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Abstract. This paper studies the use of decomposition techniques to quickly
find high-quality solutions to large-scale vehicle routing problems with time win-
dows. It considers an adaptive decomposition scheme which iteratively decouples
a routing problem based on the current solution. Earlier work considered vehicle-
based decompositions that partitions the vehicles across the subproblems. The
subproblems can then be optimized independently and merged easily. This pa-
per argues that vehicle-based decompositions, although very effective on various
problem classes also have limitations. In particular, they do not accommodate
temporal decompositions and may produce spatial decompositions that are not
focused enough. This paper then proposes customer-based decompositions which
generalize vehicle-based decouplings and allows for focused spatial and tempo-
ral decompositions. Experimental results on class R2 of the extended Solomon
benchmarks demonstrates the benefits of the customer-based adaptive decom-
position scheme and its spatial, temporal, and hybrid instantiations. In particu-
lar, they show that customer-based decompositions bring significant benefits over
large neighborhood search in contrast to vehicle-based decompositions.

1 Introduction

The scale of optimization problems and the need for finding high-quality solutions has
grown steadily in recent years as optimization systems are increasingly deployed in
operational, integrated settings. This trend generates significant issues for optimization
research, changing the focus from finding optimal solutions to delivering high-quality
solutions under time constraints. This paper examines the underlying algorithmic issues
in the context of multiple vehicle routing with time windows (VRPTWs), which arise
in many transportation applications including courier services, the scheduling of repairs
in telecommunication companies, and supply-chain logistics. VRPTWs are particularly
interesting in this respect, since instances with as few as 100 customers have not been
solved optimally despite intense research. Hence finding high-quality solutions under
time constraints for problems with 1,000 customers is a significant challenge.

Spatial and temporal decouplings [17] are natural avenues for speeding up opti-
mization algorithms. Unfortunately, they do not apply easily to large-scale VRPTWs
that involve complex spatial and temporal dependencies. To remedy this limitation,
the concept of adaptive decoupling was proposed in [4]. Its key idea is to iteratively
select subproblems that are optimized independently and reinserted into an existing



solution. The successive decouplings are adaptive as they depend on the current solu-
tion, not simply the instance data. The benefits of this approach were demonstrated by
a vehicle-based adaptive spatial decomposition VASD scheme which produces high-
quality solutions significantly faster than large neighborhood search (LNS) on the class
RC1 of the extended Solomon benchmarks. Informally speaking, the VASD scheme
partitions the vehicles of an existing solution to obtain two subproblems, reoptimizes
one of these subproblems using LNS, and reinsert the optimized vehicle routes to ob-
tain a new solution. The VASD scheme is attractive since it makes it easy to merge
the solutions of decoupled problems. However, it also has a number of limitations. Be-
cause it is vehicle-based, it is not as spatially focused as possible since vehicles may
often travel across large regions, especially early in the optimization process. Moreover,
vehicle-based decompositions cannot really accommodate temporal decouplings, since
vehicles generally serve customers with a wide variety of time windows.

This paper remedies these limitations and proposes a customer-based adaptive de-
composition (CAD) scheme which can be naturally instantiated to spatial, temporal,
and hybrid decouplings. Its key idea is to select a set of customers based on a spatial,
temporal, or hybrid property and to define a generalized multi-depot VRPTW involving
these customers only. The CAD scheme thus allows for more focused spatial decom-
positions, tight temporal decompositions, or a combination thereof. The generalized
VRPTW is also designed to allow for an easy merging of its reoptimized solution into
the existing solution.

The benefits of the CAD scheme are demonstrated on the class R2 of the extended
Solomon benchmarks. The experimental results indicate that the CAD scheme signif-
icantly outperforms LNS and the VASD scheme on this class. They also indicate the
complementarity between spatial and temporal decompositions and hence the value of
hybrid decompositions.

The rest of this paper is organized as follows. It first reviews VRPTWs and the adap-
tive decomposition scheme. It then presents the earlier work on vehicle-based adaptive
spatial decompositions and the novel contributions on customer-based adaptive decou-
plings. The paper then presents several instantiations of the CAD scheme, including
spatial, temporal, and randomized decouplings. The experimental results and the re-
lated work concludes the paper.

