
Sub-Optimality Approximations

Russell Bent1, Irit Katriel2, and Pascal Van Hentenryck1

1 Brown University, Box 1910 Providence, RI 02912, USA
2 Max-Plank-Institut für Informatik, Saarbrücken, Germany

Abstract. The sub-optimality approximation problem considers an op-
timization problem O, its optimal solution σ∗, and a variable x with do-
main {d1, . . . , dm} and returns approximations to O[x← d1], . . . ,O[x←
dm], where O[x← d1] denotes the problem O with x assigned to di. The
sub-optimality approximation problem is at the core of online stochastic
optimization algorithms and it can also be used for solution repair and
approximate filtering of optimization constraints. This paper formalizes
the problem and presents sub-optimality approximation algorithms for
metric TSPs, packet scheduling, and metric k-medians that run faster
than the optimal or approximation algorithms. It also presents results
on the hardness/easiness of sub-optimality approximations.

1 Introduction

In an increasing dynamic, interconnected, and real-time world, optimization
technology faces new challenges and opportunities. Indeed, on many applica-
tions, it is no longer sufficient to produce optimal, or near-optimal, solutions
offline. Optimization software should adapt dynamically to uncertainties, up-
date existing solutions to accommodate new requests and events, and produce
high-quality decisions under severe time constraints.

This paper introduces the sub-optimality approximation problem, which is
at the core of many online and dynamic applications. Given an optimization
problem O and an optimal solution σ∗ to O, the sub-optimality approximation
problem consists of approximating the problems O[x ← d1], . . . ,O[x ← dm],
where x is a decision variable, {d1, . . . , dm} are its possible values, and O[x← d]
denotes the problem O where x is assigned to d. The key property of the sub-
optimality approximation problem is the availability of the optimal solution σ∗.
Since each problem O[x← di] is closely related to O, the optimal solution is, in
general, of tremendous help for the sub-optimality approximations. However, to
be useful, a sub-optimality approximation algorithm should be faster than tradi-
tional approximation algorithms. This performance requirement is formalized by
the concept of amortized sub-optimality algorithm that finds approximations to
O[x← d1], . . . ,O[x← dm] in the time it takes to solve O optimally or approxi-
mately. The sub-optimality approximation problem is a critical component of the
regret algorithm for online stochastic optimization [3, 6]. It can also be used for
solution repair, for evaluating the robustness of solutions, and for approximate
filtering of optimization constraints to name a few of its applications.

This paper makes three contributions. First, it identifies and formalizes the
sub-optimality approximation problem and demonstrates its relevance for a num-
ber of applications. Second, it presents amortized sub-optimality approximation

2 Bent, Katriel, and Van Hentenryck.

algorithms for three problems: the metric TSP, packet scheduling in networks,
and the k-median problem. The proof techniques are interesting in the sense they
reason about the optimal solutions to both O and O[x ← d]. Third, it presents
results on the hardness and easiness of sub-optimality approximations, showing
that some “hard” problems become “easy”, while others remain “hard”.

This paper is organized as follows. Sections 2 and 3 formalize the problem
and discuss its applications. Section 4, 5, and 6 present sub-optimality approx-
imations for the metric TSP, the packet scheduling, and the metric k-median
problem. Section 7 presents the hardness results.

2 Amortized Sub-Optimality Approximation Algorithms

This section formalizes sub-optimality approximation problems and algorithms.
The formalization uses the definition of CSPs from [15], where the set of con-
straints is abstracted by a Boolean function which holds if all the constraints are
satisfied (since we are not interested in the constraint structure). Solutions are
also represented as functions (assignments) from variables to their sets of values.

Definition 1. A CSP is a triplet 〈V, D, C〉, where V denotes the set of variables,
D denotes the set of possible values for these variables, and C : (V → D)→ Bool
is a constraint which specifies which assignments of values to the variables are
solutions. A solution to a CSP P = 〈V, D, C〉 is a function σ : V → D such that
C(σ) = true. The set of solutions to a CSP P is denoted by Sol(P).

Constraint Optimization Problems (COPs) are CSPs with an objective function.

Definition 2. A COP is a pair 〈P , f〉, where P = 〈V, D, C〉 is a CSP and
f : V → N is an objective function. A solution to a COP O = 〈P , f〉 is a
solution to P. An optimal solution to O is a solution of O that minimizes f .
The sets of solutions and optimal solutions to a COP O are denoted by Sol(O)
and OptSol(O) respectively.

Given a CSP P = 〈V, D, C〉, var(P) denotes the variables V and dom(P) the
domain D. Similar notations are used for COPs, the variables and values of a
COP being those of its underlying CSP. Sub-optimality approximation problems
consider sets of related CSPs where one variable is assigned different values.
Given a CSP P = 〈V, D, C〉, P [x ← d] (x ∈ V & d ∈ D) denotes the CSP P
where variable x is assigned the value d, i.e., the CSP 〈V, D, C∧x = d〉. Similarly,
given a COP O = 〈P , f〉, O[x← d] (x ∈ V & d ∈ D) denotes the COP O where
variable x is assigned the value d, i.e., the COP 〈O[x← d], f〉.

