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Abstract
This paper considers online stochastic multiple ve-
hicle routing with time windows in which requests
arrive dynamically and the goal is to maximize the
number of serviced customers. Early work has fo-
cused on very flexible routing settings where the
decision to assign a vehicle to a customer is delayed
until a vehicle is actually deployed to the customer.
Motivated by real applications that require stabil-
ity in the decision making, this paper considers a
setting where the decision to assign a customer re-
quest to a vehicle must be taken when that request
is accepted. Experimental results suggest that this
constraint severely degrades the performance of ex-
isting algorithms. However, the paper shows how
the use of stochastic information for vehicle as-
signment and request acceptance improves decision
quality considerably. Moreover, the use of resource
augmentation quantifies precisely the cost of com-
mitment in online vehicle routing.

1 Introduction
Vehicle routing with time windows is a hard combinatorial
optimization problem with many important applications in
distribution and transportation scheduling. It has received
considerable attention in the last decades and sophisticated
algorithms are now available to find near-optimal solutions in
reasonable time. In recent years, attention has shifted to on-
line and/or stochastic versions of the problem. The stochastic
and online versions are motivated by the inherent uncertain-
ties arising in many industrial problems and technological de-
velopments such as onboard computers and communication
systems, which give transportation systems the opportunity
to update plans even after the vehicle has been deployed.

In online stochastic problems, customers arrive dynami-
cally as the algorithm proceeds. Each customer request has a
time window (possibly the entire time horizon) during which
it can be served and, obviously, a request cannot be served
before it occurs. Upon arrival, the algorithm must decide
whether to accept or reject the request. If the request is ac-
cepted, the online algorithm must serve it before the time
horizon. The online algorithm typically has two black-boxes
available to make decisions: an optimization algorithm for

the deterministic version of the problem and a sampling pro-
cedure to generate future requests.

Online stochastic vehicle routing were first studied in [6]
using a sampling-based approach. More precisely, the idea
was to generate scenarios consisting of existing and sam-
pled customers, to solve the scenarios using large neigh-
borhood search [17], and to make online decisions based
on the scenario solutions. These resulting algorithms were
then generalized and abstracted in a generic online stochas-
tic framework [4; 7] and applied to other problems such
as packet scheduling [5; 10] and reservation systems [1;
20]. The prior work in online stochastic vehicle routing has
focused on experimental settings where the decision to as-
sign a customer to a vehicle is delayed until the last possible
moment, i.e., when the decision to a deploy a vehicle to a cus-
tomer is taken. However, in some applications, there is strong
desire to promote more stability and robustness in the deci-
sion making process, as the logistics of delaying the decision
until the last possible moment may be fundamentally unde-
sirable or not available [15; 16]. Moreover, simple adaptions
of existing algorithms exhibit poor decision qualiy when ve-
hicle commitment is required at acceptance time, questioning
whether online stochastic approaches would scale for these
applications. This paper addresses this challenge and make
three main contributions.

1. The paper proposes novel online algorithms for online
stochastic vehicle routing. The algorithms provide a uni-
fied framework by which all the three main decisions,
request acceptance, vehicle assignment, and vehicle dis-
patch, are based on the same principles and use stochas-
tic information. The novel algorithms produce signifi-
cant gains in solution quality, demonstrating the value
of stochastic information for these applications as well.

2. Unlike prior work in less restrictive settings [9], the pa-
per shows that relocation and waiting strategies bring
very little benefit.

3. The paper provides empirical quantification of the price
of commitment and shows how resource augmentation
[12], the idea of increasing the resources in online algo-
rithms, may reduce or even eliminate this cost.

The rest of the paper recalls the main concepts in vehicle rout-
ing and online vehicle routing. It then briefly surveys the ex-
isting results when no vehicle commitment is necessary, be-



fore presenting the new setting and its associated algorithms
and methodologies.

2 The Offline Problem

The Input Data A vehicle routing problem is specified by
a number of customers that must be visited by a pool of ve-
hicles. Each customer makes a request that must be served
within a time window and takes some capacity from the vehi-
cle. Each vehicle starts at the depot, serves some customers,
and must return to the depot by the deadline.

Each problem contains a set R of n customers and a depot
o. The set S of sites is thus R∪{o}. The travel time between
sites i and j is denoted by d(i, j). Each request is associated
with a customer and, since each customer makes at most one
request per instance, we use the names customer and request
interchangeably. Every request c has a capacity q(c) ≥ 0 and
a service time p(c) ≥ 0, which is the time to serve the request
once the vehicle is on site.