2 VRPTWs

A VRPTW instance is specified by a set C of customers, a set of departure depots D−,
a set of arrival depots D+, and a set of vehicles V such that |D−| = |D+| = |V|. A
single depot problem is easily generalized into a multi-depot problem by creating mul-
tiple depots at the same location. We use multiple depots since it enables us to specify
decoupled problems as VRPTWs. The sites of the VRPTW instance are elements of
Sites = C ∪ D− ∪ D+. Every site c has a demand qc ≥ 0 and a service time sc ≥ 0
which is the duration spent at each customer location. The travel cost between sites i
and j is tij . Each site c has a time window [ec, lc] constraining when it can be visited,
where ec and lc represent the earliest and latest arrival times. Vehicles must arrive at
site c before the end of the time window lc. They may arrive early but they have to wait



until time ec to be serviced. Each vehicle has a capacity Q. The recursive computation
of earliest and latest arrival times is specified in detail in [2] and is omitted here for
space reasons.

Solutions are specified in terms of vehicle routes and routing plans. A vehicle route
starts from a depot d−, visits a number of customers at most once, and returns to a de-
pot d+. It is thus a sequence 〈d−, c1, . . . , cn, d+〉 where all sites are different. The cus-
tomers of a route r = 〈d−, c1, . . . , cn, d+〉, denoted by cust(r), is the set {c1, . . . , cn}
and the route r of a customer in {c1, . . . , cn} is denoted by route(c). The size of a
route, denoted by |r|, is |cust(r)|. The demand of a route, denoted by q(r), is the sum
of the demands of its sites, i.e., q(r) = q(d−) +

∑n
i=1 q(ci) + q(d+). A route satisfies

its capacity constraint if q(r) ≤ Q. We use q(c) to denote the amount of capacity used
by a route up to site c. The travel cost t(r) of a route r = 〈d−, c1, . . . , cn, d+〉 is the cost
of visiting all its sites, i.e., t(r) = d(d−, c1)+d(c1, c2)+ . . .+d(cn−1, cn)+d(cn, d+).

A routing plan is a set of routes in which every customer is visited exactly once
and every depot at most once. Observe that a routing plan assigns a unique earliest
arrival time ac for each site c. It also assigns a unique return time a(r) to its destination
depot d+ for each route r. The routing plan also assigns a departure time for each site
c, denoted by δc. The routing plan also assigns a critical arrival time for each site c,
denoted by zc. This is the latest time a vehicle can feasibly arrive at c.

A solution to the VRPTW is a routing plan σ satisfying the capacity and time win-
dow constraints, i.e., ∀r ∈ σ : q(r) ≤ Q & ∀c ∈ Sites : ac ≤ lc. The ordering
of the customers on a route in σ implicitly defines a predecessor and successor site
for each site c, denoted by pred(σ, c) and succ(σ, c). When the context is clear, σ is
dropped from the notation for brevity. The size |σ| of a routing plan σ is the number
of non-empty routes in σ. The VRPTW problem consists of finding a solution σ which
minimizes a lexicographic function consisting of the number of vehicles and the total
travel cost, i.e., f(σ) = 〈|σ|,

∑
r∈σ t(r)〉.Modern algorithms for the VRPTW are often

organized in two stages, first minimizing the number of vehicles and then minimizing
travel distance [2, 19].

3 The Adaptive Decomposition Scheme

This paper aims at finding decouplings to speed up the solving of large-scale VRPTWs.
The goal of the decouplings is to decompose a VRPTW P into two sub-VRPTWs Po
and Ps that can be solved independently and whose solutions can be merged into a
solution of P . In general, finding static decompositions is difficult. For this reason, we
proposed in [4] to use the current solution σ of P to find a decoupling (Po,Ps) with
projected solution σo and σs. The VRPTW Po is then reoptimized and its solution is
merged with σs to obtain a new solution to P . More precisely, the Adaptive Decompo-
sition Scheme (ADS) is based on two main principles:

1. Starting from plan σ0, it produces a sequence of plans σ1, . . . , σj such that f(σ0) ≥
f(σ1) ≥ . . . ≥ f(σj).

2. At step i, the scheme uses σi−1 to obtain a decoupling (Po,Ps) of P with pro-
jected solutions σo and σs. It reoptimizes Po to obtain σ∗o and the new plan σi =
MERGE(σ∗o , σi−1)



Fig. 1. The First Decoupling of VASD.

One of the most challenging aspects of ADS is how to perform the merging of the
decoupled solutions, i.e, σi = MERGE(σ∗o , σi−1). In [4], we addressed this challenge
by choosing Po such that the customers of entire vehicles are removed. The merging
operation is then trivial, since the vehicles in (Po and Ps) are disjoint. We now review
this scheme to emphasize its strengths and limitations.