We are ready to specify the sub-optimality approximation problem. Infor-
mally, given an optimal solution σ∗ to a COP O, the sub-optimality approxi-
mation problem consists of finding constant factor approximations to the COPs
O[x← di] for all values d1, . . . , dm of variable x.

Definition 3 (The Sub-Optimality Approximation Problem). A sub-
optimality approximation problem receives as input a COP O = 〈P , f〉 with

Sub-Optimality Approximations 3

dom(P) = {d1, . . . , dm}, an optimal solution σ∗ ∈ OptSol(O), and a variable x
in var(P). Its output is a set of solutions

σ̃i ∈ Sol(P [x← di]) (1 ≤ i ≤ m)

satisfying
f(σ̃i) ≤ βf(σ∗

i)

for some constant β, where σ∗

i ∈ OptSol(O[x← di]).

The fundamental property in the sub-optimality approximation problem is the
fact that the input contains an optimal solution to O. This solution should
of course be used by the sub-optimality approximation algorithm in order to
solve the COPs O[x ← di] efficiently. Observe that the definition can easily be
generalized to accommodate stronger or weaker approximation requirements.

To capture performance requirements of great benefit in practical applica-
tions, we introduce the concept of amortized sub-optimality approximation al-
gorithms. The intuition here is that a sub-optimality algorithm is amortized if
it approximates the solutions of O[x ← d1], . . . ,O[x ← dm] in the time it takes
to solve O optimally. It is strongly amortized if it approximates such solutions
for all variables in the same time.

Definition 4 (Amortized Sub-Optimality Approximation). Consider a
class C of COPs, let A be an algorithm for solving C in time O(g), and let Ã
be a sub-optimality approximation algorithm for class C that runs in time O(g̃).
Let |dom(O)| = m and let |var (O)| = n. Algorithm Ã is amortized wrt A on
class C if, for each COP O ∈ C with |dom(O)| = m, we have that m g̃ is O(g)..
It is strongly amortized wrt A on class C if nm g̃ is O(g).

These definitions can be generalized to the important case where the COP is
solved through an approximation algorithm with performance guarantees. This
is especially significant in online optimization under strict time constraints where
optimal solutions can rarely be obtained within the time limits.

Definition 5 (The Sub-Optimality (α,β)-Approximation Problem). A
sub-optimality (α, β)-approximation problem receives as input a COP O = 〈P , f〉
with dom(P) = {d1, . . . , dm}, an approximation σ̃ satisfying f(σ̃) ≤ αf(σ∗) for
σ∗ ∈ OptSol(O), and x in var (P). Its output is the solutions σ̃i ∈ Sol(P [x ←
di]) (1 ≤ i ≤ m) satisfying f(σ̃i) ≤ βf(σ∗

i) and σ∗

i ∈ OptSol(O[x← di]).

The concept of amortized sub-optimality (α, β)-approximation is similar to Defi-
nition 4, although its requirements are typically much stricter. However, as shown
later, the same sub-optimality approximation may apply to both problems.

3 Applications

This section reviews a number of applications that benefit from sub-optimality
approximation algorithms to demonstrate its relevance and applicability. The
section does not aim to be comprehensive but to give some indication of where
sub-optimality approaximations may be beneficial.

4 Bent, Katriel, and Van Hentenryck.

Online Stochastic Optimization Our primary motivation for sub-optimality op-
timization came from online stochastic optimization. Online optimization prob-
lems (e.g., [11]) is a class of applications where the data is revealed online during
the execution of the decision-making process. In many of these applications [8,
3, 4], a distribution of the data, or an approximation thereof, is available to
the algorithm for sampling. Alternatively, the data distribution can be learned
during the algorithm execution [6]. A natural framework for online stochastic
optimization was defined in [5, 3, 2] and only its most basic version is considered
here for simplicity. The key idea behind the framework is to consider a time
interval H and to allow a single request to be served at each time t ∈ H . The
selected request (if any) is selected from the set of available requests R at time
t. Each request r has a weight w(r) that specifies how valuable it is. Which re-
quests may be served is problem-specific and left unspecified in the framework.
The framework simply assumes that the underlying algorithms have access to
two black-boxes: an optimization algorithm that can find an optimal solution
for a set of requests and a distribution that can be sampled to obtain scenarios
reflecting the future (to some degree). The goal of the online algorithms is to a
choose requests online to maximize the weighted sum of the serviced requests.
More formally, the algorithms are all instantiations of the online schema:

onlineOptimization(H)
1 R← ∅;
2 w← 0;
3 for t ∈ H
4 do R← availableRequests(R, t) ∪ newRequests(t);
5 r ← chooseRequest(R, t);
6 serveRequest(r, t);
7 w ← w + w(r);
8 R← R \ {r};

but they differ in how they implement function chooseRequest. The online
optimization schema considers the set of available requests (i.e. those requests
that may be served at time t without violating any constraints) and new requests
at each time step. It chooses a request r which is then served and removed from
the set of available requests. Function availableRequest(R, t) returns the set
of requests available for service at time t and function serveRequest(r, t) sim-
ply serves r at time t (i.e., σ(t)← r). To implement function chooseRequest,
the algorithms have at their disposal two black-boxes:

1. A function optimalSolution(R, t, ∆) that, given a set R of requests, a
time t, and a number ∆, returns an optimal solution for R over [t, t + ∆];

2. A function getSample([ts, te]) that returns a set of requests over the inter-
val [ts, te] by sampling the arrival distribution.

