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Approximating Line Losses and Apparent Power
in AC Power Flow Linearizations

Carleton Coffrin, Student Member, IEEE, Pascal Van Hentenryck, Member, IEEE, and Russell Bent

Abstract—The linearized DC model is widely used in optimiza-
tion of power systems but few studies evaluate the accuracy and
feasibility of its solutions. This paper studies the source of errors
in the linearized DC model and proposes three new models to
improve its accuracy. In particular, it proposes a cold-start model
capturing line losses and hot-starts models for approximating
apparent power and more accurate phase angles. All of the
models are linear programs and can easily be used as a building
block for more complex applications. Experimental results on
well-known benchmarks show the significant benefits in accuracy
of the new models and the high correlation of their solutions with
AC solutions.

Index Terms—power flow, dc power flow, power system anal-
ysis, line losses, apparent power.

NOMENCLATURE

||Ṽi|| Voltage magnitude of bus i, volts
θ◦i Phase angle of bus i, radians
θ◦ij Shorthand for θ◦i − θ◦j
Z̃ Impedance
Z̃(i, j) Impedance on a line from i to j
x Reactance
r(i, j) Resistance of a line from i to j
Ỹbus The nodal admittance matrix
by(i, j) Susceptance from the Ỹbus(i, j) matrix
gy(i, j) Conductance from the Ỹbus(i, j) matrix
S̃ij Apparent power on a line from i to j, MVA
L̃ij Line Losses from i to j, MVA
pi Active power at bus i, MW
qj Reactive power at bus i, MVar
pij Active power on a line from i to j, MW
qij Reactive power on a line from i to j, MVar
PN A power network
N A set of buses from a power network
L A set of lines from a power network

I. INTRODUCTION

RECENT years have seen a significant increase of interest
in power system optimization. Some common applica-

tion domains include LMP-base market calculations [1], opti-
mal transmission switching [2], [3], distribution configuration
[4], expansion planning [5], vulnerability analysis [6], [7] and
power system restoration [8], [9] to name a few. In general,
power system optimization gives rise to challenging nonlinear
optimization problems. However, due to the computational
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difficulties associated with nonlinear optimization, the above-
mentioned applications typically resort to the widely accepted
linearized DC model of power systems. This linearized DC
model is attractive because its linear equations are easily
integrated into larger models (e.g., a mixed-integer program)
for a specific application domains.

Despite the pervasive use of the linearized DC model, very
few applications have investigated its accuracy and how it
might effect the quality and feasibility of solutions. Appli-
cations in power system optimization are usually interested
in two quantities: generator dispatch and line apparent power.
Generator dispatch is necessary for calculating ideal power
prices, while apparent power is used for satisfying line loading
constraints. Inaccuracies in either of these quantities can lead
to significant economic costs or system failures. Even small
errors in the price of generation can lead to millions of dollars
in energy revenue when aggregated over one year [10]. Inaccu-
racies in apparent power computations can, in the worst case,
lead to voltage collapse and blackout contingencies. There are
thus considerable incentives to understand the behavior of the
linearized DC model and improve its accuracy.

This paper begins with a study of linearized DC model,
which confirms a number of its inaccuracies observed else-
where (e.g., [11]). The paper then proposes three new linear
programming models for power systems that address the
main source of inaccuracies in the linearized DC model. In
particular, it proposes a cold-start model that captures line
losses, a hot-start model that approximates apparent power
directly, and a hot-start model that improves phase angles.
The techniques developed in each model are complementary
and can be used together. Moreover, each of these models is
a linear program and hence can easily be integrated in power
optimization applications in the same way as the linearized
DC model. The paper highlights the benefits of the three new
models on the IEEE30 power system in detail and evaluates
them on seven well-known benchmarks in power systems. The
experimental results show that the new models significantly
improve the accuracy of the linearized DC model and achieve
high correlations with an AC model for active and apparent
power.

The rest of the paper is organized as follows, Section II
briefly reviews prior work on the accuracy of the linearized
DC model and Section III defines the concepts of hot-start
and cold-start models. Section IV gives a brief review on
power system modeling and presents the linearized DC model.
Section V presents a detailed study of the IEEE30 network.
Section VI discusses the various sources of inaccuracies in
the linearized DC model. Section VII presents the cold-start
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model capturing line losses. Section VIII introduces a hot-start
model for improving the accuracy of bus phase angles. Section
IX presents a hot-start model approximating apparent power.
Section XI reports experimental results for these three models
on well-known benchmarks. Section XII concludes the paper
and discusses future research.

