairs
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and power restoration. Our earlier work [1] approached this
joint optimization using a sequence of optimization problems
based on the linearized DC model.

Power restoration problems are daunting for a variety
of reasons. First, since no typical operating base point is
known, solving the resulting AC power flow problems is
often challenging [2]. Second, good restoration plans jointly
optimize the routing of repair crews and the scheduling of
component energizing. The resulting optimization is a mixed
integer nonlinear programming problem which is extremely
challenging computationally. As a consequence, the power
restoration algorithm proposed in [1] uses the linearized DC
model in several steps, which makes it possible to model the
problem in terms of mixed integer programs instead of mixed
integer nonlinear programs.

The linearized DC model has been adopted as a general-
purpose tool for a variety of power system optimizations in
recent years (e.g., [2], [3]). However, its accuracy has been
the topic of much discussion: Most papers (e.g., [2], [4])
take an optimistic outlook, while others (e.g., [5], [6]) are
more pessimistic. This issue is of particular interest for power
restoration which involves human and economic welfare. It
is critical that the linearized DC solution be a reasonable
approximation of a high-quality AC power flow solution to
avoid causing additional network instability.

This paper studies the adequacy of using the linearized
DC model for power restoration. It shows that, for power
restoration, the linearized DC model may underestimate line
loading significantly and produce solutions that are not feasible
in an AC solver. Moreover, the experimental results suggest
that large line phase angles are a good indicator of inaccu-
rate active and apparent power estimations. The paper then
proposes an Angle-Constrained DC Power Flow (ACDCPF)
model that enforces constraints on the line phase angles and
has the ability to shed load and generation across the network.
The practicality of the approach is demonstrated on more
than 11,000 damage contingencies in the IEEE30 network
and validated on real-world power restoration problems arising
in disaster management. The paper shows that the ACDCPF
model produces solutions that are highly correlated with the
AC power flow model and that these improvements in accuracy
come with a reasonably small cost in load shedding. In
particular, in the restoration context, the ACDCPF model is
shown to be much more reliable and to produce significant
reductions in the size of the blackouts compared to the linear
DC model.

The rest of the paper is organized as follows, Section II gives
a brief review on power system modeling. Section III motivates
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the paper by presenting a short review of the restoration order
problem. Section IV investigates the accuracy of the linearized
DC model under multiple line outages. Section V discusses the
phase angle constraints and their impact. Section VI presents
our ACDCPF model and its empirical evaluation. Section VII
discusses a number of issues not addressed elsewhere in the
paper. Section VIII concludes the paper and discusses future
work.

II. POWER SYSTEM MODELING - A BRIEF REVIEW

a) AC Power Flow: The ground truth in this paper is
the single-phase AC power model, which is widely accepted
as a high-quality approximation of the steady-state behavior
of real-world power flows. The single-phase AC power flow
model uses Kirchhoff’s current law and Ohm’s law in the
complex plane to define the active and reactive power injected
at each power bus n, i.e.,

pn =
∑
m∈N

||Ṽn||||Ṽm||(gy(n,m) cos(θ◦nm) + by(n,m) sin(θ◦nm))

qn =
∑
m∈N

||Ṽn||||Ṽm||(gy(n,m) sin(θ◦nm)− by(n,m) cos(θ◦nm)).

These AC power flow equations can be solved by iterative
solution techniques such as the Newton-Raphson method [7],
[8], [9]. Convergence of these methods is not guaranteed
and, when the system is heavily loaded, the solution space
is riddled with infeasible low-voltage solutions which are not
usable in practice [10]. In fact, finding a solution to the AC
power flow when a base-point solution is unavailable is often
”maddeningly difficult” [2].

b) The Linearized DC Model: The linearized DC model
is derived from the AC power flow model through a series of
approximations justified by operational considerations. In par-
ticular, it is assumed that (1) the susceptance is large relative
to the impedance |b(n,m)| � |g(n,m)|; (2) the phase angle
difference θ◦nm is small enough to ensure sin(θ◦nm) ≈ θ◦nm;
and (3) the voltage magnitudes ||Ṽ || are close to 1.0 and do
not not vary significantly. Under these assumptions, the AC
power flow equations reduce to

pn =
n 6=m∑
m∈N

by(n,m)(θ◦n − θ◦m) (1)