Typically, the goal is to choose a request at time t that maximizes expectation.
The exact computation of the expected value of servicing a request is often too
computationally demanding and one of the traditional approaches approximates

Sub-Optimality Approximations 5

expectation by evaluating each decision with respect to samples from the distri-
bution (Algorithm E) [8]. A simple implementation is as follows:

chooseRequest-E(R, t)
1 for r ∈ R
2 do f(r)← 0;
3 for i← 1 . . .O/|R|
4 do S ← R ∪ getSample([t + 1, t + ∆]);
5 for r ∈ R
6 do f(r)← f(r) + (w(r) + W (optimalSolution(S \ {r}, t + 1)));
7 return argmax(r ∈ R) f(r);

Lines 1-2 initialize the evaluation function f(r) for each request r. The algorithm
then generates a number of samples for future requests (line 3). For each such
sample, it computes the set R of all available and sampled requests at time t
(line 4). The algorithm then considers each available request r successively (line
5), it implicitly schedules r at time t, and applies the optimal offline algorithm
using S \{r} and the time horizon. The evaluation of request r is updated in line
6 by incrementing it with its weight and the score of the corresponding optimal
offline solution. All samples are evaluated for all available requests and the algo-
rithm then returns the request r ∈ R with the highest evaluation. Observe Line
3 of Algorithm E which distributes the available offline optimizations across all
available requests. The expectation algorithm is typically too computationally
demanding for an online setting as each evaluation of a request on a sample re-
quires an optimization. A recent advance is the regret algorithm (R), where each
sample is solved optimally once and sub-optimality approximations are used to
evaluate the remaining requests [3]:

chooseRequest-R(R, t)
1 for r ∈ R
2 do f(r)← 0;
3 for i← 1 . . .O
4 do S ← R ∪ getSample([t + 1, t + ∆]);
5 σ∗ ← optimalSolution(S, t);
6 f(σ∗(t))← f(σ∗(t)) + W (σ);
7 for r ∈ R \ {σ∗(t)}
8 do f(r)← f(r) + W (suboptimalityApproximation(σ∗, r, S, t));
9 return argmax(r ∈ R) f(r);

Algorithm R (lines 7-8) computes an approximation of the best solution of s
serving r at time t, i.e., W (suboptimalityApproximation(σ∗, r, S, t)). Hence,
the value of scheduling each available request is approximated on every sample
at time t for the cost of a single offline optimization (asymptotically). Observe
that the regret algorithm solves the sub-optimality problem where variable σ(t)
is assigned the values R \ {σ(r)} and that the optimal solution σ∗, or an ap-
proximation thereof, is naturally available since the sample is solved in line 5.
By solving the sub-optimality problem, algorithm R enjoys essentially the same
theoretical performance guarantees as algorithm E at a fraction of the cost [7].

6 Bent, Katriel, and Van Hentenryck.

Solution Repair Solution repair is another important application for sub-optimality
approximations. For example, a catastrophic hub failure in a network may re-
quire a nearby hub to be opened quickly. Such applications are often modeled
as dynamic facility location problems where one must quickly approximate the
optimal solution to the problem in which a facility is forced to be closed or to
be opened. Once again, the optimal solution, or an approximation thereof, is
naturally available, and one is interested in solving the sub-optimality approxi-
mation problem for specific hubs. Solution repair is closely related to the issue of
robustness. Sub-optimality approximations provide a computational method to
evaluate the robustness of different optimal, or locally optimal, solutions. Solu-
tions with small sub-optimality gaps may be preferred, since they entail smaller
quality loss when some variables cannot be assigned some values. Again, optimal
or approximated solutions are naturally available in these applications.

Partial or Approximate Filtering Sub-pOtimality approximations are also useful
for partial or approximate filterings of optimization constraints (e.g., [12]). An
optimization constraint captures a combinatorial substructure arising in many
applications and can be specified as an optimization problem O = 〈P , f〉. During
the search, an optimization constraint uses bounds on f to detect infeasibility
and prunes the domains of the variables. Consider a minimization constraintO =
〈P , f〉 and assume that U is an upper bound on f . Typically, the minimization
constraint searches for an optimal solution o∗ to O to detect feasibility, i.e.,
f(o∗) ≤ U . Once feasibility is established, the constraint filters the domains of
the variables to remove all values that cannot appear in any solution not greater
than U . Here sub-optimality approximation can be used to detect quickly values
that can, or cannot, be filtered. Assume that the sub-optimality algorithm is a
ρ-approximation and consider a variable x with domain D. The sub-optimality
approximation problem provides a solution õd to O[x ← d] satisfying f(õd) ≤
ρf(od), where od is an optimal solution to O[x← d]. Hence, the value d cannot
be filtered whenever f(õd) ≤ U and must be filtered whenever f(õd) > ρU . Once
again, observe that the optimal solution o∗ is naturally available.