Each instance has a pool of m identical vehicles with ca-
pacity Q. Each vehicle starts from the depot and the algo-
rithm may choose to deploy all of them or to use a subset of
them only. Each customer c has a time window specified by
an interval [e(c), l(c)] satisfying e(c) ≤ l(c). The time win-
dow represents the earliest and latest possible arrival times of
a vehicle serving customer c. In other words, the service for
customer c may start as early as e(c) and as late as l(c). A
customer c may not be served before e(c) but a vehicle arriv-
ing early to serve c may wait at the site until time e(c) before
beginning service. The depot has a time windowH = [eo, lo],
which represents the earliest departure and latest possible re-
turn for the vehicles. Typically, eo denotes the beginning of
the day and lo is the deadline by which all vehicles must re-
turn to their depot.

Routing Plans Optimization algorithms for vehicle routing
typically return a routing plan that specifies the order in which
each vehicle visits its customers. The routing plan does not
prescribe departure times for the vehicles but constrains be-
cause of the time windows.

A vehicle route, or route for short, starts at the depot, serves
some customers, and returns to the depot. A customer ap-
pears at most once on a route. Hence a route is a sequence
〈o, c1, . . . , cn, o〉, where ci ∈ R and all ci are distinct. The
capacity of a route ρ is the sum of its customer capacities, i.e.,
q(ρ) =

∑n
i=1 q(ci).

A routing plan is a tuple of routes (ρ1, . . . , ρm) one for
each vehicle, in which each customer appears at most once.
We also use cust(ρ) and cust(γ) to denote the customers of a
route ρ and a plan γ. Because a customer makes exactly one
request, a routing plan assigns a unique successor and prede-
cessor for each served customer and depot. For a plan γ, the
successor of site c is denoted by succ(c, γ) and the predeces-
sor is denoted by pred(c, γ). Since, in general, the discussion
or definitions assume an underlying routing plan γ, we abuse
notations and use c+ and c− to denote the successor and pre-
decessor of c in γ.

Departure Times Routing plans do not prescribe departure
times for the vehicles. These departure times are typically not
uniquely defined: a vehicle may depart at different times from
specific customers and still visit all its assigned customers be-
fore the deadlines. In addition to the routing plan, a solution
will also consist of an assignment δ : R → H of starting
times to all customers.

The Vehicle Routing Problem We are now in position to
describe the vehicle routing problem. A solution to a vehicle
routing problem with time windows (VRPTW) is a routing
plan γ = (ρ1, . . . , ρm) and a starting time assignment δ sat-
isfying the capacity and time window constraints, i.e.,

C(γ) ≡


q(ρj) ≤ Q
δ(c)− p(c) ≤ l(c)
δ(c) ≥ max(e(c), δ(c−) + d(c−, c)) + p(c)
δ(c) + d(c, c+) ≤ l(o)

for 1 ≤ j ≤ m and c ∈ cust(γ). The objective is to find
a solution maximizing the number of served customers, i.e.,
w(γ) = |cust(γ)| Observe that this objective function dif-
fers from the optimization criterion used, for instance, in the
Solomon benchmarks [18]. In the Solomon problems, the
goal is to minimize the number of vehicles and, in case of ties,
to minimize the total travel time, which corresponds more to
strategic planning than the operational decision making of on-
line optimization.

3 The Online Problem
In the online problem, requests, which are defined by a site
and a time window, arrive dynamically and the algorithm
must make three types of decisions:

1. Decide whether to accept or reject an incoming request;
2. Decide which vehicle will serve an accepted request;
3. Decide where to dispatch an idle vehicle.

Earlier work in online stochastic vehicle routing [6] ignored
the second type of decisions and considered only frameworks
in which the vehicle assignment is flexible and can be deter-
mined subsequently. The paper is motivated by applications
in which this flexibility is not available and the vehicle as-
signment must be committed when the request is accepted.
Our goal is to study the impact of this requirement and to
adapt existing algorithms and methodologies to this new set-
ting. We called these two settings online flexible routing and
online commitment routing respectively.