From a computational standpoint, the linearized DC model
is much more appealing than the AC model: It forms a
system of linear equations that admit reliable algorithms.
These linear equations can also be embedded into optimization
frameworks for decision support in power systems [1], [2], [3],
[11], [12], [13]. However, it is important to verify whether
the assumptions of the linearized DC model holds for each
application domain.

c) Implementation Choices: The linearized DC model
is so pervasive that authors often forget to mention impor-
tant implementation details. Indeed, reference [5] recently
demonstrated that small changes to the model formulation may
have a significant impact on its accuracy. Moreover, there are
conflicting suggestions about how the Ỹbus matrix is derived

(e.g., using 1/x or −=(Z̃−1)) [14], [15], [16], [17]). Our goal
is to make the AC and DC power models as similar as possible
and our implementation reflects this choice.

In particular, we use the same susceptance value by(n,m)
in the AC and DC models and adopt the Ỹbus calculation
described and implemented in MATPOWER [18].

By necessity, the AC solvers use a slack bus to ensure the
flow balance on the network when the total power consumption
is not known a priori (due to line losses for instance). As
a consequence, we also use a slack bus for the various DC
models considered in this paper so that the AC and DC models
can be accurately compared. It should be emphasized that
the ACDCPF model proposed later in the paper does not
need a slack bus and the only reason to use a slack bus in
the ACDCPF model is to allow for meaningful comparisons
between the DC and AC models. This issue is discussed in
more length in Section VII.

III. POWER RESTORATION AND LINEARIZED DC MODELS

The research in this paper is motivated by the joint repair
and restoration of the transmission network after significant
damages from a natural disaster. The goal is to schedule the
repair and to re-energize the electrical components in order to
minimize the size of the blackout. This joint repair/restoration
problem is extremely challenging computationally and is
solved through a sequence of optimization models [1]. Several
of the models in the sequence use a linearized DC model and
it is legitimate to question whether this is adequate in the
presence of significant disruptions of the transmission network.

For the purpose of this paper, it is sufficient to consider
only one of the optimization problems proposed in [1]: The
Restoration Order Problem (ROP). Conceptually, the ROP can
be formulated as follows: A collection of D power system
components have been disrupted and must be re-energized one
at a time. The goal is to find a restoration order d1, d2, d3, . . .
for all the components di ∈ D in order to maximize the served
load over time. In [1], the ROP is modeled as a generalization
of Optimal Transmission Switching (OTS) (e.g., [11], [19]).
More precisely, the ROP is built from a collection of OTS
models, one for each restoration step, which are connected
together to optimize the restoration order globally.

Ideally, the ROP problem should be solved using an AC
power flow model. However, simply finding an AC power flow
solution for such disruptions can be quite challenging, since no
base-point solution is available. Furthermore, ROP and OTS
problems require discrete decision variables to indicate which
components are energized, producing highly complex mixed
integer nonlinear programming models that are beyond the
capabilities of existing optimization technology. As a result,
OTSs and ROPs are modeled in terms of linearized DC
models. Note that there is a significant difference between the
OTS and the ROP models. In OTS models, lines are switched
from a current working base-point, while the ROP has no base-
point because the disruption is arbitrary and extensive. As a
result, it is not clear how accurate the resulting DC model is
and whether it can be used in practice for restoration problems.
This paper answers both questions.
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Model 1 Linearized DC Power Flow (LDC).
Inputs:
PN = 〈N,L〉 the power network
by susceptance from a Ỹbus matrix
s slack bus index

Variables:
θ◦i ∈ (−∞,∞) - phase angle on bus i (radians)

Subject to:
θ◦s = 0 (M1.1)

pn =

n 6=m∑
m∈N

by(n,m)(θ◦n − θ◦m) ∀n ∈ N n 6= s (M1.2)

To compare the DC and AC models for ROPs, we can ignore
the optimization process and focus on the solution returned,
i.e., a restoration ordering. The quality of an ordering can
be evaluated by a series of power flow calculations. Each
step implements a change in the network topology since
an additional component comes online and the power flow
calculation gives the increase in served loads (or, equivalently,
the reduction in the blackout). Therefore, to understand the
accuracy of the linearized DC model in the restoration context,
it is sufficient to study the accuracy of the linearized DC
model in isolation when it is subject to significant topological
changes. Model 1 presents the linearized DC model (LDC)
implementing our modeling assumptions. The model takes as
inputs a power network PN , susceptance values by , and the
index s of the slack bus. The goal is to find the phase angles
of all buses. Constraint M1.1 fixes the phase angle of the slack
bus to 0 and constraint M1.2 implements the power flow model
as defined in Equation 1. It is important to note that the power
balance constraint is not posted for the slack bus. This allows
the slack bus to pick up any unserved loads and balance the
power in the network as is done in a traditional AC power
flow model.