4 The Travelling Salesman Problem

The traveling salesman problem (TSP) is probably the most studied combinato-
rial optimization problem. It is also an important component in a wide variety
of online applications, such as courier services.

The Sub-Optimality Approximation Problem The sub-optimality approximation
problem consists of approximating the cost of assigning different successors to
a vertex i. In other words, the variable under consideration is the successor of
vertex i and the domains are all other vertices.

The Sub-Optimality Approximation Algorithm A simple relocation provides a
sub-optimality approximation algorithm to bound the effect of traveling to cus-
tomer j after i: remove j from the optimal solution and reinsert it after i. This
amortized algorithm is a constant factor approximation for the Euclidean TSP.

Sub-Optimality Approximations 7

Theorem 1. [Amortized Sub-Optimality for the Metric TSP] The met-
ric TSP has a strongly amortized sub-optimality (α,β)-approximation algorithm.

Proof. Let σ∗ be the optimal solution to a TSP and let σij be the optimal
solution when j must follow i. The optimal solution σ∗ consists of a tour with
length C(σ) = ci,i++Ci+,j−+cj−,j +cj,j++Cj+,i, where Ci,j (resp. ci,j) denotes
the cost of the path (resp. arc) between i and j in σ∗. The approximation solution
consists of a tour with length C(σ̃xij

) = ci,j + cj,i+ + Ci+,j− + cj−,j+ + Cj+,i.
By the triangle inequality,

C(σ̃ij) = ci,j + cj,i+ + Ci+,j− + cj−,j+ + Cj+,i

≤ ci,j + cj,i+ + Ci+,j− + cj−,j + cj,j+ + Cj+,i

≤ ci,i+ + Ci+,j− + cj−,j + ci+,j + Ci+,j− + cj−,j + cj,j+ + Cj+,i

≤ ci,i+ + Ci+,j− + cj−,j + Ci+,j− + cj−,j + Ci+,j− + cj−,j + cj,j+ + Cj+,i

≤ ci,i+ + 3Ci+,j− + 3cj−,j + cj,j+ + Cj+,i

≤ 3 C(σ)
≤ 3 C(σij) by optimality of σ.

Now assume that σ̃ is an α-approximation of σ∗. We have that C(σ̃ij) ≤ 3 C(σ̃)
by the above proof and hence C(σ̃ij) ≤ 3 α C(σ̃) ≤ 3 α C(σ̃ij). Each such
approximation takes O(1) time. The algorithm is strongly amortized wrt all
approximation algorithms (which are Ω(|E|), where E is the set of arcs). ut

5 Packet Scheduling

The Optimization Problem This section considers a simple scheduling problem
used to model a variety of applications, including the packet scheduling problem
from [8]. The problem is given as inputs a set R of tasks/requests for service
and a time horizon H = [H, H] during which requests must be scheduled. Each
request r is characterized by a weight w(r) and an arrival time a(r), requires
a single time unit to be processed, and must be scheduled in its time window
[a(r), a(r)+d]. In other words, the request is lost if it is not served within its time
window. In addition, no two requests can be scheduled at the same time. The
goal is to find a schedule of maximal weight, i.e., a schedule which maximizes
the sum of the weights of all scheduled requests. This is equivalent to minimizing
weighted loss. More formally, assume for simplicity and without loss of generality,
that there is a request scheduled at each time step. Under this assumption, a
schedule is a function σ : H → R which assigns a request to each time in the
schedule horizon. A schedule σ is feasible if it satisfies the constraints

∀ t1, t2 ∈ H : t1 6= t2 → σ(t1) 6= σ(t2)
∀ t ∈ H : a(σ(t)) ≤ t ≤ a(σ(t)) + d.

The weight of a schedule σ, denoted by W (σ), is given by

W (σ) =
∑

t∈H

w(σ(t)).

and the goal is to find a feasible schedule σ maximizing W (σ). This offline
problem can be solved in quadratic time O(|R||H |) [8].

8 Bent, Katriel, and Van Hentenryck.

The Sub-Optimality Approximation Problem The sub-optimality approximation
problem for packet scheduling is motivated by online stochastic optimization,
where future packets are known in advance and are revealed online as the algo-
rithm makes decision. As discussed in Section 3, it is highly beneficial in online
optimization to use stochastic information and to evaluate many scenarios at
a time t in order to select a good packet to schedule. However, due to severe
time constraints, only a few optimizations can be executed and the regret al-
gorithm uses the sub-optimality approximation algorithm to estimate the value
of scheduling all packets on all scenarios for the cost of one optimization. As a
consequence, the sub-optimality approximation problem is given a set of request
R and an optimal solution σ∗ for scheduling these requests in the time horizon
[t, H]. For each request r ∈ R available at time t, it must approximate the op-
timal schedule σr that schedules request r at time t, i.e., σr(t) = r. The results
also generalize to arbitrary times in H .

