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Electric Power Transmission Network Design
for Wind Generation in the Western United
States: Algorithms, Methodology, and Analysis

G. Loren Toole, Matthew Fair, Alan Berscheid, and Russell Bent

Abstract—The current electric power grid is a result
of incremental growth over the past 100 years under
assumptions that a grid provides reliable and controllable
generation of energy cheaply and with limited environmen-
tal impact. Moving into the twenty-first century, many of
these assumptions will no longer hold; the existing grid is
ill-equipped to handle the new requirements that it is being
subjected to. This paper presents a novel hybridization
algorithm to upgrade the existing electric power network to
feasibly achieve future renewable energy generation goals.
The algorithm was integrated with state-of-the-art electric
power analysis approaches to produce feasible transmission
networks to accommodate 20% wind power by 2030 goals.

Index Terms—generation expansion planning, transmis-
sion expansion planning, simulation optimization, wind
generation

I. INTRODUCTION

Recent years have seen interest in the “smart grid”
[1] (also known as green grid [2] or self-healing grid
[3]) grow. This is evidenced by statements in references
such as [4] that indicate the smart grid has the op-
portunity to reduce current electric power consumption
by up to 4.3% and the large number of recent large-
scale projects including (but not exclusively) Thyme
[5], IntelliGrid [6], and the Smart Grid Maturity Model
[7]. A common thread in many of these projects is a
focus on the hardware, standardization, and social issues
related to implementing the smart grid. Comparatively
less work has studied the information science aspects of
the smart grid, i.e. developing the information technology
of an adaptive system that robustly and efficiently routes
power from generators to consumers. Under this problem
statement one of the important challenges that arises is
planning and designing the physical structure of the grid
to achieve an adaptive system. This challenge is readily
apparent under the assumption that renewable genera-
tion, such as wind and solar, will play an increasing role
in the generation of power. Under this scenario, the need
for new grid design arises for two reasons. First, the areas
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with highest renewable energy production potential are
often in transmission-deficient areas of the existing grid.
Second, the intermittent nature of renewable generation
places a higher premium on building redundancy into the
grid for increased reliability. Simply stated, we are con-
cerned with how to optimally place and build renewable
generation and upgrade the existing transmission system
through balancing of economic costs, reliability, and
robustness. The purpose of this paper is two-fold: first
to survey existing solutions to this problem and second,
to present our results of a promising new direction for
solving this problem. The key contributions of this paper
are as follows:

1) A feasible transmission network for the western
U.S. based on renewable generation profiles of [8].

2) A novel algorithm for tightly hybridizing opti-
mization and simulation to upgrade transmission
systems.

3) An empirical evaluation of the feasibility of the
solutions to the generation expansion planning
problem provided by the linear approximation al-
gorithms of [9],[10].

II. PROBLEM DESCRIPTION AND ANALYSIS OF
WINDS

For our purposes, an electric power grid is modeled
as a graph, G, that consists of nodes, N, and edges,
E. N represents physical locations in the power grid in-
cluding generators, Nger, (producers of electric power),
substations, Nsy (subsidiary stations where voltage
conversions and switching occur), and loads, N;zoap
(consumers of electric power). £ represents physical
connections between the nodes including power lines and
transformers. The goal of an electric power network is to
deliver electric power from Nggar to Nzoap at minimal
cost (where cost is a function of power generation and
power loss due to resistance on the power lines), subject
to the physical limitations of the power grid. As will be
discussed later, these constraints are a source of many of
the difficulties inherent in transmission planning. There
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Fig. 1. WinDS Optimization Model
is considerably more detail about the structure of the
power grid that is beyond the scope of this paper.