II. A BRIEF REVIEW OF PRIOR WORK

This section briefly reviews prior work on the accuracy of
the linearized DC model. More details are given in appropriate
sections in the paper. Despite the ubiquity of linearized DC
model, there are surprisingly few studies on its accuracy.
Three seminal references on this topic are [1], [11], [12].
The accuracy of the linearized DC model on random power
networks and the Belgian high voltage network was studied
in [12]. The paper concluded that a flat voltage ratio and high
x/r ratios are necessary for model accuracy. Reference [11]
considered a number of linear models from the literature on
very large power networks. They point out that incorporating
line losses and using slack bus distribution are essential for
scaling linearized DC models to large power networks. Lastly,
reference [1] studied the accuracy of the linearized DC power
flow relative to the AC power flow in a specific application
domain, i.e., LMP calculations for security constrained OPFs.
They report that the models behave similarly for a 37-bus
system but differ more significantly on a larger 12,925-bus
network. Overall, the accuracy of the linearized DC model
is an active point of discussion, with most papers having
an optimistic outlook (e.g., [12], [1]), while others are more
pessimistic (e.g., [11]). The fact that ignoring reactive flows
when calculating apparent power can lead to significant under-
estimations of line loading was mentioned in [13], although
the paper does not explicitly consider linearized DC power
flow accuracy.

III. COLD-START AND HOT-START MODELS

The linearized DC model has a wide variety of application
domains. These applications can provide additional informa-
tion, that may challenge the assumptions behind the derivation
of the linearized DC Model, or impose runtime constraints. For
the purpose of this paper, it is useful to distinguish between
hot-start and cold-start models (as defined in [11]). In hot-
start models, a solved AC base-point solution is available and
hence the linearized DC model has at its disposal additional
information such as voltages. In cold start models, no such
solved AC base-point solution is available and it becomes
particularly relevant to determine if a linearized DC solution
can be transformed into a AC solution. Hot-start models are
often used where the network is operational and the network
topology is relatively stable, e.g., in LMP-base market calcu-
lations, optimal line switching, and distribution configuration,
and real-time security constrained economic dispatch. Cold-
start models are used, for instance, security constrained unit
commitment, power restoration after significant disruption, and
long-term planning studies.

IV. POWER SYSTEM MODELING - A BRIEF REVIEW

For context, a brief review of the connections between the
AC and linearized DC models is nessisary.

a) AC Power Flow: The ground truth in this paper is
the single-phase AC power model, which is widely accepted
as a high-quality approximation of the steady-state behavior
of real-world power flows. The single-phase AC power flow
model uses Kirchhoff’s current law and Ohm’s law in the
complex plane to define the active and reactive power injected
at each power bus n, i.e.,

pn =
∑
m∈N

||Ṽn||||Ṽm||(gy(n,m) cos(θ◦nm) + by(n,m) sin(θ◦nm))

qn =
∑
m∈N

||Ṽn||||Ṽm||(gy(n,m) sin(θ◦nm)− by(n,m) cos(θ◦nm)).

These AC power flow equations can be solved by iterative
solution techniques such as the Newton-Raphson method [14],
[15], [16]. Convergence of these methods is not guaranteed
and, when the system is heavily loaded, the solution space
is riddled with infeasible low-voltage solutions which are not
usable in practice [17]. In fact, finding a solution to the AC
power flow when a base-point solution is unavailable is often
”maddeningly difficult” [1].

b) The Linearized DC Model: The linearized DC model
is derived from the AC power flow model through a series of
approximations justified by operational considerations. In par-
ticular, it is assumed that (1) the susceptance is large relative
to the impedance |b(n,m)| � |g(n,m)|; (2) the phase angle
difference θ◦nm is small enough to ensure sin(θ◦nm) ≈ θ◦nm;
and (3) the voltage magnitudes ||Ṽ || are close to 1.0 and do
not not vary significantly. Under these assumptions, the AC
power flow equations reduce to,

pn =
n 6=m∑
m∈N

by(n,m)(θ◦n − θ◦m) (1)