The packet scheduling problem is an interesting case study because its offline
algorithm takes quadratic time and hence an amortized sub-optimality approx-
imation must approximate |R| schedules within the same time bounds.

The Amortized Sub-Optimality Approximation The sub-optimality approxima-
tion consists of swapping a constant number of requests in the optimal schedule
σ∗ at a time t and performs a case analysis on the properties of the request r.

If a request r is not scheduled (i.e., r /∈ σ∗), the key idea is to try rescheduling
the request σ∗(t) instead of the request of smallest weight in the schedule σ∗.
The value of the sub-optimality approximation becomes

W (σ∗)−min(s ∈ [t, a(σ∗(t)) + d]) w(σ∗(s))− w(r),

since the replaced request is removed from σ∗ and r is added to the schedule. In
the worst case, the replaced request is σ∗(t) and the approximation is W (σ∗)−
(w(σ∗(t))− w(r)).

If request r is scheduled at time tr, the sub-optimality approximation first
tries to swap r and σ∗(t) in which case the approximation is W (σ∗). If this is
not possible, the approximation tries rescheduling σ∗(t) instead of the request of
smallest weight in σ∗. If σ∗(t) cannot be rescheduled, the approximation simply
selects the best possible unscheduled request which may be scheduled at tr and
the approximation is

W (σ∗)− (w(σ∗(t))−max(u ∈ Ur) w(u))

where Ur = {r | a(r) ≤ tr ≤ a(r)+ d ∧ r /∈ σ∗}, If σ∗(t) is rescheduled at time
s, then the approximation concludes by selecting the best possible unscheduled
request which may be scheduled at tr and the approximation is

W (σ∗)− (w(σ∗(s))−max(u ∈ Ur,s) w(u))

where Ur,s = {r | a(r) ≤ tr ≤ a(r) + d ∧ (r /∈ σ∗ ∨ r = σ∗(s))}. Each sub-
optimality approximation takes O(d) time and is performed at most |R| times
(typically much less than |R| since only one request of the same class must be

Sub-Optimality Approximations 9

evaluated). Thus all the approximations take O(d|R|) time, which is O(|R||H |)
and is negligible in practice for this application. Theorem 2 shows that this
amortized algorithm produces a 2-approximation.

Theorem 2. Packet scheduling has an amortized suboptimality approximation.

Proof. Let r ∈ R be a request that can be scheduled at time t and σ∗ be an
optimal solution. let σr be an optimal solution when r is scheduled at time
t (i.e., σr(t) = r) and let σ̃r be the solution obtained by the sub-optimality
approximation. This theorem shows that

w(σr)

w(σ̃r)
≤ 2.

Most of the proof consists of showing that, for each lost request x, where x
is typically σ∗(t), there is another request in σ∗ whose weight is at least w(x)
yielding a 2-approximation since w(σr) ≤ w(σ∗).

First observe that the result holds when w(x) ≤ w(r) since, in the worst case,
the sub-optimality approximation only loses request x. So attention is restricted
to w(x) ≥ w(r). If x ∈ σ̃r, i.e., if the sub-optimality approximation swaps x with
another request y (case 1), the result also holds since w(y) ≤ w(x). If x /∈ σ̃r

and x can be scheduled at a time other than t, it means that there exists a
request y at each of these times satisfying w(y) ≥ w(x) and the result holds. It
thus remains to consider the case where x can only be scheduled at time t and
is thus lost in σr. If r /∈ σ∗, the sub-optimality approximation is optimal, since
otherwise r would be in the optimal schedule at a time other than t. Otherwise,
it is necessary to reason about a collection of requests. Indeed,

w(σ∗) = w(x) + w(r) + w(S),

where S = {p ∈ σ∗ | p 6= x & p 6= y}. It is also known that w(σ̃r) ≥
w(r) +w(S) since, in the worst case, the approximation loses request x. Finally,
w(σr) = w(r) + w(Z) where Z are the requests scheduled after time t. Since σ∗

is optimal, we have w(Z) ≤ w(r) + w(S) and the result follows. ut

Experimental Results Figure 1 (taken from [3]) shows the significance of the sub-
optimality approximation problem for online stochastic optimization. The plot
depicts the performance of various algorithms as a function of the number of
optimizations available for each decision. It considers two oblivious algorithms:
greedy (G) which always schedules the available packet of highest weight, local
optimization (LO) which uses the result of the optimization on the known re-
quests to select the packet to schedule at time t. It also considers two stochastic
algorithms: expectation (E) which runs the optimization algorithm when each
available request is scheduled at time t in each scenario, and the regret algorithm
(R) which solves each scenario once and uses the sub-optimality approximation
to evaluate each available request. The figure also displays the optimal, a pos-
teriori, solution, i.e., the solution that would be obtained if all requests had
been known in advance. As can be seen from this plot, the regret algorithm pro-
vides great benefits over all the other algorithms. In particular, it significantly
outperforms E when few optimizations are available for decision making.