The problem of Generation Expansion Planning (GEP)
is that of where to construct new Ngg s and the problem
of Transmission Network Expansion Planning (TNEP)
is that of how to build and upgrade £ to accommodate
changes to Nggn and Nzoap. Both of these problems
have received considerable attention over the last thirty
years, however it has only been recently tied to the
challenges of incorporating large amounts of renewable
generation. The most advanced comprehensive work in
this area is the WinDS project [8],[11] at the National
Renewable Energy Laboratory (NREL) in Colorado.
WinDS models the problem as a linear program (for
computational tractability) and assumes direct connectiv-
ity from renewable sites to the existing network results
in a physically consistent system. Figure 1 presents the
intuition behind the model of [9],[10] in an abstract and
simplified form (the full model has a considerably more
complicated economic model and incorporates wind
speed scenarios to model wind generation uncertainty).

In Figure 1, Ngen represents the set of possible
generation sites in G, A represents the set of nodes in
G, p; is a decision variable on the amount of generation
to place at site 7, y;; is the amount of capacity to
add between sites ¢ and j, c¢; is the cost of building
generation at site 4, [; ; is the cost of adding capacity
between site ¢ and site j, d; is the demand at a load,
and f; ; is a decision variable for the amount of current
to place on edge {i,j}. The first constraint ensures
that the total amount of generation produced is greater
than some threshold P. The second constraint enforces
a maximum generation at each generation site based
on NREL’s renewable potential maps [12]. The third
constraint enforces a minimal amount of generation at
each site in order to model existing generation. The
fourth constraint enforces capacities for flow on each
edge in £. The fifth constraint ensures that flow from
generator nodes is equal to the actual production at those
nodes. The sixth constraint ensures each load is receiving

Region | Demand MW | Non-Wind MW | Wind MW
70 670 0 1645
71 770 0 684
72 40 0 0
73 830 6276 0
74 705 0 6831

Total 3015 6276 9160
TABLE I

WINDS 2030 FORECASTED VALUES FOR DEMAND/SUPPLY IN
WYOMING (BY WIND REGION)

sufficient power. The seventh constraint ensures that the
accumulated current at all other nodes is 0. The final
constraint controls the bi-directionality of each edge.
This formulation approximates a real (DC) power flow
model and Kirchoff’s first law on power flows (current
conservation).

Limitations of WinDS In short, the WinDS optimization
model features detailed representations of major gener-
ation and consumption elements. As seen from the opti-
mization model in Figure 1, WinDS lacks corresponding
detailed representations of transmission elements. The
transmission elements are notionally represented and as
a result, WinDS only proposes new dedicated (long
distance) transmission lines. However, dedicated trans-
mission lines are often uneconomical (especially over
long distances) as they fail to utilize existing reserve
capacity in system and often create situations where
portions of the grid are severely underutilized. Despite
expansion of the network to 2030 conditions, most oper-
able elements will be linked to large amounts of “legacy”
transmission capacity and constrained by the historic
placement of centralized generating plants. Indeed, even
if construction of long distance transmission lines occurs,
the lines may not be used in the expected fashion due
to legacy conditions. Finally, as the WinDS optimization
model does not include elements of reactive (AC) power,
WinDS may suggest transmission expansions that are
physically infeasible.

We now describe examples where the lack of detailed
transmission representations results in faulty solutions
or unexpected behavior. In WinDS, the 14-state west-
ern electric operating region (WECC) was subdivided
into 95 regions corresponding to areas of high wind
potential. Wind regions serve as the basic unit of spatial
resolution for all WinDS simulations. Wyoming was
subdivided into five wind regions (70-74). For reference,
forecasted demand and supply values utilized by WinDS
for Wyoming are listed in Table I. Table I indicates
one wind region in Wyoming will install non-wind
generating capacity by 2030, while three regions will
install wind generating capacity to utilize large available
wind resources. Because electric supply will significantly
exceed Wyoming’s demand by a large ratio, a net export



Fig. 2. Power flow 2030 simulated transmission elements in Wyoming
and Surrounding Areas.

flow pattern is produced. The model resolves this export
condition by building new long-distance lines to connect
directly southeastern Wyoming to Denver and Salt Lake
City to satisfy their demand. We used reference [13]
to estimate network performance including line flows,
voltage adequacy and control stability for both DC and
AC power flows. Our result provides important insights
into problems incompletely addressed by WinDS.