IV. DC POWER FLOW WITH MULTIPLE LINE OUTAGES

To understand the accuracy of the linearized DC model
under significant disruptions, we begin with a comprehensive
empirical study of the IEEE30 system. We consider 11,521
damage contingencies, some with as many as three line out-
ages (about 7% of the total network). Despite its ubiquity for
optimization with N-1 contingency constraints, the accuracy of
the linearized DC model has only been evaluated for specific
application domains (e.g., [2], [6]). To our knowledge, this is
the first direct study of the DC model accuracy for N-1, N-2,
and N-3 contingencies.1

To compare AC and DC models, we measure the same in-
formation (e.g., active power, phase angles, ...) in both models
and plot their correlation. Specifically, for some measurement
data (e.g., the active power of a line), the x-axis gives the data
value in the AC model and the y-axis gives the data value
in the DC model. As a result, the closer the plot is to the
line x = y, the more the AC and DC models agree. We will
focus primarily on apparent power since it is of particular

1References [4], [5], and a companion paper to this one [20] are excellent
studies of the linearized DC model accuracy but they only consider normal
operating conditions.

interest to applications with line capacities. Obviously, in the
DC model, apparent power is approximated by active power.
The AC model is initialized with the voltages set to 1.0 and
the phase angles to zero. For N-3 contingencies, it fails to
converge in about 1% of the cases, as described later in the
paper.

Figure 1 presents the correlation of apparent power for all
N-1, N-2, and N-3 outages on the IEEE30 benchmark, giving
us a total of 11,521 damaged networks. Each data point in
the plots represents the apparent power of a line and, for
brevity, the results are grouped by the number of outages and
superimposed onto the same correlation graph. The plots also
use red triangles for data points obtained from networks that
feature large line phase angles (i.e., |θ◦nm| > π/12). This
makes it possible to understand the link between large line
phase angles and discrepancies in apparent power.

Figure 1 highlights a number of interesting phenomena.
First, observe that the overall accuracy of the model degrades
significantly as the number of damaged components increases,
which is concerning for power restoration applications. Sec-
ond, the linearized DC model underestimates apparent power
systematically and the more significant errors are almost
always associated with large line phase angles. Finally, the
plots indicate a general trend for the apparent power to lean
to the right for large line loads. This is due to line losses
which are not captured in the DC model. This limitation can
be addressed in the linearized DC model as discussed in [2],
[5], [21], [20] and these solution techniques are completely
orthogonal to the proposals in this paper.

Figure 2 dives deeper into these results and investigates
the worst-case damage scenarios (i.e., N-3 contingencies)
in more detail by presenting results for active power (left),
bus phase angles (center), and reactive power (right). Once
again, the color red represents large line phase angles. The
left plot depicts the correlation of active power. It indicates
that the linearized DC model underestimates active power on
large line loads, which are also characterized by large line
angles. The center plot depicts the correlation of the bus phase
angles. It shows that the linearized DC model systematically
underestimates the bus phase angles and the errors increase
with large line phase angles. The right histogram depicts the
number of lines whose reactive power fall within a certain
range in the AC power flow. The color of each bar reflects the
percentage of data points which are marked red in the other
plots. The histogram reveals that N-3 contingencies produce
a significant amount of reactive power on many lines, almost
all of which exhibit large line phase angles. These results thus
indicate that large line angles are correlated with both under-
approximations of active power and large reactive power, and
hence produce significant errors in estimating apparent power.