From a computational standpoint, the linearized DC model is
much more appealing than the AC model: It forms a system
of linear equations that admit reliable algorithms. These linear
equations can also be embedded into optimization frameworks
for decision support in power systems [9], [1], [7], [2], [5], [8].
However, it is important to verify whether the assumptions of
the linearized DC model holds for each application domain.

c) Implementation Choices: The linearized DC model
is so pervasive that authors often forget to mention impor-
tant implementation details. Indeed, reference [11] recently
demonstrated that small changes to the model formulation
may have a significant impact on its accuracy. Moreover,
there are conflicting suggestions about how the Ỹbus matrix
is derived (e.g., using 1/x or −=(Z̃−1)) [18], [19], [20],
[21]. Our goal is to make the AC and DC power models as
similar as possible and our implementation reflects this choice.
In particular, we use the same susceptance value by(n,m)
in the AC and DC models and adopt the Ỹbus calculation
described and implemented in MATPOWER [22]. By necessity,
AC solvers use a slack bus to ensure the flow balance in the
network when the total power consumption is not known a
priori (e.g., due to line losses). As a consequence, we also use
a slack bus for the various DC models considered in this paper
so that the AC and DC models can be accurately compared. It
should be emphasized that the models proposed do not need
a slack bus and the only reason to use a slack bus in these
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Model 1 Linearized DC (LDC).
Inputs:
PN = 〈N,L〉 the power network
by a Ỹbus matrix
s slack bus index

Variables:
θ◦i ∈ (−∞,∞) - phase angle on bus i (radians)

Subject to:
θ◦s = 0 (M1.1)

pn =

n6=m∑
m∈N

by(n,m)(θ◦n − θ◦m) ∀n ∈ N n 6= s (M1.2)

models is to allow for meaningful comparisons between the
DC and AC models.

Model 1 presents the linearized DC model (LDC) used in
this paper. In this paper, both the AC and DC models fix the
phase angle of the slack bus to 0. The slack bus also has
no active power equation so that it can balance balance any
power flow mismatch in the network. The remaining buses
use Kirchhoff’s current law, i.e., Equation 1, to enforce flow
conservation in the power network.

V. CASE STUDY: THE IEEE30 NETWORK

To understand the accuracy of the linearized DC model,
we study the IEEE30 benchmark in detail. To compare AC
and DC models, we measure the same information (e.g.,
active power, phase angles, ...) in both models and plot their
correlation. Specifically, for some measurement data (e.g., the
active power of a line), the x-axis gives the data value in the
AC model and the y-axis gives the data value in the DC model.
As a result, the closer the plot is to the line x = y, the more
the AC and DC models agree. We will focus on active power,
bus phase angles, and apparent power. Active power and bus
angles are interesting because they fully describe the solution
to the linearized DC model. Apparent power is of particular
interest for applications with line capacities. Obviously, in the
DC model, apparent power is approximated by active power.

Figure 1 presents the correlations of active power (left),
bus phase angles (center), and apparent power (right) on
the IEEE30 system. The correlations are reasonably accurate,
although some obvious outliers are present. The outlier in the
top right corner of the active power graph (left) is due to the
lack of line loss computations. The phase angle graph (center)
depicts consistently larger angles in the linearized DC model,
which is due in part to the assumption that ||Ṽ || = 1.0. Indeed,
in the IEEE30 network, most voltages are greater than 1.0, so
the difference in phase angles must be larger in the linearized
DC model to move the same amount of power. Errors in phase
angles also accumulate as the power flows farther from the
slack bus. The apparent power (right) is accurate in most cases
but is generally underestimated by the linearized DC model,
which may be problematic for applications where line loading
is strongly constrained. The top-right outlier indicates a larger
error due the lack of line loss calculations. The two lower-
left outliers are purely reactive flows (such as a capacitors).
Ignoring reactive flow is one of the greatest weaknesses of the
linearized DC model.