In Figure 2, “% Total Export” indicates directional
flows leaving Wyoming towards adjacent load centers.
The meshed nature of existing network topology sug-
gests wind energy from Wyoming will be transmitted
via many intervening circuits to different load centers.
This solution provides greater circuit redundancy and
increased levels of operational reliability than dedicated
circuits can provide. In addition, this solution conforms
to design methods used commonly and accepted by util-
ity planners. More comprehensive design methods that
optimize power flows (and reduce lost energy) over long
distances are needed to support dedicated transmission
lines. This solution suggests that the expected behavior
of power flows in the WinDS model (only Denver and
Salt Lake City receiving power) will not occur and this
could lead to undesirable behavior.

Indeed, our initial attempts at directly modeling these
transmission systems exhibited such undesirable behav-
iors. First, a visualization of power flows near Denver in
Figure 3 indicate several off-normal conditions, notably
“loop back” where power sent to Denver is returned
to Wyoming. Loop back is often observed in heavily
loaded meshed networks near load centers; it prevents
efficient delivery of incoming power and arises from
uneven distribution of higher and lower capacity flow
paths that have not been optimized. In this case, 1,635
MW of power flows toward Denver over two circuits
from Wyoming, while 305 MW flows back. A second
undesirable behavior we discovered is shown in Figure
4 where new dedictated transmission is not sufficient for

Fig. 3. Power flow 2030 simulated flow detail near Denver.
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Fig. 4. Unstable Grid Example in New Mexico

handling the new wind generated energy in eastern New
Mexico that was suggested by WinDS. In this scenario,
the transmission solution results in a high number of
physical violations (voltage collapse and line overloads).
Other Models It is important to note that WinDS is not
the only model for optimally placing renewable (or other
generation). Other work here typically focuses on the
pure GEP problem with linear (or no) approximations of
the transmission requirements or a pure TNEP with fixed
generation assumptions for computa Excellent surveys in
[14], [15], [16], [17] provide overviews of this work. In
general, [14] confirms that most approaches do not fully
account for the transmission requirements of building
new generation due to the non-linearities in the power
flow equations.

More recently, reference [18] considers transmission
planning for DC power flows (similar to that of WinDS)
for the GEP in the context of a game theory framework
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1 wviolations < S(Ngen, N, E);

2 while |violations| > 0

3 do [ «— CHOOSEEDGE(violations);

4 & — (£ UCALCULATENEWLINEPROPERTIES(/)) \ /;
5 violations «— S(Ngen, N, E);

6 return y;

CHOOSEEDGE(violations)
1 return argmax({i, j} € violations)fi; — ¥s,j;

CALCULATENEWLINEPROPERTIES ()
1 if UPGRADEEXISTS(!)

2 then return UPGRADE(]);

3 else return [ U/,

Fig. 5. Abstract Network Design Optimization Algorithm

for determining the best generation expansion. Reference
[19],[20] considers the tradeoffs between different objec-
tive functions (cost, emissions, etc.) in a linear model of
the GEP problem and suggests that transmission topol-
ogy planning in conjunction with the GEP is a topic of
future work. Relevant work on the TNEP is described in
[21], [22], [23] which focuses on transmission planning
problems for Brazil. Their approach is similar to our
approach (that will be discussed in the next section) in
that they explore modifications to the transmission net-
work topology using search techniques such as simulated
annealing. They differ from our approach in that they use
a DC power flow model to evaluate candidate solutions
and do not explore GEP aspects. [24] considers a TNEP
for an objective focused on minimizing coronoa power
loss. They capture some aspects of AC power flow in the
sense they are calculating power losses based on voltage,
but the flows are still modeled as DC. Their approach is
to iterate on an infeasible solution by adding lines until
the DC flows become feasible. [25] looks at heuristic
approaches for solving the TNEP. The main result is that
it is important to add multiple lines at the same time to
improve the performance of heuristics.