To increase our intuition, it is also worthwhile to consider
one particular bus from the IEEE30 system. Bus 1 in the
IEEE30 is connected to buses 2 and 3 with impedances of
0.0192+ i0.0575 and 0.0452+ i0.1652 respectively (and thus
susceptance values of −15.65 and −5.632 respectively). We
investigate the N-1 contingencies around this bus to show how
large angle differences and reactive flows are connected. Table
I presents the results for three scenarios: Normal operations,
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Fig. 1. Accuracy of Apparent Power in N-1(left), N-2(center), N-3(right) Contingencies using the Linearized DC Model.
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Fig. 2. Accuracy Details of the N-3 Damage Contingencies using the Linearized DC Model.

TABLE I
DAMAGE TO LINES CONNECTING BUS 1 IN THE IEEE30 SYSTEM.

AC Model LDC Model
Line θ◦n − θ◦m pnm qnm θ◦n − θ◦m pnm

Normal Operation
1− 2 0.09338 173.2 -21.09 0.1023 160.1
1− 3 0.1315 87.74 4.566 0.1479 83.28

Line 1-3 Damaged
1− 2 0.1478 270.4 -40.96 0.1556 243.4
1− 3 – – – – –

Line 1-2 Damaged
1− 2 – – – – –
1− 3 0.4862 304.0 43.00 0.4322 243.4

line 1-3 is damaged, and line 1-2 is damaged. Note that, in
normal operations, two thirds of the active power is flowing
on the line 1-2, so the contingency on that line is likely to
be more interesting. The results indicate that, under normal
operating conditions and when line 1-3 is damaged, the active
power flows are very similar in both models and the phase
angles are small. However, when line 1-2 is damaged, there is
a large discrepancy in apparent power between the two models
although the line angles are rather similar: The active flow in
DC power model is 20% lower than the AC value, the angle
on line 1-3 is large and approaches 0.5 radians, and a large
reactive flow exists.

In summary, the results show that the linearized DC model
becomes increasingly less accurate under significant network
disruptions. Many of these disruptions create large line phase

angles, which lead to under-estimations of active power and
significant reactive power.

V. CONSTRAINTS ON PHASE ANGLE DIFFERENCES

The linearized DC model (i.e., Model 1) is a system of linear
equations that can be solved very efficiently, particularly for
sparse matrices which is the case for power systems. However,
since the phase angles are not restricted in the model, it poten-
tially violates a fundamental assumption of the derivation, i.e.,
sin(θ◦n− θ◦m) ≈ θ◦n− θ◦m. Moreover, the AC model guarantees
that −1 ≤ sin(θ◦n − θ◦m) ≤ 1 while the approximation of the
sine term in the linearized DC model is unconstrained. This
is problematic because the linearized DC model can produce
solutions which are infeasible for the AC power model. In
normal operating conditions, this is not likely. But this is
certainly possible when large disruptions occur. Obviously, it
is possible to state the constraints −1 ≤ θ◦n − θ◦m ≤ 1 and
use linear programming to obtain a feasible solution but this
does not guarantee an accurate approximation (the error is
about 20% at the extremes). Even for resonable phase angles
the linearized DC model will under-estimate them, as shown
in Figure 3. High model accuracy requires much stronger
constraints.
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Fig. 3. Accuracy of Line Phase Angles in N-3 Damage Contingencies using
the Linearized DC Model.

VI. ANGLE-CONSTRAINED DC POWER FLOW

This section proposes an Angle-Constrained DC Power
Flow (ACDCPF) model that addresses the limitations dis-
cussed in the previous section and is particularly appropriate
for power restoration. It is based on three key ideas:

1) Impose constraints on the line phase angles to avoid the
power underestimations of the linearized DC model;

2) Use load and generation shedding to ensure accuracy of
the model;

3) Use an objective function to maximize the served load.
The ACDCPF model is a linear program depicted in Model
2. The model receives as inputs the power network PN ,
the susceptance values by , and the slack bus index s, and
the maximum generation Gi and a desired load Li for each
bus i. These last inputs are implicit in the linearized DC
model since pi is always equal to Gi − Li. Its decision
variables are the traditional bus phase angles θ◦i , as well as
new decision variables gi and li that represent the amount
of generation and load at each bus i. The objective function
(M2.1) maximizes the served load and hence the ACDCPF
model only sheds load to ensure feasibility. Constraint (M2.2)
models Kirchhoff’s current law and ensures flow conservation
for every bus. Constraint (M2.3) enforces the phase angle
constraints to remedy the accuracy issues of the linearized DC
model. Constraint (M2.4) fixes the angle of the slack bus. It is
not necessary for the ACDCPF model in practice and is only
introduced here to make meaningful comparisons between the
ACDCPF and AC models. Note also that constraint (M2.3)
can be posted for every bus, because generator dispatching
and load shedding is used to balance load and generation. The
ACDCPF model is close to Optimal Power Flow (OPF) models
that support flexible generation but typically not load shedding
[22], [23], [24]. Our experimental results indicate that the
difference in phase angles should be no more than ±π/12
(15 degrees) to ensure high accuracy. This tight constraint
introduces no more than 1.1% error in active flow on each line