10 Bent, Katriel, and Van Hentenryck.

0 20 40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

95

100

Maximum Number of Offline Optimizations

A
ve

ra
ge

 W
ei

gh
te

d
Lo

ss

O
G
LO
E
R

Fig. 1. Regret on Packet Scheduling

6 The k-Median Problem

The Optimization Problem This section studies k-median problems and presents
an amortized sub-optimality approximation performing a single local move. A
k-median problem receives, as inputs, a set F of facilities, a set of customers S,
a function ca,b specifying the connection costs between a and b (a, b ∈ F ∪ S),
and an integer k. The goal is to find a subset A (A ⊆ F) of cardinality k to
minimize the objective function

WA(S) =
∑

s∈S

min
a∈A

cs,a.

The Sub-Optimality Approximation Problem The computational complexity in
the k-median problem consists of choosing which k facilities to open. Once the
facilities are open, it suffices to assign the customers to the cheapest facility. As
a consequence, the decision are whether to open or close a warehouse and the
sub-optimality approximation problem consists of approximating the optimal
solution whenever a facility is forced to be open or forced to be closed. This
section considers metric k-median problems, i.e., k-median problems where the
costs are taken from a metric space. The k-median problem has applications
in networking where servers or specialized routers may be modeled as facilities.
When a server fails (closing a facility), it is important to choose a replacing router
quickly. Similarly, in order to contain failure propagation, it may be important
to start a server (opening a facility) at some node. The amortized sub-optimality
algorithm presented here handles these two cases very quickly. The Internet is
typically not a metric space. However, recent research [10] has shown that it can
conveniently be embedded in a metric space.

The Sub-Optimality Approximation Algorithm The sub-optimality approxima-
tion algorithm consists of performing the best swap of the considered facility.
In other words, when a facility x must be closed (resp. open), the algorithm
opens (resp. closes) the warehouse y that increases the cost the least. We now

Sub-Optimality Approximations 11

y

s

 r
 x

y

 r

s

 x

Fig. 2. Closing a Facility: Facility y is Inside the Circle.

show that this local move is a constant approximation by showing a constant
approximation for some swaps.

Proposition 1. [Closing] Let A be an optimal solution to a metric k-median
problem and B be an optimal solution when facility x is closed. There exists a
facility y 6= x such that B̃ = A \ {x} ∪ {y} is a 5-approximation of B.

Proof. Denote by Sx the set of customers assigned to x in A. Define a circle C
centered at x of radius r and define Inner as the set of customers in Sx lying
inside C, Outer as the set of customers in Sx lying outside C and Other the
remaining customers S \ Sx. Moreover, choose r such |Inner| = |Outer|. We
analyze the cost of the solution B̃ that opens the facility y nearest to x and
assigns all customers in Sx to y.

First consider the case where y lies in C (see Figure 2). For each customer
s ∈ Outer , we have by the triangular inequality

cs,y ≤ cs,x + cx,y ≤ cs,x + r ≤ 2cs,x

and it follows that WB̃(Outer) ≤ 2WA(Outer). For each customer s ∈ Inner , we
have by the triangular inequality

cs,y ≤ cs,x + cx,y ≤ cs,x + r.

Since r×|Outer | ≤WA(Outer) and |Inner | = |Outer | it follows that WB̃(Inner) ≤
WA(Inner) + WA(Outer). Hence

WB̃(S) = WB̃(Other) + WB̃(Inner) + WB̃(Outer)
≤WA(Other) + WA(Inner) + 3WA(Outer) ≤ 3WA(S) ≤ 3WB(S).

Consider now the case in which y is outside C and assume that y at a distance
r+d of x (Figure 3). Consider a customer s ∈ Inner . By the triangular inequality,
cs,y ≤ cs,x + (r + d) and thus

WB̃(Inner) ≤WA(Inner) + (r + d)× |Inner |

Since r × |Outer | ≤ WA(Outer) and |Inner | = |Outer |, it follows that r ×
|Inner | ≤ WA(Outer). By definition of y, each Inner customer must pay at

12 Bent, Katriel, and Van Hentenryck.

y

 r

d

s

r

 x

y

 r

d

r

s

 x

Fig. 3. Closing a Facility: Facility y is Outside the Circle.

least d to get to a facility in the optimal solution in which x is closed. Hence d×
|Inner | ≤WB(Inner) and WB̃(Inner) ≤WA(Inner)+WA(Outer)+WB(Inner).
Consider now a customer s ∈ Outer . By the triangular inequality, cs,y ≤ cs,x +
(r + d) giving

WB̃(Outer) ≤WA(Outer) + (r + d)× |Outer |.