Model 2 Line Loss LDC (LL-LDC).
Inputs:
PN = 〈N,L〉 the power network
by a Ỹbus matrix
r line resistance values
s slack bus index

Variables:
θ◦i ∈ (−∞,∞) - phase angle on bus i (radians)
−−→pnm ∈ (0,∞) - active power flowing from bus n to bus m
←−−pnm ∈ (0,∞) - active power flowing from bus m to bus n

Subject to:
θ◦s = 0 (M2.1)

pn =

n 6=m∑
m∈N

by(n,m)(θ◦n − θ◦m) + r(n,m)←−−pnm
2 ∀n ∈ Nn 6= s (M2.2)

−−→pnm −←−−pnm = by(n,m)(θ◦n − θ◦m) ∀n ∈ N ∀m ∈ N (M2.3)

VI. INACCURACIES IN THE LINEARIZED DC MODEL

These IEEE30 observations are consistent across several
benchmarks and Section XI presents similar results on a
number of well-known networks. Moreover, after extensive
testing, it is possible to rank the sources of errors in decreasing
order of importance as follows: (1) line losses; (2) the reactive
component in apparent power; and (3) bus phase angles. Errors
incurred by the sine approximation were so negligible that
they can be ignored entirely. Furthermore, when the phase
angle becomes large enough for the sine approximation to
become significant, reactive power flow is the primary source
of error and overshadows the sine approximation error. These
observations are consistent with prior work (e.g., [11]) which
also identifies line losses as the main source of errors in the
linearized DC model.

The rest of this paper studies how to remedy some of these
limitations in a linear programming setting. In other words, our
goal is to obtain a linear programming model that improves
the accuracy of the linearized DC model. This linear program
can be reused across multiple applications. Our treatment of
line losses is general and can be used for both cold-start and
hot-start models. Our solutions for apparent power and phase
angles are hot-start models only.

VII. APPROXIMATING LINE LOSSES

This section derives an extension of the linearized DC model
incorporating line losses, which we call the LL-LDC model
(see Model 2). Consider a line from bus n to m, its impedance
Z̃(n,m), and its complex current Ĩnm. The active and reactive
line losses L̃nm are given by

L̃nm = Z̃(n,m)||Ĩnm||2. (2)

The lack of an explicit representation of the line current in
the linearized DC model makes it difficult to approximate
this quantity. However, the derivation of the linear DC model
assumes |pnm| ≈ ||Ĩnm||. Since only active power is modeled
in linearized DC models, we restrict our attention to active line
losses only, i.e., <(L̃nm). The combination of the equation for
active line power and the line loss calculation results in the
following line loss approximation:

<(L̃nm) = <(Z̃(n,m))[by(n,m)(θn − θm)]2 (3)
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Fig. 1. Accuracy of the Linearized DC Model on Active Power (left), Bus Phase Angles (center), and Apparent Power (right).

−150 −100 −50 0 50 100 150

−
15

0
−

10
0

−
50

0
50

10
0

15
0

 Line Active Power Correlation (MW) 

AC Power Flow

LL
−

LD
C

 P
ow

er
 F

lo
w

Fig. 2. Active Power in the LL-LDC Model.

To obtain a linear programming approximation of Equation 3,
the first step consists in determining the flow direction on every
line, since active line losses are incurred at the bus “sending”
the power. Because the flow direction is not known a priori,
the LL-LDC model uses two new nonnegative variables for
each line, −−→pnm and ←−−pnm, which are linked by the constraint

−−→pnm −←−−pnm = by(n,m)(θ◦n − θ◦m) (4)

where −−→pnm represents the flow from bus i to bus j and ←−−pnm

the flow from bus n to bus m. The power equation for a line
(n,m) now becomes

pnm = by(n,m)(θ◦n − θ◦m) + r(n,m)←−−pnm
2 (5)

since the line losses must be removed from the bus receiving
the power. The second step consists in using a piecewise linear
approximation of the quadratic term←−−pnm

2 which is a standard
technique in linear programming. In our case studies, the
quadratic function is approximated in 10 pieces in the range
0 ≤ ←−−pnm ≤ by(n,m). The resulting, more accurate, definition
of pnm can then be used in line capacity constraints.

Figure 2 evaluates the LL-LDC model on the IEEE30
benchmark. The results indicate a significant improvement in
accuracy for active power. The remaining error is primarily
due to the assumption that |pnm| ≈ ||Ĩnm||. Extensive results
on the LL-LDC model are given in Table I to be discussed
later and show consistent improvements on many benchmarks.
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Fig. 3. Bus Phase Angles in the LLVC-LDC Model.

Other approaches were developed for incorporating line
losses in the linearized DC model which are recognized as
a source of significant errors [11], [1]. The most common
method is to use an AC solver to calculate the line losses and
then add those losses to the loads in the linearized DC model
(e.g., [1]). However, the assignment of losses to load points is
arbitrary and could remove resonable solutions form the DC
power flow model. Other approaches have used an AC solution
to fit a linear model of losses (e.g., [11]). This approach
becomes inaccurate when line flows change significantly. Both
of these approaches require a solved AC base point, which is
not the case of our LL-LDC model. The approach presented
here has similarities to the line loss modeling in [4] for a
distribution line switching problem. Their derivation is quite
different however: It reasons in terms of current and does not
reason about the flow direction.