Model 2 Angle-Constrained DC Power Flow (ACDCPF).
Inputs:
PN = 〈N,L〉 the power network
by susceptance from a Ỹbus matrix
s slack bus index
Gi maximum generation at bus i
Li desired load at bus i

Variables:
θ◦i ∈ (−∞,∞) - phase angle on bus i (radians)
gi ∈ (0, Gi) - generation at bus i
li ∈ (0, Li) - load at bus i

Maximize:∑
n∈N

ln (M2.1)

Subject to:

gn − ln =

n6=m∑
m∈N

by(n,m)(θ◦n − θ◦m) ∀n ∈ N (M2.2)

−π/12 ≤ θ◦n − θ◦m ≤ π/12 ∀〈n,m〉 ∈ L (M2.3)
θ◦s = 0 (M2.4)

due to the sine approximation, but clearly the exact choice for
this constraint is context-dependent. Observe that line phase
angle constraints are very different from bus phase angle
constraints (e.g. −π/6 ≤ θ◦ ≤ π/6) that have been employed
previously in [1], [13], [11], [19].

It is important to emphasize that, in power restoration, the
ACDCPF model is not actually performing load shedding:
Rather it decides how much load can be served after a com-
ponent has been repaired without exacerbating the instability
of the network.2

A. Case Study: The IEEE30 Network

Section IV showed that the accuracy of the linearized DC
model may degrade with significant line damages and that
large line phase angles are indicative of such degradation. This
section repeats these experiments with the ACDCPF model.
Since the ACDCPF model may shed load and generation,
it is important to formulate the AC solver appropriately for
comparison purposes. In particular, we use the active power
values obtained from the ACFCPF model and we obtain
the reactive power values by scaling the active power using
the power factor, thus shedding active and reactive power
proportionally. This shedding approach provides resonable
reactive voltage support for a wide range of networks.

Figure 4 revisits the correlation of apparent power under
different damage conditions. The figure depicts the N-1 (left),
N-2 (center), and N-3 (right) damage contingencies on the
IEEE30 system and the results indicate that the ACDCPF
model is performing very well. The main source of errors
is now due to line losses on heavily loaded lines. As we said
earlier, corrections for line losses are well studied and can be
integrated in the ACDCPF model (e.g., [2], [5], [20], [21]).
There is only one outlier in 10,638 solved N-3 contingencies,
which is rather promising. Figure 5 dives in to the worst case

2Load shedding may not be acceptable in other settings where the load
must be fully served. However, the ACDCPF may see other interesting uses
with the advent of demand response.
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Fig. 4. Accuracy of Apparent Power in N-1(left), N-2(center), N-3(right) Contingencies using the ACDCPF Model.
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Fig. 5. Accuracy Details of the N-3 Damage Contingencies using the ACDCPF Model.

TABLE II
AC SOLVABILITY OF IEEE30 DAMAGE CONTINGENCIES

Linear. DC ACDCPF Model
Damage Contingencies Solved Solved µ(Active Shed)

N-1 41 41 41 0.86%
N-2 820 819 820 2.10%
N-3 10,660 10,602 10,638 3.73%

N-3 damage scenarios and presents results for active power
(left), bus phase angles (center), and reactive power (right).
The figure now shows a strong correlation for active power
and a significant reduction in reactive power. The bus phase
angles are also much better correlated.

These results indicate that line phase angle constraints
largely remedy the inaccuracies of the linearized DC model
and stabilize reactive power flows. This is at the cost of load
shedding and it is important to quantify this loss. Table II
summarizes the average load shedding for each contingency
class. The results indicate that the loss in active power is
reasonable: It is about 2% for N-2 contingencies and about
4% for N-3 contingencies on average. The table also reports
how many times the ACDCPF solution can be transformed
into a feasible AC solution and contrasts that result with the
linearized DC model. The results show that the ACDFPF
model leads to an AC solution 99.8% of the time and solves
30 more contingencies than the linearized DC model.