4 Vehicle-Based Spatial Adaptive Decompositions

The decomposition presented in [4] is a vehicle-based adaptive decoupling (VAD). It
partitions the vehicles to obtain Po and Ps, reoptimizes Po, and uses the new optimized
routes, and the routes in Po to obtain a new solution. Only spatial decompositions were
considered in [4]. The idea was to view the customer region as a circle, randomly selects
a wedge W , and partitions the vehicles into those serving at least one customers in W
and the others. The resulting Vehicle-Based Spatial Adaptive Decomposition VASD
is particularly effective and produced high-quality solutions quickly on instances with
up to 1,000 vertices. Its main benefits are the simple definition of Po and the trivial
implementation of merging, which simply uses the optimized routes of Po to replace
the old routes in the existing solution.

The VAD scheme has a number of limitations however. First, because the decou-
pling is vehicle-based, the customers can be located significantly outside the selected
wedge. This is illustrated in Figure 1 which depicts the behavior of the VASD scheme
visually. The left part of Figure 1 shows the initial plan σ0 (left) and the plan σ1 (right)
after the first decoupling and optimization. The customers in the subproblem Po are in
red, the remaining ones in blue. The right part of Figure 1 shows the projected solution
σo for subproblem Po (left) and its reoptimization σ∗o (right). As can be seen, the first
subproblem is quite spread out, illustrating the spatial decomposition is not as tight as
desired.

More important however is the fact that the VAD scheme does not scale to other
decomposition criteria and, in particular, to temporal decompositions. Indeed, unless
the time windows are wide, it is very unlikely that good solutions cluster customers with



similar time windows on the same vehicle, since the vehicle will be inactive for most
of the time horizon. Since it uses a vehicle-based decomposition, the VASD scheme is
not well-adapted to exploit temporal locality.

5 Customer-Based Adaptive Decompositions

To remedy this limitation, this paper proposes a Customer-based Adaptive Decompo-
sition (CAD) scheme. A decoupled problem in the CAD scheme is given by a set of
customer sequences and has a new set of depots and constraints so that the solutions of
σ∗o can be inserted into σs, while ensuring feasibility of the resulting plan.

Given a sequence of customers 〈ci, . . . , cj〉 for the decoupling, the depots of the
subproblem are constructed as follows:

– d− = pred(ci): the origin depot is the predecessor of the sequence.
– d+ = succ(cj): the destination depot is the successor of the sequence.
– ed− = δpred(ci): the departure time of ci is the earliest departure time for d−.
– ld+ = zsucc(cj): the critical arrival time of succ(cj) is the latest arrival for d+.
– qd− = q(pred(ci)): the demand of d− is the cumulative demand up to pred(ci).
– qd+ = q(succ(cj))− q(cj): the demand of d+ is the cumulative demand after cj .

By constructing depots using the border regions of a sequence, any feasible route be-
tween d− and d+ can be reinserted between pred(ci) and succ(cj) of σi−1, while
maintaining the feasibility of Pi.

The CAD scheme is formalized in Figure 2. The core of the algorithm is in lines
3–6 which selects a set of customers (line 3), extracts the customers as a VRPTW
(line 4), reoptimizes subproblem Po using algorithm A (line 5), and merges the new
optimized subplan σ∗o to obtain the new solution (line 6). These main steps are repeated
until the time limit is reached. The extraction step is given by the EXTRACT function,
which collects all vehicles serving a customer in the decomposition (line 1), collects all
the customers served by these vehicles in between customers of S, and constructs the
depots (lines 2–10). The customers and depots so obtained define the subproblem (line
11). The CONSTRUCTARRIVALDEPOT and CONSTRUCTDEPARTUREDEPOT functions
describe how to create depots forPo that allows σ∗o to be feasibly merged into σ. Finally,
the MERGE function shows how σ∗o is merged into σ.

6 Instantiations of the CAD Scheme

This section presents a variety of instantiations of the CAD scheme. Each such instan-
tiation only has to specify how the function SELECTCUSTOMERS is implemented. We
start with the vehicle-based spatial decomposition proposed in [4], generalize it, and
then present temporal and random decompositions.