States In online flexible routing, the algorithm maintains a
current state which represents the state of each vehicle and
the set of accepted requests which have not yet been served.
The state of each vehicle is a pair (s, t) indicating that the
vehicle will be at site s at time t or, alternatively, has arrived
at site s at time t and is now idle. As a result, the states are of
the form

〈{(s1, t1), . . . , (sn, tn)}, A〉
where A is the set of accepted requests at this state of the
computation. Given a state σ, we use REQUESTS(σ) to de-
note the set of accepted requests in σ. In online commitment



routing, the accepted requests must be assigned to vehicles
and the states are of the form

{(s1, t1, A1), . . . , (sn, tn, An)}

where Ai denotes the set of accepted requests assigned to ve-
hicle i. Hence, in online commitment routing, the state is
a collection of single vehicle routing problems. We use a
number of operations on states. In flexible routing, operation
ADDREQUEST(r) adds request r to the state. In commitment
routing, operation ADDREQUEST(r, v) which adds request r
on vehicle v. We also have an operation that dispatches a ve-
hicle to a particular site. More precisely, given a state σ, a ve-
hicle v which is idle, and a site s, operation DISPATCH(σ,v,s)
dispatches vehicle v to site s. Note that the site s does not
necessarily correspond to a request: It can be the current site
(“waiting”) or a relocation [9].

Note that the problem could be modeled as a MDP over
these states. However, the sheer size of the search space and
the limited time available for decisions precludes the use of
these techniques. Instead, we will use the exogenous nature
of the uncertainty and the availability of an optimization al-
gorithm and of a sampling procedure to design in a one-step
anticipatory algorithm.

Sampling and Optimization The online algorithms have
two black-boxes at their disposal: a conditional sampling pro-
cedure which generates scenarios of the future and an op-
timization algorithm to solve static routing problems. The
sampling procedure returns a set of requests, while the op-
timization algorithm returns an optimal plan (or an approxi-
mation thereof). More precisely, the optimization algorithm
O(σ,R) receives a state σ and a set of requests R and re-
turns a routing plan γ. We are only interested in three pieces
of information on a routing plan γ: the next location of a
vehicle, the vehicle on which a request is served, and the
number of customers served by the plan. These are denoted
by NEXTLOCATION(γ, v), VEHICLE(γ, r), and w(γ) respec-
tively. It is important to note that the optimization algorithm
is slightly different in online commitment routing, since it
must also satisfy the vehicle allocation constraints.

4 Online Flexible Routing
We now review the earlier algorithms in online flexible rout-
ing proposed in [6; 9], since this research builds on them. For
simplicity, we consider only the consensus algorithm from [6;
9], although it is easy to generalize the results to the regret al-
gorithm. In this setting, the online algorithm must take two
decisions: (1) to accept or reject an incoming request (func-
tions PROCESSREQUEST and ACCEPTREQUEST in Figure 1)
and (2) to choose where to dispatch an idle vehicle (function
DISPATCH in Figure 1). The first decision is typically greedy:
accept the incoming request if it can be served by routing
plan serving all existing requests. (See line 1 in function
ACCEPTREQUEST.) The second decision however is critical
and uses stochastic information. It is based on the following
principle: Generate a number of scenarios, use the optimiza-
tion algorithm to solve them, and choose the resulting routing
plan that is most appropriate for all scenarios. The vehicle

PROCESSREQUEST(State σ,Request r)
1 if ACCEPTREQUEST(σ, r)
2 then return ADDREQUEST(σ, r);
3 else return σ;

ACCEPTREQUEST(State σ,Request r)
1 return w(O(σ, {r})) = |REQUESTS(σ)|+ 1;

DISPATCH(State σ, V ehicle v)
1 {ξ1, . . . , ξk} ← SAMPLE(k);
2 for s ∈ Sites
3 do f(s)← 0;
4 for i ∈ 1..k
5 do γi ← O(σ, ξi);
6 for j ∈ 1..m
7 do s← NEXTLOCATION(γi, j);
8 f(s)← f(s) + w(γi);
9 γ∗ = arg-maxi∈1..k

∑m
j=1 f(NEXTLOCATION(γi, j));

10 return DISPATCH(σ, v, NEXTLOCATION(γ∗, v));