III. ALGORITHM

We now describe our technique for overcoming the
limitations of the WinDS model by directly incorpo-
rating the complex aspects associated with transmission
modeling, i.e. the non-linear constraints associated with
AC power. While there exist some optimization frame-
works, such as constraint programming [26] and local
search [27],[28] that can model non-linearities through
appropriate expressions of constraints and objectives,
such frameworks fail to utilize decades of simulation
science that model the complex behavior of electric
power systems [13], in particular those simulation sys-
tems that model utility behavior and may or may not
have a pure mathematical formulation. This observation
suggests a fundamental and interesting basic science
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problem: hybridization approaches for combining the
strengths of optimization and simulation effectively or
more precisely: how can traditional optimization ap-
proaches exploit the information contained in simula-
tions? Hybridization of optimization approaches is an
exciting idea from the operations research community
as such approaches have been used to find solutions
to previously unsolved problems [29],[30],[31]. Inter-
estingly, general approaches for hybridizing simulation
and optimization are relatively new within the literature
(last 10-15 years); see [32],[33],[34],[35] for a few
recent examples. Simulation has mainly been used as
a method for optimization, as opposed to being used in
conjunction with other optimization approaches. Existing
hybridization approaches use simulation purely as a way
to evaluate the feasibility or optimality of a solution
[34],[36] or to evaluate policies [37]. Rarely are the
results of the simulation used to help guide the search
procedure within the optimization itself [36],[38]. The
algorithm described here is a step in the direction of
more tightly coupled optimization and simulation. It
adopts a heuristic that uses simulation results to choose
promising transmission expansions. This approach has
guided the discovery of feasible infrastructure networks
for adding 20% wind generation the U.S. electric power
grid starting from the solutions posed by [8].

The key idea behind the approach is to grant the
algorithm access to a black box S that simulates an
electric power network (in this specific case S is an
AC power flow solver [13]). Abstractly, S is expressed
as a constraint in the form |S(Ngen, N,E)| < 0
where S(Ngear, N, &) is a function that returns a set
of physical violations. For the problems of [8], Ngeas is
fixed. The overall structure of the algorithm appears in
Figure 5.

The inputs to this algorithm are the A/ and £ of an
initial grid configuration. Line 1 calculates the set of
violations for the initial choices of Ngenr and €. Line 3
chooses a violation to resolve. Line 3 is implemented by
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Fig. 7. Reinforcement options: a) Line shunts: capacitors, inductors.
b) Line branches: multi-conductor lines or dual circuits .
choosing the worst line overload (worst voltage condition

if no overloads exist) from the set of violations (function
CHOOSEEDGE). Line 4 calculates a new line property
from a discrete set of possible line upgrades. Finally,
line 5 simulates the new network. Lines 3-5 are repeated
until all violations are eliminated and line 6 returns the
£ that achieves a feasible network.

Figures 6 and 7 provide some intuition as to the im-
plementation of CALCULATENEWLINEPROPERTIES. In
this example, CALCULATENEWLINEPROPERTIES must
operate on violations described in Figure 6 (a volt-
age condition and an overload). CALCULATENEWLINE-
PROPERTIES alleviates the problems by upgrading one
line with shunts and adding additional capacity through
the construction of an extra transmission line as seen in
Figure 7.

IV. EXPERIMENTAL SETTING

We now describe the experimental setting and process
for which the algorithm was utilized. The goal is to
obtain a feasible electric power transmission network
for WinDS model of 2030 demand and generation. The
overall process is described in Figure 8. We started with
the Federal Energy Regulatory Commission (FERC) 715
power flow model for the year 2016, the latest year
for which utility projections are publicly filed. This
represents a feasible starting point for the WinDS 2030
model and is known to have sufficient transmission
capacity to route all the necessary power. The 2016
F715 model was adapted to 2030 WinDS projections by
increasing all generating unit capacities and substation
demands by a constant factor.