VIII. IMPROVING PHASE ANGLE ACCURACY

The linearized DC model consistently over-estimates the
phase angle difference because of three factors: (1) the absence
of phase angle constraints from reactive power; (2) the lack
of transformer models; (3) the assumption that all ||Ṽ || = 1.0.
Reactive power and transformers are typically out of the scope
of linearized DC model but, in the hot-start context, the voltage
assumption can be remedied to some extent. It is sufficient to
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use the equation

pnm = ||Ṽ h
n ||||Ṽ h

m|| by(n,m)(θn − θm) (6)

for the power on line (n,m) where Ṽ h
i is the value of

voltage Ṽi in a solved AC base-point. Figure 3 evaluates the
resulting LLVC-LDC model (linearized DC model with line
losses and voltage correction) with respect to the accuracy of
the bus phase angles. The LLVC-LDC model produces some
improvements which are consistent over several benchmarks,
although there remains significant room for improvements.
Note that integrating bus voltages into the power flow equa-
tions is suggested in [11] although phase angle accuracy is
never explicitly discussed.

IX. APPROXIMATING APPARENT POWER

Capacity constrained power flow applications, such as [1],
[2], [5], [7], [8], [9], should ideally reason over apparent power
to determine line loading. The linearized DC model ignores
reactive power and approximates apparent power by active
power. Unfortunately, this approximation can lead to signif-
icant underestimation of line loading [13]. Furthermore, the
contribution of reactive power to line loading often increases
under network disruptions, such as N-1 contingencies which
are often used in optimization applications [23].

One route for improving estimations of apparent power is
to integrate reactive flows into the linearized DC model as
in the fast decoupled load flow [24]. Another option is to
approximate the nonlinear behavior of reactive flows with a
mixed integer programming (MIP) formulation [4]. This is an
interesting approach but it may have significant computational
cost as it introduces a collection of discrete variables. Our goal
is different than both of these: We want a linear-programming
approximation of apparent power that can be used in a variety
of optimization problems and integrated easily as part of a
more complex model with minimal computational costs.

This section presents a novel approach where apparent
power is modeled directly in terms of phase angles and
without reference to reactive power. We start by motivating
the approach and then present the derivation.

A. A Motivating Study

In benchmark IEEE30, buses 2 and 5 are voltage-controlled
and are connected directly by a line. Since the voltage
magnitudes ||Ṽ || are known constants, the apparent power
on this line can be understood completely by varying the
phase angle difference between the buses. Figure 4 shows
how the active, reactive, and apparent power change as the
phase angle difference θ◦nm is varied on line (2, 5). Three
different scenarios are presented: On the left, the voltages
are fixed at the regulated values in the system specification,
||Ṽ2|| = 1.045, ||Ṽ5|| = 1.010; In the center, the voltages are
set to 1.000 to investigate the assumption of the linearized DC
model; on the right, the voltages are set to the extreme values
||Ṽ2|| = 1.050 and ||Ṽ5|| = 0.950 to understand a worse-
case scenario. The figure only depicts the graphs for angle
differences up to ±π/3, since power systems are designed
to keep phase angles small (for instance, they may remain

Model 3 Apparent Power LDC (LLVCAP-LDC).
Inputs:
PN = 〈N,L〉 the power network
by a Ỹbus matrix
r line resistance values
||Ṽ h|| voltage estimates
s slack bus index

Variables:
θ◦i ∈ (−∞,∞) - phase angle on bus i (radians)
−−→pnm ∈ (0,∞) - active power flowing from bus n to bus m
←−−pnm ∈ (0,∞) - active power flowing from bus m to bus n
anm ∈ (0,∞) - apparent power flowing from bus n to bus m

Subject to:
θ◦s = 0 (M3.1)

pn =

n 6=m∑
m∈N

||Ṽ h
n ||||Ṽ h

n ||by(n,m)(θ◦n − θ◦m)

+ r(n,m)←−−pnm
2 ∀n ∈ Nn 6= s (M3.2)

−−→pnm −←−−pnm = ||Ṽ h
n ||||Ṽ h

n ||by(n,m)(θ◦n − θ◦m) ∀n,m ∈ N (M3.3)
anm = PLA(||S̃h

nm||)(θ◦n, θ◦m) ∀n ∈ N ∀m ∈ N (M3.4)

between 1◦ and 5◦ [12]). Small phase angles are an operational
assumption of the linearized DC model, which makes phase
angles differences around 0◦ of particular interest.