Figure 1: Online Flexible Routing

Problem Name MO OSR OSR-W OSR-R OSA-WR
20-20-60-rc101-1 2.08 2.24 4.16 3.30 3.64
20-20-60-rc101-2 6.78 5.42 5.94 3.62 4.26
20-20-60-rc101-3 3.06 2.06 3.06 2.28 3.08
20-20-60-rc101-4 2.90 3.16 4.30 5.54 3.06
20-20-60-rc101-5 7.70 4.02 5.48 5.12 3.44
20-20-60-rc102-1 1.74 1.78 1.22 0.54 0.36
20-20-60-rc102-2 4.28 1.94 3.44 2.76 3.32
20-20-60-rc102-3 8.70 3.24 5.06 3.32 3.96
20-20-60-rc102-4 2.18 0.92 1.48 1.84 1.92
20-20-60-rc102-5 3.76 2.46 2.90 2.02 1.88
20-20-60-rc104-1 21.10 19.70 14.40 13.82 13.94
20-20-60-rc104-2 25.56 28.58 13.92 11.70 14.38
20-20-60-rc104-3 20.90 16.64 10.40 8.84 9.78
20-20-60-rc104-4 19.60 19.28 14.08 6.36 13.08
20-20-60-rc104-5 15.86 18.96 14.00 9.94 10.96
Average 9.75 8.69 6.92 5.40 6.07

Table 1: Number of Rejected Customers in Online Flexible
Routing

is then sent to its next location in the selected plan. To se-
lect the routing plans, the algorithm uses the desirability of
the next decision for each vehicle, i.e., the number of times a
request is scheduled next on a vehicle. More precisely, the al-
gorithm generates k scenarios (line 1 in function DISPATCH)
and solves them optimally (line 5). It then considers every ve-
hicle (line 6) and determines which request is served first (line
7). Any such request is credited by the objective value of the
plan (line 8). At this point, all the requests have been eval-
uated and the algorithm selects the plan γ∗ that maximizes
the selection of the desirable requests (line 9). The function
returns a state in which vehicle v has been dispatched to its
next location in plan γ∗. Note that the algorithm in [9] con-
sider not only sending a vehicle to an existing request: it also
allows the vehicle to wait at their existing location and to re-
locate to any customer location.

Table 1 reports our results on online flexible routing which
provide a basis for comparison when we moved to online
commitment routing. The experimental results are based on



PROCESSREQUEST(State σ,Request r)
1 if ACCEPTREQUEST(σ, r)
2 then v ← SELECTVEHICLE(σ, r);
3 return ADDREQUEST(σ, r, v);
4 else return σ;

Figure 2: Online Flexible Routing

Problem Name MO OSR OSR-W OSR-R OSR-WR
20-20-60-rc101-1 8.0 9.0 10.0 10.0 10.0
20-20-60-rc101-2 12.0 6.3 7.1 6.7 6.9
20-20-60-rc101-3 2.0 8.0 8.8 8.8 8.7
20-20-60-rc101-4 8.0 7.0 9.0 9.2 9.0
20-20-60-rc101-5 5.0 6.0 6.0 6.0 6.1
20-20-60-rc102-1 3.0 2.2 2.2 2.4 2.6
20-20-60-rc102-2 10.0 8.5 9.3 9.4 9.3
20-20-60-rc102-3 6.0 5.1 9.1 9.5 9.6
20-20-60-rc102-4 5.0 7.0 4.3 4.2 4.6
20-20-60-rc102-5 10.0 7.0 7.3 7.8 7.6
20-20-60-rc104-1 29.0 32.5 36.1 36.7 36.5
20-20-60-rc104-2 39.0 32.2 34.5 33.6 33.7
20-20-60-rc104-3 20.0 24.6 26.6 26.8 27.2
20-20-60-rc104-4 28.0 25.1 25.5 25.7 24.2
20-20-60-rc104-5 21.0 23.3 23.6 23.9 24.4
Average 13.7 13.6 14.6 14.7 14.7

Table 2: Number of Rejected Customers in Online Commit-
ment Routing with Greedy Acceptance and Vehicle Assign-
ment.

some of the harder benchmarks proposed in [6] (class 4)
which are stochastic versions of the hard Solomon problems
which includes 100 customers. The results are the average
of 50 runs for each type of instances. The stochastic algo-
rithms use 10 scenarios for each decision, except for the first
decision for which they use 100. The table reports the num-
ber of rejected customers by various algorithms: myopic op-
timization (MO) which uses the optimization algorithm but
no stochastic information, the basic online stochastic routing
algorithm (OSR), and then the variants with waiting (OSR-
W), relocation (OSR-R), and both (OSR-WR). The results
are consistent with those in [9] (they could be improved by
using the regret algorithm). They indicate that stochastic in-
formation brings significant benefits in online flexible rout-
ing, particularly when waiting and/or relocation are used. The
benefits are particularly significant on the harder instances
(e.g., 20-20-60-rc104-2), where myopic optimization may re-
ject about 25 customers in average, while the best stochastic
algorithm would reject only about 12.