B. Case Study: Power Restoration
We now investigate the ACDCPF model for power restora-

tion. In the context of restoration, the damage is so extensive
that the full load cannot be served and load shedding always
takes place. Figure 6 investigates an illustrative hurricane dis-
aster scenario based on the United States power infrastructure.
Additional scenarios are omitted for space considerations.
In all of the graphs, two restoration plans are compared,
an unconstrained (DCPF RP) and an angle-constrained plan
(ACDCPF RP). The x-axis indicates how the power flow
solution changes as new restoration actions are executed.

The DC restoration timeline (left) shows the restoration
plans proposed by the DCPF and ACDCPF models. The
ACDCPF RP restores about 10% less power because it sheds
load to satisfy the angle constraint.

The AC restoration timeline (center) is much more illumi-
nating: It depicts the restoration plans obtained by the AC
model when initialized with the DC solutions. First, observe
that a number of data points are missing: This is caused by the
inability of the AC solver to converge, which is not surprising
given that there is no hand-tuning of the AC model and
solution convergence under unfamiliar conditions is considered
”maddeningly difficult” [2]. The dotted lines compensate for
the missing data, by adopting the previous power flow solution
when available. The AC restoration timeline thus demonstrates
that the DCPF model does not easily admit an AC solution
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Fig. 6. The Restoration Order Problem With and Without Angle Constraints and the Impacts on AC Power Flow.

under significant disruptions, while the ACDCPF model con-
sistenly produces solutions. In addition, and more importantly,
the AC restoration plan for the ACDCPF model is very close
to its DC counterpart, while the DCPF model produces a
substantially worse AC restoration plan.

The right figure shows the total apparent power that exceeds
all of the line capacities at various stages of restoration.
Indeed, the IEEE30 case study indicates that large phase angles
coincide with significant under-approximation of apparent
power and that phase angle constraints mitigate these effects.
The right figure confirms these results for the ROP by investi-
gating the amount of power that exceeds line capacities. Less
than half of the data points for the DCPF model are available,
but those data points can have staggering line overloads, which
can reach up to 500 MVA. On the contrary, the ACDCPF
model significantly reduces line overloads and ensures they
are consistently under 100 MVA.

Together, these results indicate that the ACDCPF model
makes significant improvements to power restoration. Al-
though its DC restoration plan restores 10% less power over
time, its AC restoration plan restores significantly more power
and keeps line overloads under control, which is not the case
for the DCPF model.

VII. DISCUSSION

A. Impact of the Slack Bus

It is important to emphasize that the ACDCPF does not
need a slack bus: The ACDCPF model is capable of shedding
load and generation appropriately to balance the network
without resorting to a slack bus or dedicated heuristics. The
slack bus was only introduced in this paper to allow for a
natural comparison between the DC and AC models. The
slack bus formulation is in fact undesirable as it accumulates
line losses along the path to the slack bus, increases the load
at the slack bus, and potentially causes larger phase angles
and inaccuracies in apparent power (as shown in [5]). So the
inaccuracies presented in this paper are likely over-estimated
because of the slack bus.

B. Line Losses

It should also be clear that line capacities can easily be
added to the ACDCPF model which is a linear program. In
fact, our ACDCPF model for power restoration uses capacity
constraints on the lines. Line capacities have an interesting
connection to line phase angle constraints. In an AC model, a
line capacity c(n,m) imposes the constraint√

p2
nm + q2nm ≤ c(n,m)

which, in linearized DC models, simplifies to

−c(n,m) ≤ pnm ≤ c(n,m)

Expanding the definition of pnm (Equation 1) and dividing by
the susceptance b(n,m) gives

−c(n,m)
b(n,m)

≤ θ◦n − θ◦m ≤
c(n,m)
b(n,m)

.