The center graph indicates that the estimation ||S̃nm|| =
|pnm| of the linearized DC model is highly accurate when
the voltage magnitudes are the same. The left graph shows
that the linearized DC estimation is rather accurate, except
for small and large angle differences. For an angle difference
of zero, there is no real power in the linearized DC model,
although the apparent power never reaches zero. The right
graph indicates that the linearized DC model is very inaccurate
when the voltage magnitudes differ substantially. In particular,
it is rather inaccurate for small angle differences, which is
the common case. Such significant differences in voltage are
rare in normal operations but they may arise in applications
with large topological changes such as expansion planning and
power restoration after significant disruptions.

Perhaps the most interesting observation is the commonali-
ties between all of these scenarios. Despite the nonlinearity of
apparent power, all of the graphs look reasonably convex1 and
have a minimum at θ◦nm = 0. This suggests that a piecewise-
linear approximation of apparent power may be able to handle
line capacity constraints reasonably well by using available
voltages in hot-start models.

B. A Piecewise Linear Approximation of Apparent Power

We now derive a piecewise approximation of apparent
power using voltage estimates. Apparent power is defined as
the magnitude of the complex power S̃, i.e.,

||S̃nm|| =
√
p2

nm + q2nm (7)

In a hot-start context, we may assume that reasonable voltage
estimates Ṽ h

n are available. We can then define two functions
which, given phase angles θ◦n and θ◦m, return estimations of
the active and reactive power on a line (n,m) in terms of

1It is clear that this function is not truly convex by the slight curve near
the edges of the domain.
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Fig. 4. Accuracy of the Linearized DC Model: Actual Voltage Magnitude (left), Magnitudes at 1.00 (center), and Magnitudes at 1.05 and 0.95 (right).

these voltages. The active power is given by the function
ph

nm(θ◦n, θ
◦
m) defined as

||Ṽ h
n ||||Ṽ h

n ||ġy(n,m)+
||Ṽ h

n ||||Ṽ h
m||(gy(n,m) cos(θ◦nm) + by(n,m) sin(θ◦nm)).

where ġy(n,m) is the contribution of line (n,m) to the
diagonal values gy(n, n) of Ỹbus. The function for reactive
power qh

nm(θ◦n, θ
◦
m) can be defined similarly. Given phase

angles θ◦n and θ◦m, the apparent power on a line (n,m) in
a hot-start context can be obtained from the function

||S̃h
nm||(θ◦n, θ◦m) =

√
ph

nm(θ◦n, θ◦m)2 + qh
nm(θ◦n, θ◦m)2

||S̃h
nm|| is nonlinear and cannot be used directly in a linear pro-

gram. We use a piecewise linear approximation PLA(||S̃h
nm||)

instead and include a constraint

anm = PLA(||S̃h
nm||)(θ◦n, θ◦m)

where anm denotes (an approximation of) the apparent power.
anm can appear in line capacity constraints, which in turn
constrain the phase angles.

We call the resulting linear program (which includes line
losses and voltage corrections) the LLVCAP-LDC model
(Model 3). In the implementation, the piecewise linear approx-
imation uses 13 constraints to approximate the convex hull of
the apparent power, with breakpoints chosen in the range of
±π/12 to achieve high accuracy for small angle differences.

A key advantage of the LLVCAP-LDC model is to define
apparent power in terms of the bus phase angles, which
can then be integrated in many applications and allows for
significant changes in power flow. This contrasts with other ap-
proaches (e.g., [13]) that suggest restating capacity constraints
in terms of active power using the voltages and reactance on
the line.

Figure 5 (top) revisits the correlation of apparent power
using the LLVCAP-LDC model (the graph for the linearized
DC model is given in Figure 1 (right)). The outliers are
essentially eliminated in the LLVCAP-LDC model which
generally overestimates apparent power on the lines. This is
preferable in practice, since line capacities must be strictly
satisfied. The remaining inaccuracies are due to differences in
bus phase angles between the AC and LLVCAP-LDC models.
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Fig. 5. Accuracy of the Apparent Power (top) and Phase Angle Differences
(bottom) in the LLVCAP-DC Model.