5 Online Commitment Routing
We now move to online commitment routing in which a re-
quest must be assigned a vehicle upon acceptance. This adds
a third decision, selecting a vehicle, to the framework, cap-
tured in function PROCESSREQUEST (line 3) of Figure 2.

Since request acceptance is greedy in earlier work [6], it is
tempting to proceed similarly for vehicle assignment and to
assign the incoming request to minimize the total travel dis-
tance. Unfortunately, the solution quality of the algorithms
deteriorates significantly with this choice, as indicated in Ta-
ble 2. Obviously, the increased problem difficulty partly ex-
plains this quality loss, since the online myopic algorithm

SELECTVEHICLE(State σ,Request r)
1 {ξ1, . . . , ξk} ← SAMPLE(k);
2 for v ∈ 1..m
3 do f(v)← 0;
4 for i ∈ 1..k
5 do for v ∈ 1..m
6 do f(v)← f(v) + w(O(ADDREQUEST(σ, r, v), ξ)));
7 return arg-maxv∈1..m f(v);

Figure 3: Vehicle Selection for Commitment Routing

Problem Name MO OSR OSR-W OSR-R OSR-WR
20-20-60-rc101-1 8.0 7.8 9.3 9.8 9.9
20-20-60-rc101-2 5.0 6.7 6.8 6.8 7.4
20-20-60-rc101-3 4.0 6.2 8.5 7.9 7.5
20-20-60-rc101-4 7.0 5.7 8.0 7.6 8.0
20-20-60-rc101-5 6.0 7.0 7.9 7.7 7.1
20-20-60-rc102-1 2.0 2.3 2.6 3.1 3.0
20-20-60-rc102-2 9.0 6.4 6.7 6.7 7.8
20-20-60-rc102-3 4.0 4.3 6.5 6.3 6.0
20-20-60-rc102-4 6.0 4.6 6.6 5.7 5.9
20-20-60-rc102-5 11.0 5.2 7.8 7.7 6.1
20-20-60-rc104-1 26.0 18.1 20.1 18.2 19.5
20-20-60-rc104-2 37.0 22.4 24.5 26.8 23.0
20-20-60-rc104-3 26.0 12.2 16.1 17.0 17.6
20-20-60-rc104-4 25.0 16.7 18.0 13.6 17.5
20-20-60-rc104-5 25.0 10.8 12.8 13.3 12.9
Average 13.7 9.1 10.8 10.5 10.6

Table 3: Number of Rejected Customers in Online Commit-
ment Routing with Greedy Acceptance and Stochastic Vehi-
cle Assignment.

now rejects about 14 customers in average (instead of about
10) and may reject 39 customers (out of 100) in some in-
stances. However, the performance of the stochastic algo-
rithms is also extremely disappointing. The basic algorithm
(OSR) is roughly comparable to online myopic optimization
but the waiting and relocation variant perform even more
poorly. This raises two fundamental questions:

1. Can the algorithms be enhanced to bridge most of the
gap in solution quality?

2. Is there a value of stochatic information in online com-
mitment routing and is there a real price of commitment?

The rest of this paper addresses both issues.

6 Stochastic Vehicle Assignment
To improve solution quality, we first use stochastic informa-
tion to select the vehicle for an incoming request. The algo-
rithm for selecting the vehicle of a request is depicted in Fig-
ure 3. The key idea is to generate scenarios and to evaluate the
consequences of the various allocation decisions on the num-
ber of serviced customers. The algorithm generates scenarios
(line 1) and initializes the scores of the vehicles (lines 2–3).
Then, for every scenario, it calls the optimization algorithms
for each of the allocation decision (line 4–6). The algorithm
then returns the allocation with the best score. The algorithm
requires km optimizations per decision. The number can be
reduced by using the regret algorithm [5].