The resulting model represented the generation capac-
ity and demand projected by WinDS at an aggregate
level, thereby verifying some of the assumptions of the
WinDS projections. Our closer inspection of the two
models discovered that WinDS and F715 models had
very large spatial pattern discrepancies for the projected
growth that required reconciliation. Figure 9 illustrate
these discrepancies. This required us to spatially real-
locate both supply and demand to achieve the WinDS
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Fig. 8. Grid Modeling Process: Manual and automated steps required
for assembly of a solvable grid model for the WinDS scenarios
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Fig. 9. WinDS vs WECC Generation and Demand

growth models. The initial F715 scaled model for 2030
was solvable by [13], albeit with 2,215 line overloads.
The violations resulted from inadequate transmission
capacity to meet the increased demand. We similarly
attempted to solve the original WinDS demand and
generation spatial allocations, however, this configura-
tion resulted in numerical instabilities that [13] was
unable to resolve. Thus, we chose to initially alleviate
the constraint violations of the F715 scaled model and
incrementally reallocate supply and demand to transi-
tion to the WinDS model to prevent the model from
being numerically de-stabilized. Small spatial changes
in demand and generation were introduced in two-year
modeling steps (a total of six steps).

After reallocation the F715 model approximately con-
formed to WinDS projections in 2030 (some WinDS
projections in California introduced such large numerical
instabilities into the flow equations that we had to



Quantity GW Total | GW Change | # Regions | Factor
Substation 208.5 -33.7 29 0.87
Demand +33.7 66 1.28
Generating -153.4 28 .089
Unit Capacity 244.1 0 14 1.00
+153.4 53 1.22
TABLE II
WINDS 2030 FORECASTS (BY WIND REGION)
Component # Added | Capacity Units
Lines 1,489 84,075 MVA
Transformers 795 56,474 MVA
Shunts 1,081 47,597 MVAR
TABLE III

FINAL ALGORITHM COMPONENT ADDITIONS

approximate those values). Table II summarizes changes
that were applied by this process. The algorithm of sec-
tion 3 was invoked to upgrade the transmission capacity
of the scaled F715 model and the subsequent reallocation
steps. The function CALCULATENEWLINEPROPERTIES
was implemented by allowing three types of upgrades on
&: adding transmission lines, adding transformers, and
adding shunts. Transmission line capacity was increased
by adding one or more parallel elements to existing
overloaded lines. Transformer capacity was added by
increasing ratings on existing overloaded transformers.
Line shunts (multi-phase line to ground capacitors or
inductors) were added to correct abnormal voltage pro-
files and to reduce reactive line flows as previously
discussed in Figure 7. When possible, voltage control
logic provided by [13] was used to correct voltage
problems in order to minimize our proposed upgrades.

Focusing on the western U.S. model, Table II (also
Figure 9) shows a profile of how demand and generation
were reallocated across most of the 95 wind regions in
this area. A total of 153.4 GW of generation was moved
from 28 wind regions and added to 53 wind regions. No
change in generation was made to 14 wind regions. The
column titled “Factor” lists a constant that was applied
to each wind region to accomplish reallocation.

V. ALGORITHM ANALYSIS

We next discuss the performance of the algorithm
described in section 3 as applied to the experimental
setting of section 4. In order to move from the F715 2030
model to a feasible WinDS 2030 model, the algorithm
required over 3,000 iterations (roughly 100 CPU minutes
on a Dell Precision 670 with a 3.2 GHz processor and
2 GB of RAM running the Windows XP Operating
System) per iteration of the spatial adjustment process (a
total of 1800 iterations). It is important to note that these
results do not include manual steps that were introduced
when [13] could not resolve numerical instabilities in the
models. This intervention constituted many man hours
(decreasing the number of manual interventions is a
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topic of future work). Table III highlights the number
of components and capacities that were added to the
power system model to sufficient upgrade transmission
capacity. As point of reference, the model originally
contained over 30,000 components (including 20,000
lines, 6500 transformers, and 1300 Shunts).