Therefore, line capacity constraints in the ACDCPF model
can be viewed as line phase angle constraints. In practice,
line capacity constraints may be more or less restrictive than
line phase angle constraints and there is no harm in posting
both constraints in a linear program. Interestingly, for the
standard IEEE benchmarks and those provided with MAT-
POWER, capacity constraints are significantly less constrain-
ing than a ±π/12 phase angle constraint. The relationship
between line angle constraints and line capacity constraints
is fortunate because many existing power system optimization
tools support line capacity constraints. A simple preprocessing
step can transform line phase angle constraints into equivalent
line capacity constraints to ensure model accuracy in existing
power system optimization tools.

VIII. CONCLUSION

This paper studied the applicability of the linearized DC
model in the context of disaster recovery and power restora-
tion. It presented experimental results showing that the lin-
earized DC model becomes increasingly less accurate under
significant network disruptions. Indeed, the linearized DC
model may significantly under-estimate active power in these
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networks, which also exhibit substantial reactive power. More-
over, the experimental results indicated that these inaccuracies
are strongly correlated with large line phase angles.

The paper then presented an ACDCPF model which en-
hances the linearized DC model with strong line phase angle
constraints and the ability to shed load and generation. Ex-
perimental results indicate that the ACDCPF model remedies
many of the limitations of the linearized DC model, provides
highly accurate approximation of active power, and results in
solutions with significantly less reactive power. Moreover, the
load shedding performed by the ACDCPF model is small and
was about 4% on average for N-3 contingencies on the IEEE30
system and 10% for power restoration problems on the United
States infrastructure with hurricane scenarios similar to those
used at the National Hurricane Center. The ACDCPF model
is particularly appropriate for power restoration applications
where load shedding is a necessity and the goal is to maximize
the load served over time. The experimental results show
that the ACDCPF model is much more reliable and produces
significant reduction in the blackout area compared to the
DCPF model.

Our future research will expand the ACDCPF model, its
analysis, and its applications in a variety of directions. From
a functionality standpoint, the ACDCPF model should ideally
be enhanced to approximate line losses, which are the major
source of error at this stage, as well as reactive power in order
to obtain more accurate power calculations. From an analysis
standpoint, it would be interesting to compare the ACDCPF
model with an AC solver using slack bus distribution. Such
an AC solver models the real power systems more accurately
and provides a better basis for comparison, since our ACDCPF
model can shed load and generation at all buses. Finally, from
an application standpoint, it would be interesting to study
the applicability of our ACDCPF model to other types of
applications exhibiting significant topological changes, such
as long-term planning and vulnerability analysis.

REFERENCES

[1] P. Van Hentenryck, C. Coffrin, and R. Bent, “Vehicle routing for the last
mile of power system restoration,” Proceedings of the 17th Power Sys-
tems Computation Conference (PSCC’11), Stockholm, Sweden, august
2011.

[2] T. Overbye, X. Cheng, and Y. Sun, “A comparison of the ac and dc
power flow models for lmp calculations,” in System Sciences, 2004.
Proceedings of the 37th Annual Hawaii International Conference on,
jan. 2004, p. 9 pp.

[3] J. Salmeron, K. Wood, and R. Baldick, “Worst-case interdiction analysis
of large-scale electric power grids,” Power Systems, IEEE Transactions
on, vol. 24, no. 1, pp. 96 –104, feb 2009.

[4] K. Purchala, L. Meeus, D. Van Dommelen, and R. Belmans, “Usefulness
of DC power flow for active power flow analysis,” Power Engineering
Society General Meeting, 2005. IEEE, pp. 454–459, 2005.

[5] B. Stott, J. Jardim, and O. Alsac, “DC Power Flow Revisited,” Power
Systems, IEEE Transactions on, vol. 24, no. 3, pp. 1290–1300, 2009.

[6] O. Ceylan, A. Ozdemir, and H. Dag, “Branch outage solution using
particle swarm optimization,” in Power Engineering Conference, 2008.
AUPEC ’08. Australasian Universities, dec. 2008, pp. 1 –5.

[7] R. Baldick, Applied Optimization: Formulation and Algorithms for
Engineering Systems. Cambridge University Press, 2009.

[8] M. Crow, Computational Methods for Electric Power Systems, Second
Edition (Electric Power Engineering Series). CRC Press, 2009.

[9] J. Grainger and W. S. Jr., Power System Analysis. McGraw-Hill
Science/Engineering/Math, 1994.