Table 3 depicts the results which show significant improve-
ments for stochastic algorithms and, in particular, on the



ACCEPTREQUEST(State σ,Request r)
1 {ξ1, . . . , ξk} ← SAMPLE(k);
2 for v ∈ 1..m
3 do f(v)← 0;
4 fr ← 0;
5 for i ∈ 1..k
6 do for v ∈ 1..m
7 do f(v)← f(v) + w(O(ADDREQUEST(σ, r, v), ξ)));
8 fr ← fr + w(O(σ, ξ));
9 return maxv∈1..m f(v) ≤ fr;

Figure 4: Request Acceptance for Commitment Routing

Problem Name MO OSR OSR-W OSR-R OSR-WR
20-20-60-rc101-1 8.0 9.2 11.6 11.9 11.7
20-20-60-rc101-2 5.0 5.9 5.7 6.1 5.9
20-20-60-rc101-3 4.0 5.9 7.6 7.6 7.3
20-20-60-rc101-4 7.0 8.0 7.6 7.4 7.7
20-20-60-rc101-5 6.0 6.7 8.0 7.7 8.2
20-20-60-rc102-1 2.0 2.5 3.5 3.2 3.1
20-20-60-rc102-2 9.0 6.4 6.6 7.4 7.5
20-20-60-rc102-3 4.0 4.3 5.7 6.4 6.7
20-20-60-rc102-4 6.0 5.8 6.6 6.9 5.9
20-20-60-rc102-5 11.0 4.6 5.7 5.5 5.3
20-20-60-rc104-1 26.0 17.4 19.2 19.9 18.5
20-20-60-rc104-2 37.0 20.7 22.3 21.7 22.0
20-20-60-rc104-3 26.0 13.3 12.7 14.3 15.5
20-20-60-rc104-4 25.0 13.8 13.1 11.4 14.6
20-20-60-rc104-5 25.0 11.1 12.6 11.3 12.1
Average 13.7 9.0 9.9 9.9 10.1

Table 4: Number of Rejected Customers in Online Commit-
ment Routing with Stochastic Acceptance and Stochastic Ve-
hicle Assignment.

harder instances. Algorithm OSR now rejects about 9 cus-
tomers in average and it now accepts about 10 additional cus-
tomers on the harder instances. The waiting and relocation al-
gorithms show similar improvements but are still dominated
by OSR. These results clearly indicated the value of stochas-
tic information for vehicle assignment.

7 Stochastic Acceptance
We now move to the stochastic acceptance of requests, using
stochastic information to decide whether to accept or reject
a request. The algorithm is depicted in Figure 4 and follows
the same pattern as the stochastic vehicle selection. The only
additions are line 4 and 8 which are used to evaluate the deci-
sion to reject the request and, of course, line 9 which returns
the decision. Intuitively, the idea underlying the algorithm
is to evaluate the scenarios for each possible vehicle alloca-
tion decision and for request rejection. If the best vehicle
allocation is superior to rejection, the request is accepted; It
is rejected otherwise. Once again, the algorithm require km
optimization which can be reduced by using the regret algo-
rithm. The resulting algorithm exploits the same stochastic
techniques for all three decisions, request acceptance, vehicle
assignment, and vehicle dispatching, and provides a unified
framework for online routing. Note also that our implementa-
tion combines request acceptance and vehicle allocation since
the optimizations are similar.

Table 4 depicts its experimental results, which exhibit

Problem Name MO OSR OSR-W OSR-R OSR-WR
20-20-60-rc101-1 5.0 6.4 7.9 8.3 8.2
20-20-60-rc101-2 9.0 4.7 4.4 5.0 5.1
20-20-60-rc101-3 0.0 4.5 6.0 5.7 5.5
20-20-60-rc101-4 5.0 6.2 8.4 7.9 7.7
20-20-60-rc101-5 3.0 5.0 6.3 5.9 6.2
20-20-60-rc102-1 2.0 1.4 0.7 0.6 1.3
20-20-60-rc102-2 8.0 3.6 5.1 4.6 4.7
20-20-60-rc102-3 2.0 3.3 5.1 4.4 5.2
20-20-60-rc102-4 2.0 2.6 3.8 3.5 3.8
20-20-60-rc102-5 6.0 3.5 3.6 3.1 4.2
20-20-60-rc104-1 23.0 11.7 15.3 16.1 14.7
20-20-60-rc104-2 29.0 13.9 13.9 13.1 13.8
20-20-60-rc104-3 18.0 11.0 13.1 14.3 13.8
20-20-60-rc104-4 25.0 9.1 12.3 10.3 10.7
20-20-60-rc104-5 18.0 6.7 9.3 7.5 9.0
Average 10.3 6.2 7.7 7.4 7.6