Figure 10 provides a cross-section of the perfor-
mance of the algorithm. This figure shows how net
MW overload (3_(; yee maz(0, fij — vi;)) in the
electric power network was reduced with the number
of iterations (blue line) for the last iteration of spatial
reallocation. Roughly speaking, the net MW overload
is reduced linearly with the number of iterations. In
this particular case, it was interesting to also plot the
number of components (|violations|) that were in a
violation state during the execution of the algorithm (red
line). It is apparent, that in order to reduce the function
> (ijyerdges maz(0, fij — yij), the algorithm must
increase |violations|, which seems counter-intuitive at
first. Upon closer inspection of the networks that the
algorithm produced, we observed that when large over-
loads were alleviated through an increase in transmission
capacity, [13] recognized the increase in capacity and at-
tempted to use it to more economically route power. This
often resulted in the creation of many small overloads
on nearby transmission lines. For example, the algorithm
may add transmission capacity to alleviate an overload of
one hundred MW on a power line. The result of adding
this transmission capacity may remove the overload, but
may also create five MW overloads on five nearby power
lines due to the availability of increased capacity. As a
result, the net overload was reduced by 75 MW, but the
number of violations was increased by 4. This provides
further evidence why the multiple line addition approach
of [25] can be effective.



VI. CONCLUSION

This paper describes a critical problem that the electric
power industry will face over the coming years. As
environmental, economic, and political forces encourage
the industry to adopt and construct more renewable
generation, the challenge of how and where to build
this generation will become more pressing. Early work
by [9], [10] clearly outlines many of these issues. This
paper has built upon this prior work by demonstrating a
process and algorithm to upgrade the existing electric
power network so that it can feasibly to achieve the
renewable energy generation goals of [8]. The algorithm
presents a novel hybridization approach for integrating
traditional local search based optimization with electric
power simulation models that is able to resolve a model
with over 2,500 components in an infeasible state.

In the future, we plan to develop new neighborhood
exploration procedures that exploit more of the infor-
mation provided by the simulation (S) with a focus on
determining heuristics to fully automate the construction
of a feasible network and eliminating the manual (clean
up) steps that are currently necessary. Once the complete
feasibility algorithm is achieved we plan to embed the
heuristics within a local search meta-heuristic to begin
to efficiently search for the globally optimal feasible
solution (similar to [23]). The next step will be to relax
the new generation decisions of [8] in order to revisit
those choices and find better solutions that appropriately
balance the cost to upgrade the transmission system with
choices of generation locations. Next, as we only exam-
ined adding transmission lines, transformers, and shunts
to the network we also plan to exploring techniques
for upgrading portions of the transmission system to
higher voltages to alleviate the overloads and voltage
conditions. Finally, we will want to incorporate more
seasonal demand and generation profiles and contin-
gency events within the optimization to more explicitly
explore robustness considerations.

In addition, our approach generalizes naturally to
a number of other grid planning problems. Decision
variables can be added to modify the future network
configuration by applying criteria of interest to utility
planners. This could include capital costs of adding
transmission capacity, environmental impacts of utilizing
new versus existing transmission corridors, siting new
generators in conjunction with storage locations and
other important variables. The approach may also be
used for dynamic topology problems. Our algorithm
could optimally configure the power network in real-
time due to changing conditions on the grid (changing
generation pattern, changing demand, losing transmis-

sion equipment, etc.). This is especially important as
more renewable generation and better storage devices
are connected to the grid. The solution proposed here
may be used by applying it to the existing conditions
of the grid and only allowing the algorithms to modify
attributes for components that exist.
Acknowledgments We thank the anonymous referee
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