6.1 The VASD Scheme

We first show how the VASD scheme can be viewed as an instantiation of CAD. The
VASD decomposition scheme is depicted in Figure 3 and aims at choosing wedges



CAD(A, σ0)
1 σ ← σ0;
2 while time limit unreached
3 do S ← SELECTCUSTOMERS(P, σ);
4 Po ← EXTRACT(S,P, σ);
5 σ∗o ← A(Po);
6 σ ← MERGE(Po, σ∗o , σ);
7 return σ

EXTRACT(S,P, σ)
1 R← {r ∈ σ | ∃c ∈ r : c lies in S};
2 Co ← ∅;
3 D−o ← ∅;
4 D+

o ← ∅;
5 for r ∈ R
6 do i← argmin(c∈r∩S) ac;
7 j ← argmax(c∈r∩S) ac;

8 Co ← Co ∪
⋃

(c∈r):ai≤ac≤aj
;

9 D−o ← D−o ∪ CONSTRUCTDEPARTUREDEPOT(pred(i));
10 D+

o ← D+
o ∪ CONSTRUCTARRIVALDEPOT(succ(j));

11 return (Co,D+
o ,D−o );

CONSTRUCTARRIVALDEPOT(p)
1 d− ← p;
2 [ed− , ld− ]← [δp,∞];
3 qd− ← q(p);
4 return d−;

CONSTRUCTDEPARTUREDEPOT(s)
1 d+ ← s;
2 [ed+ , ld+ ]← [0, zs];
3 qd+ ← q(s)− q(pred(s));
4 return d+;

MERGE(Po, σ∗o , σ)
1 for c ∈ Po
2 do succ(σ, pred(c))← c;
3 pred(σ, succ(c))← c;
4 succ(σ, c)← succ(σ∗o , c);
5 pred(σ, c)← pred(σ∗o , c);
6 return σ;

Fig. 2. The CAD Scheme.



SELECTDECOMPOSITIONVASD(P, σ)
1 select α ∈ [0, 359];
2 select β > α such that the wedge W ← (α, β);
3 (a) contains at least N customers;
4 (b) is the smallest wedge satisfying (a);
5 Vo ← {v ∈ V | ∃ c ∈ rv : c lies inW};
6 return

⋃
v∈Vo

cust(rv);

Fig. 3. The VASD Scheme for VRPTW Decouplings

SELECTDECOMPOSITIONCASD(P, σ)
1 select α ∈ [0, 359];
2 select β > α such that the wedge W ← (α, β);
3 (a) contains at least N customers;
4 (b) is the smallest wedge satisfying (a);
5 return

⋃
c lies inW ;

Fig. 4. The CASD Scheme for VRPTW Decouplings

producing roughly the same number N of customers. It first chooses the lower angle α
of the wedge randomly (line 1). It then selects the upper angle β as the smallest angle
greater than α producing the smallest wedge with at least N customers (lines 2–4).
Finally, all customers of vehicles within in the wedge are included in the decomposition.

6.2 The CASD Scheme

We now present a customer-based spatial decomposition CASD that generalizes the
VASD scheme. This generalization is especially important when considering problems
(such as the class 2 problems of the extended Solomon benchmarks) where the vehicles
serve many customers and can travel across many portions of the space. Under these
conditions, VASD loses some of its locality as shown in Figure 1. In contrast, CASD
algorithm preserves the spatial boundaries and improves the results of spatial decou-
plings on the class 2 extended Solomon benchmarks. Figure 4 gives the formalization
of CASD which is a simplification of VASD. Figure 5 shows how the CASD scheme
performs a decoupling from the same starting solution as Figure 1. The right hand pic-
ture shows all routes with decoupled customers, with the decoupled customers shown
in red and the remaining ones in blue. It is interesting to compare this with Figure 1.
CASD is clearly better at respecting spatial boundaries and allows customers of more
vehicles to be considered in the decomposition.

6.3 The CATD Scheme

We now present a temporal instantiation (CATD) of the CAD scheme. The CATD
scheme chooses random time slices and returns all of the customers that are served
within that time slice. Figure 6 provides the implementation of this algorithm where



Fig. 5. The First Decoupling of CASD.

SELECTDECOMPOSITIONCATD(P, σ)
1 select α ∈ [0, ld∈D];
2 select β > α such that the time period T = (α, β);
3 (a) contains at least N customers;
4 (b) is the smallest time period satisfying (a);
5 return

⋃
c served in T ;

Fig. 6. The CATD Scheme for VRPTW Decouplings

lines 1–4 select a random slice that contains at least N customers. The mechanism for
choosing a time period is similar to that of CASD. First, α is chosen randomly from
the interval [0, ld∈D]. β is then incremented from α + 1 until the desired number of
customers appear in the interval (or when β = ld∈D). Figure 7 demonstrates a decou-
pling based on the CATD scheme. Unlike prior decouplings, the temporal decoupling
crosses most of the vehicles as seen by the number of routes included in the righthand
side of the figure.