Once again, r × |Outer | ≤ WA(Outer) and d × |Outer | ≤ WB(Inner), since
|Inner | = |Outer |. It follows that

WB̃(Outer) ≤WA(Outer) + WA(Outer) + WB(Inner).

Hence WB̃(S) ≤WA(Other) + 3WA(Outer) + 2WB(Inner) + WA(Inner) and

WB̃(S) ≤ 3WA(S) + 2WB(S) (1)

and, by optimality of A, it follows that WB̃(S) ≤ 5WB(S). ut

We now consider the case where a facility x is forced to be open. The following
proposition indicates that swapping x in the optimal solution provides a constant
approximation. The proof adapts some of the proof techniques from online k-
median algorithms (Fact 1 in [9]).

Proposition 2. [Opening] Let A be an optimal solution to a metric k-median
problem and let B be the optimal solution where facility x must be open. There
exists a facility y 6= x such that B̃ = A \ {y} ∪ {x} satisfies WB̃(S) ≤ 3WB(S).

Proof. Let B = B′∪{x}. Define A′ as the set of facilities obtained by considering
each facility w in B′ and selecting its nearest facility in A and define B̃ as A′∪{x}.
The proof shows that WB̃(S) ≤ 3WB(S). Since |B′| = k − 1, |A′| ≤ k − 1 and

B̃ can be viewed as swapping x with one of the non-selected facility y of A and
the results follows.

To bound the cost of B̃, partition S into Sx and So, where Sx are all the
customers allocated to facility x in B. The bound on B̃ is obtained by assigning
all the customers in Sx are assigned to x. Consider now a customer s ∈ So and
let a be its closest facility in A, b is closest facility in B, and let b′ be the facility

Sub-Optimality Approximations 13

a in A

 s

 b’ in A’

b in B’

Fig. 4. Opening a Facility: Customer s is Assigned to b′.

in A′ nearest to b. The bound on B̃ is obtained by assigning s to b′, giving the
inequality (see Figure 4)

cs,b′ ≤ cs,b + cb,b′ by the triangular inequality
≤ cs,b + cb,a since cb,b′ ≤ cb,a

≤ cs,b + cb,s + cs,a by the triangular inequality
≤ 2cs,b + cs,a

Summing on all vertices in So, we obtain WB̃(So) ≤ 2WB(So)+WA(So). By the
allocation of Sx, we obtain

WB̃(S) ≤ 2WB(S) + WA(S) (2)

and, by optimality of A, it follows that WB̃(S) ≤ 3WB(S). ut

Theorem 3. Amortized Sub-Optimality for the Metric k-Medians. The
metric k-median problem has an amortized sub-optimality approximation algo-
rithm that runs in time O(|S| log |F |).

Proof. Propositions 1 and 2 show that a single swap to open or close the consid-
ered facility x produces a 5-approximation of the optimal solution in the worst
case. The best swap to open or close x is thus a constant approximation and it
can be computed in O(|S| log |F |) using the data structures of [14]. ut

The result continues to hold even when only an α-approximation of the k-median
is available to the sub-optimality approximation algorithm. Indeed, the propo-
sitions only rely on the optimality of A in the last steps of their proofs (after
Equations 1 and 2) and the same proof technique as in Theorem 1 can be used.
Such α-approximations can be obtained by local search for instance [1]. The al-
gorithm is amortized since it consists of a single swap and it is strongly amortized
if one assumes that a local search performs at least |F | swaps.

Theorem 4. Amortized Sub-Optimality for the Metric k-Medians. The
metric k-median problem has an amortized sub-optimality (α, β)-approximation
algorithm that runs in time O(|S| log |F |).

The k-median is closely related to (uncapacitated and capacitated) facility loca-
tion problems. The results described here apply directly to uncapacitated facility
location with uniform fixed costs. It would be interesting to study whether they
also apply when the costs are not uniform.

14 Bent, Katriel, and Van Hentenryck.

7 Hardness/Easiness of Sub-Optimality Approximations

In general, the availability of an optimal solution σ∗ is a significant advantage
for sub-optimality approximation algorithms. In fact, some difficult problems
become trivial when σ∗ is available. Consider, for instance, the graph-coloring
problem which consists of finding the chromatic number of a graph. No constant
factor approximation for graph coloring likely exists (unless P = NP) [13], yet
the suboptimality problem can be solved exactly in polynomial time.

Lemma 1. The sub-optimality problem can be solved exactly in polynomial time
for graph coloring.

Proof. Let O be a graph-coloring problem with optimal solution σ∗ and let cx

be the color of x in σ∗. The suboptimality problem O[x ← c] can be solved
optimally by swapping the colors cx and c in σ∗. ut

Some polynomial algorithms also enjoy simple sub-optimality approximation
algorithms. Consider the problem of finding the shortest path from a source to
a sink and the sub-optimality problem that consists of studying the choice of
various successors to the source. This problem arises in online stochastic planning
and can be solved (optimally) by two shortest paths: one from the source to the
sink and one from the sink to the source (reverting all arcs).