[10] Y. Tamura, H. Mori, and S. Iwamoto, “Relationship between voltage
instability and multiple load flow solutions in electric power systems,”
Power Apparatus and Systems, IEEE Transactions on, vol. PAS-102,
no. 5, pp. 1115 –1125, may 1983.

[11] E. Fisher, R. O’Neill, and M. Ferris, “Optimal transmission switching,”
Power Systems, IEEE Transactions on, vol. 23, no. 3, pp. 1346 –1355,
aug. 2008.

[12] D. Bienstock and S. Mattia, “Using mixed-integer programming to solve
power grid blackout problems,” Discrete Optimization, vol. 4, no. 1, pp.
115 – 141, 2007.

[13] C. Coffrin, P. Van Hentenryck, and R. Bent, “Strategic stockpiling of
power system supplies for disaster recovery.” Proceedings of the 2011
IEEE Power & Energy Society General Meetings (PES 2011), Detroit,
MI, july 2011.

[14] U. G. Knight, Power systems engineering and mathematics, by U. G.
Knight. Pergamon Press Oxford, New York,, 1972.

[15] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and
Control. Wiley-Interscience, 1996.

[16] L. Powell, Power System Load Flow Analysis (Professional Engineer-
ing). McGraw-Hill Professional, 2004.

[17] A. Gomez-Exposito, A. J. Conejo, and C. Canizares, Electric Energy
Systems: Analysis and Operation (Electric Power Engineering Series).
CRC Press, 2008.

[18] C. Murillo-Sánchez and D. Gan, “Matpower,” Ithaca, 1997.
[19] K. Hedman, R. O’Neill, E. Fisher, and S. Oren, “Optimal transmission

switching with contingency analysis,” Power Systems, IEEE Transac-
tions on, vol. 24, no. 3, pp. 1577 –1586, aug. 2009.

[20] C. Coffrin, P. Van Hentenryck, and R. Bent, “Approximating Line Losses
and Apparent Power in AC Power Flow Linearizations,” Submitted
to, Proceedings of the 2012 IEEE Power & Energy Society General
Meetings (PES 2012), San Diego, CA, july 2012.

[21] C. A. N. A Borghetti, M Paolone, “A Mixed Integer Linear Program-
ming Approach to the Optimal Configuration of Electrical Distribution
Networks with Embedded Generators,” Proceedings of the 17th Power
Systems Computation Conference (PSCC’11), Stockholm, Sweden, 2011.

[22] D. Kirschen and H. Van Meeteren, “Mw/voltage control in a linear
programming based optimal power flow,” Power Systems, IEEE Trans-
actions on, vol. 3, no. 2, pp. 481 –489, may 1988.

[23] O. Alsac, J. Bright, M. Prais, and B. Stott, “Further developments in
lp-based optimal power flow,” Power Systems, IEEE Transactions on,
vol. 5, no. 3, pp. 697 –711, aug 1990.

[24] H. Dommel and W. Tinney, “Optimal power flow solutions,” Power
Apparatus and Systems, IEEE Transactions on, vol. PAS-87, no. 10,
pp. 1866 –1876, oct. 1968.

Carleton Coffrin received a B.Sc. in Computer Science and a B.F.A. in
Theatrical Design from the University of Connecticut, Storrs, CT and a M.S.
from Brown University, Providence, RI. He is currently a Ph.D. candidate in
the department of computer science at Brown University.

Pascal Van Hentenryck is a Professor of Computer Science at Brown
University. He is a fellow of the Association for the Advancement of Artificial
Intelligence, the recipient of the 2002 ICS INFORMS award, the 2006 ACP
Award, honorary degrees from the University of Louvain and the University
of Nantes, and the Philip J. Bray award for teaching excellence. He is the
author of five MIT Press books. Most of this research in optimization software
systems has been commercialized and is widely used in academia and industry.

Russell Bent received his PhD in Computer Science from Brown University in
2005 and is currently a staff scientist at LANL in the Energy and Infrastructure
Analysis Group. His publications include deterministic optimization, opti-
mization under uncertainty, infrastructure modeling and simulation, constraint
programming, algorithms, and simulation. Russell has published one book
and over thirty articles in peer-reviewed journals and conferences in artificial
intelligence and operations research. A full list of his publications can be
found at http://public.lanl.gov/rbent/.