Table 5: Number of Rejected Customers for Online Commit-
ment Routing with Resource Augmentation: One Additional
Vehicle

Problem Name MO OSR OSR-W OSR-R OSR-WR
20-20-60-rc101-1 3.0 5.0 6.0 6.1 5.7
20-20-60-rc101-2 6.0 3.1 3.2 3.1 2.9
20-20-60-rc101-3 0.0 2.4 2.8 3.4 3.5
20-20-60-rc101-4 4.0 4.0 5.9 6.0 6.0
20-20-60-rc101-5 2.0 4.2 5.4 5.6 5.7
20-20-60-rc102-1 0.0 0.4 0.3 0.6 0.1
20-20-60-rc102-2 5.0 1.8 2.6 2.2 3.1
20-20-60-rc102-3 0.0 1.6 2.4 2.9 2.9
20-20-60-rc102-4 1.0 2.0 2.1 3.5 2.5
20-20-60-rc102-5 4.0 1.9 1.3 1.8 1.7
20-20-60-rc104-1 19.0 9.1 10.1 12.3 11.8
20-20-60-rc104-2 25.0 10.8 11.5 11.4 13.6
20-20-60-rc104-3 16.0 9.2 10.6 10.0 11.5
20-20-60-rc104-4 21.0 7.9 6.9 10.9 8.4
20-20-60-rc104-5 16.0 5.5 7.1 5.2 7.7
Average 9.5 4.6 5.2 5.8 5.8

Table 6: Number of Rejected Customers for Online Commit-
ment Routing with Resource Augmentation: Two Additional
Vehicles

slight improvements for each of the stochastic algorithms, al-
beit marginal for OSR. Overall, the results indicate the value
of stochastic information for online commitment routing. The
solution quality of OSR in this seeting is close to its perfor-
mance in online flexible routing. However, the waiting and
relocation variants are not, suggesting that waiting and re-
location strategies have little benefit in online commitment
routing. This is rather unexpected, since the vehicle assign-
ment does not prescribe any specific dispatching decision but
just the vehicle allocation. As a consequence, the benefits of
waiting and relocation seem to be the main loss of moving
from a flexible to a commitment framework.

8 Resource Augmentation
A traditional methodology in online algorithms consists in
adding resources to account for the additional cost of taking
decisions dynamically. In this section, we consider resource
augmentation for online commitment routing by adding one
or more vehicles.

Table 5 reports the results with one addition vehicle. The
results are illuminating. OSR now improves on its results for
online flexible routing, moving from 8.69 to 6.2 rejections
in average and significantly reducing the number of rejected
customers on the harder instances. This should be contrasted



with online myopic optimization whose average number of
rejections for online commitment routing with one additional
vehicle (10.3) is still higher than its flexible counterpart. Re-
source augmentation also improves the waiting and relocation
variants but they are still dominated by OSR. In fact, the dis-
tance between OSR on the one hand and OSR-W, OSR-R,
and OSR-RW on the other hand increases both in percentage
and absolute terms with resource augmentation.

Table 6 depicts the results with 2 additional vehicles. Once
again, the stochastic algorithms benefit the most from the ad-
ditional resource, but the waiting and relocation variants still
do not improve the basic stochastic algorithm.

9 Conclusion
In this paper, we studied online stochastic vehicle routing in a
setting which requires to commit specific vehicles to accepted
requests (online commitment routing). This online commit-
ment routing setting is motivated by actual applications in
which the flexibility of moving a request from a vehicle to
another is fundamentally undesirable or not available. Exper-
imental results indicated that simple generalizations of exist-
ing algorithms for online flexible routing do not scale to on-
line commitment routing. We then proposed a unified frame-
work in which all three decisions, i.e., request acceptance, ve-
hicle selection, and vehicle dispatching, are based on similar
principles and use a combination of sampling and optimiza-
tion. The experimental results show significant improvements
in quality, demonstrating the value of stochastic information
in this setting and showing the criticality of vehicle selection.
However, the solution quality for online commitment routing
was still inferior to its flexible counterpart. For this reason,
we consider resource augmentation and showed that the pro-
posed algorithm with one additional vehicle outperforms its
flexible counterpart. However, there is an additional price of
commitment: the waiting and relocation strategies so effec-
tive in online flexible routing degrade solution quality when
vehicle commitments are required. Understanding why this is
the case and characterizing when waiting and relocation are
valuable are interesting open issues.
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