One may thus think that suboptimality approximations are inherently sim-
pler than the original problems. This is not case unfortunately: there are prob-
lems for which suboptimality approximation is as hard as the problem itself.
One such problem is maximum satisfiability (MAX-SAT): given a CNF formula
φ, find a truth assignment that satisfies the maximum number of clauses.

Lemma 2. Suboptimality of MAX-SAT is as hard as MAX-SAT.

Proof. Assume that there exists a polynomial-time (exact or approximate) sub-
optimality algorithm A for MAX-SAT. We can construct an algorithm A′ that
solves MAX-SAT (exactly or approximately) as follows. Given a CNF folmula
φ = (C1 ∧ . . . ∧ Ck) where each Ci is a clause, A′ constructs a formula φ =
(C′

1 ∧ . . . ∧C′

k), where C′

i = (Ci ∨ x) (1 ≤ i ≤ k) and x is a brand new variable.
Obviously, any truth assugnment in which x is true is an optimal solution. A′

now calls A on the formula φ′, variable x, and any such optimal assignment.
Since A′ returns the optimal solution for the case in which x is assigned false,
A′ returns an optimal solution for the original formula φ. ut

The above proof uses the following scheme: It transforms the input by a small
change into an instance for which computing an optimal solution is trivial. Then,
the modified input with its optimum is given to a suboptimality algorithm, which
faces the original problem. The method can also be applied to minimization
problems. For example, an instance of minimum hitting set can be transformed
by selecting an item e which does not appear in any set, and adding it to each of
the sets. Now, the set {e} is an optimal solution. A suboptimality algorithm can
then be asked to compute (or approximate) the optimum when e is forbidden
from belonging to the hitting set. Clearly, the solution solves (or approximates)
the original minimum hitting set instance.

Sub-Optimality Approximations 15

8 Conclusion

This paper introduced the sub-optimality approximation problem and the con-
cept of amortized sub-optimality approximation algorithms, and discussed its
applications to online stochastic optimization, solution repair, and approximate
filtering of optimization constraints. The paper also presented amortized sub-
optimality (α, β)-approximations for metric TSP, packet scheduling, and metric
k-median problems, as well as some hardness (and easiness) results on the sub-
optimality approximation problems. There are many avenues of further research.
Paramount among them is the need to understand the nature of problems that
admit (amortized) sub-optimality approximations.

Acknowledgments Special thanks to Claire Kenyon and Neal Young for suggest-
ing the proof of Proposition 2.

References

1. Arya, V. and Garg, N. and Khandekar, R. and Pandit, V. Local search heuristics for
k-median and facility location problems. In Proceedings of the 33rd ACM Symposium
on the Theory of Computing (STOC 2001), 2001.

2. R. Bent and P. Van Hentenryck. Online Stochastic and Robust Optimization. In
ASIAN’04, Chiang Mai University, Thailand, December 2004.

3. R. Bent and P. Van Hentenryck. Regrets Only. Online Stochastic Optimization
under Time Constraints. In AAAI’04, San Jose, CA, July 2004.

4. R. Bent and P. Van Hentenryck. Scenario Based Planning for Partially Dynamic
Vehicle Routing Problems with Stochastic Customers. Operations Research, 52(6),
2004.

5. R. Bent and P. Van Hentenryck. The Value of Consensus in Online Stochastic
Scheduling. In ICAPS 2004, Whistler, British Columbia, Canada, 2004.

6. R. Bent and P. Van Hentenryck. Online Stochastic Optimization without Distribu-
tions . In ICAPS 2005, Monterey, CA, 2005.

7. R. Bent and P. Van Hentenryck and Eli Ufval. Online Stochastic Optimization
Under Time Constraints. Working Paper, 2005.

8. H. Chang, R. Givan, and E. Chong. On-line Scheduling Via Sampling. Artificial
Intelligence Planning and Scheduling (AIPS’00), pages 62–71, 2000.

9. Chrobak, M. and Kenyon, C. and Young, N. . The reverse greedy algorithm for the
metric k-median problem. In The Eleventh International Computing and Combina-
torics Conference (Cocoon 2005), Kunming, Yunnan, 2005.

10. F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decentralized Network
Coordinate System. In SIGCOMM 2004, August 2004.

11. A. Fiat and G. Woeginger. Online Algorithms: The State of the Art. 1998.
12. F. Focacci, A. Lodi, and M. Milano. Optimization-Oriented Global Constraints.

Constraints, 7(3-4):351–365, 2002.
13. C. Lund and M. Yannakakis. On the Hardness of Approximating Minimization

Problems. In STOC-93, New York, NY, 1993.
14. L. Michel and P. Van Hentenryck. A Simple Tabu Search for Warehouse Location.

European Journal of Operational Research, 157(3):576–591, 2004.
15. P. Van Hentenryck, P. Flener, J. Pearson, and M. Ågren. Tractable symmetry

breaking for csps with interchangeable values. IJCAI’03.