These differences are illustrated Figure 5 (bottom). Improving
the accuracy of bus phase angles would also improve the
approximation of apparent power as discussed in Section VIII.

X. COMPUTATIONAL IMPLICATIONS

The linearized DC improvements proposed herein are linear
programs and hence can be solved optimally in polynomial
time. Moreover, they can be naturally integrated in MIP
models used for many important applications such as those
described in [1], [2], [3], [4], [5], [6], [7], [8], [9]. Such
an integration would produce significant gains in accuracy at
minimal computation costs.
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TABLE I
ACTIVE POWER FLOW ACCURACY COMPARISON

Benchmark Active Power (MW)
Corr µ(∆) max(∆) δ(arg max(∆)) µ(δ) max(δ) ∆(arg max(δ)) underapproximation(%)

ieee14 0.9994 1.392 10.64 6.783 6.052 24.33 0.3927 65
mp24 0.9989 5.659 19.7 23.65 6.447 29.89 6.656 47.06
ieee30 0.9993 1.046 13.1 7.562 6.406 31.23 0.5646 80.49
mp30 0.9993 0.2964 2.108 19.36 3.086 19.36 2.108 82.93
ieee57 0.9989 1.494 8.216 8.054 105.8 4195 0.9607 52.56
ieee118 0.9963 4.086 56.57 44.86 238.2 20350 2.199 54.19

ieeedd17 0.9972 4.933 201.3 13.84 15.2 215 0.5265 50.71
The LL-LDC Model

ieee14 0.9998 0.9104 3.875 5.131 5.214 22.96 0.3707 45
mp24 0.9997 3.685 14.88 6.67 4.686 18.93 4.215 58.82
ieee30 0.9998 0.7343 4.307 4.909 5.751 29.3 0.5298 56.1
mp30 0.9995 0.2399 1.718 15.77 2.464 15.77 1.718 73.17
ieee57 0.9993 1.008 4.707 9.797 108.7 4518 1.035 51.28
ieee118 0.9996 1.899 15.25 222.1 104.7 8990 0.9716 58.66

ieeedd17 0.9998 2.205 35.71 2.454 10.52 292.1 0.7154 55

TABLE II
PHASE ANGLE ACCURACY ACCURACY COMPARISON

Benchmark Phase Angle (rad)
Corr µ(∆) max(∆) δ(arg max(∆)) µ(δ) max(δ) ∆(arg max(δ)) underapproximation(%)

ieee14 0.9993 0.02487 0.04258 15.22 11.68 15.22 0.04258 100
mp24 0.9997 0.01334 0.02037 15.23 10.96 34.61 0.01274 4.167
ieee30 0.9981 0.02831 0.04733 16.45 11.53 16.45 0.04733 100
mp30 0.98 0.005658 0.01607 30.27 14.23 42.78 0.01598 86.67
ieee57 0.9898 0.02244 0.05958 24.1 10.52 37.94 0.007857 100
ieee118 0.9897 0.0353 0.09208 91.82 57.59 2281 0.06523 4.237

ieeedd17 0.9892 0.115 0.1395 16.09 18.76 36.51 0.1366 0.6173
The LLVC-LDC Model

ieee14 0.9994 0.0139 0.02514 8.984 6.615 8.984 0.02514 100
mp24 0.9999 0.00297 0.007173 3.546 2.286 7.288 0.002012 41.67
ieee30 0.9977 0.01972 0.0374 12.14 8.064 12.99 0.03737 100
mp30 0.9777 0.007322 0.02053 38.68 18.17 49.82 0.0186 90
ieee57 0.9901 0.02757 0.07275 21.47 12.95 35.51 0.007355 100
ieee118 0.9989 0.009563 0.02866 20.1 7.515 47.09 0.007744 87.29

ieeedd17 0.9988 0.008753 0.02264 2.653 1.53 4.614 0.01726 17.9

TABLE III
APPARENT POWER FLOW ACCURACY COMPARISON

Benchmark Apparent Power (MVA)
Corr µ(∆) max(∆) δ(arg max(∆)) µ(δ) max(δ) ∆(arg max(δ)) underapproximation(%)

ieee14 0.9939 2.745 17.62 100 13.47 100 17.62 95
mp24 0.9911 8.281 69.48 44.59 11.86 56.22 10.79 67.65
ieee30 0.9952 2.333 16.18 100 17.33 100 16.18 87.8
mp30 0.9528 2.094 10.55 34.58 20.83 79.48 9.527 95.12
ieee57 0.9701 4.363 59.54 92.49 19.62 96.8 6.039 80.77
ieee118 0.99 6.332 90.28 56.49 18.79 178.2 14.25 84.92

ieeedd17 0.993 9.376 296.2 19.11 17.18 98.53 18.86 84.29
The LLVCAP-LDC Model

ieee14 0.999 2.68 9.605 6.071 14.06 51.25 0.9131 10
mp24 0.9995 3.195 12.9 10.93 3.715 12.12 4.921 17.65
ieee30 0.9988 2.414 11.53 6.607 18.29 47.82 0.8187 19.51
mp30 0.9838 2.144 6.322 25.07 22.3 58.97 4.21 21.95
ieee57 0.9958 3.28 13.54 10.32 20.35 76.88 3.274 25.64
ieee118 0.9983 4.07 24.4 15.49 8.752 45.99 3.678 20.67

ieeedd17 0.9995 3.001 41.57 11.86 5.62 84.35 1.823 30.36

XI. STUDY OF STANDARD BENCHMARKS

This section reports empirical evaluations of the LL-LDC,
LLVC-LDC, and LLVCAP-LDC models on a variety of well-
known benchmarks. It reports aggregate statistics for active
power (Table I), bus phase angles (Table II), and apparent
power (Table III). In each table, three aggregate values are
presented: Correlation (corr), absolute error (∆), and relative
error (δ). The units of the absolute error are presented in
the table heading and the relative error, being a percentage,
is unit-less. Both average (µ) and worst-case (max) values
are presented. The worst case can often be misleading: For

example a very large absolute value may actually a very small
relative quantity and vice-versa. To add clarity, the tables show
the relative or absolute counterpart of the value selected by
the max operator using the arg max operator. The tables also
include a column to indicate how often (in percentage) the
measured quantity is underestimated.

Table I presents the aggregate statistics on active power in
the linearized DC and LL-LDC models. The results indicate
uniform improvements in active power, especially in the
largest benchmarks IEEE118 and IEEEdd17. The increase in
quality is staggering in IEEEdd17 where an absolute error of



8

200MW in the worst case is reduced by a factor of about 6 to
35MW. Such large errors are not uncommon for the linearized
DC model on large benchmarks [11].

Table II presents the aggregate statistics on bus phase angles
in the linearized DC and the LLVC-LDC models. These results
show significant improvements in accuracy especially on larger
benchmarks. The correlations are somewhat lower than for
active power, showing room for improvements, as discussed
in Section VIII and depicted in Figure 5 (bottom).

Table III presents the aggregate statistics on apparent power
in the linearized DC and LLVCAP-LDC models. These re-
sults again indicate consistent and significant improvements.
The improvements on the largest benchmarks are particularly
significant, reducing the absolute error from about 290MVA to
about 40MVA on IEEE118. Observe also that the LLVCAP-
LDC model generally overestimates the apparent power, which
is preferable in practice where line loading capacities are
strictly maintained.

XII. CONCLUSION

Line losses, the reactive component in apparent power, and
inaccurate bus phase angles are the main sources of errors
in the linearized DC model. This paper proposed a number
of improvements to the linearized DC model to capture line
losses, improve the accuracy of phase angles, and approxi-
mate apparent power. The improvements all results in linear
programming models that can be integrated in more complex
applications to obtain more accurate solutions. The LL-LDC
model incorporating line losses makes no assumptions and can
be readily used in cold-start applications. The LLVC-LDC and
LLVCAP-LDC models apply to hot-start applications, since
they need voltage estimations. Each of the model produces
significant improvements over the linearized DC model on a
variety of well-known benchmarks.

There are many avenues for future work. First, the accuracy
of phase angles should improve by integrating transformers
and reactive power injection. Second, these analysis should be
extended to distributed slack bus models both in the AC and
DC models. Third, the enhanced models should be studied in
several application domains. Finally, it would be interesting to
make a detailed comparison with [13] on several applications
where line capacities are critical in order to contrast the two
approaches which may be orthogonal and complementary.
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