6.4 The CARD Scheme

This section describes a simple random decoupling scheme (CARD) used to provide
a basis to evaluate the structured decoupling schemes described in the prior sections.
Figure 8 shows the implementation. The scheme iterates by selecting random sequences
of customers (lines 3–4) until the desired number of customers is achieved (line 2).

7 Experimental Results

This section presents the experimental results for the 1,000 customer extended Solomon
benchmarks (www.top.sintef.no/vrp/benchmarks.html). The benchmarks
contain a mix of loose and tight time windows and different types of spatial distribu-
tions. Recall that the difficulty in these problems, once two-stage algorithms are con-
sidered, is mostly in optimizing travel distances. Hence the experimental results mostly



Fig. 7. The First Decoupling of CATD.

SELECTDECOMPOSITIONCARD(P, σ)
1 S ← ∅;
2 while |S| < N
3 do select α ∈ C \ S;
4 select β ∈ C \ S such that route(α) = route(β) ∧ δα < δβ ;
5 S ← S ∪

⋃
c ∈ C such that route(c) = route(α) ∧ δα ≤ δc ≤ δβ ;

6 return S;

Fig. 8. The CARD Scheme for VRPTW Decouplings

focus on this second stage, and uses a fixed solution with the minimal number of vehi-
cles from the first phase. The experimental results use large neighborhood search (LNS)
[29] for algorithm A. LNS is one of the most effective algorithms for optimizing vehi-
cle routing problems [29, 3, 2, 26, 24]; it also has the benefits of easily accommodating
side constraints [3], which is important in practical implementations. The experiments
report the solution quality under various time constraints (i.e., 2.5, 5, 10, and 15 min-
utes). Each reported result is the average of 50 runs on an AMD Athlon Dual Core
Processor 3800.

For space reasons, we focus only on class R2. In general, the results on RC1 and R1
show that VASD(LNS) is the best implementation and produces significant improve-
ments in solution quality under time constraints. In average, it produces improvements
of 35%, 29%, 17%, and 6% over LNS when the time constraints require solutions to
be found within 1, 2.5, 5, and 10 minutes respectively on RC1 problems. Both VASD
and CASD outperform LNS on all RC1 and R1 instances and the results of CATD
and CARD are good after the first 2.5 minutes. In general, good solutions to RC1 and
R1 are characterized by vehicles serving very few customers in narrow regions, making
spatial decompositions very natural. It is also important that the decomposition scheme
provides highly competitive solutions when run for about an hour and improves some
of the best-known solutions on these benchmarks.



BK R2 10 1 R2 10 2 R2 10 3 R2 10 4 R2 10 5 R2 10 6 R2 10 7 R2 10 8 R2 10 9 R2 10 10 Avg
UB 42294.31 33459.32 24938.95 17880.11 36258.34 30073.6 23253.89 17509.69 33068.74 30312.5
LNS (1) 56336.2 43864.4 42620.2 33281.9 47352.4 40907.5 38056.6 29516.6 44540.9 40973.8
VASD (1) 67937.5 48391.3 47151.0 29349.6 59075.1 49561.9 38104.1 26981.8 55860.8 47982.2
%Impr. -20.6 -10.3 -10.6 11.8 -24.8 -21.2 -0.1 8.6 -25.4 -17.1 -11.0
CASD (1) 68108.7 50337.8 47611.1 28388.1 56962.9 50430.3 37210.3 25543.2 56308.1 51254.3
%Impr. -20.9 -14.8 -11.7 14.7 -20.3 -23.3 2.2 13.5 -26.4 -25.1 -11.2
CATD (1) 51346.6 42352.3 41823.3 34448.2 46275.7 43460.7 38282.0 31186.8 42321.8 42122.2
%Impr. 8.9 3.4 1.9 -3.5 2.3 -6.2 -0.6 -5.7 5.0 -2.8 0.3
CARD (1) 76915.0 63039.1 57772.6 40365.4 59084.6 60321.9 48678.5 35275.7 66420.1 62966.8
%Impr. -36.5 -43.7 -35.6 -21.3 -24.8 -47.5 -27.9 -19.5 -49.1 -53.7 -36.0
LNS (2.5) 53667.5 41260.3 37907.6 30007.5 44941.5 38028.4 33939.7 26921.2 42134.0 38351.7
VASD (2.5) 58759.6 41955.8 38316.4 24632.8 49847.5 38975.1 32055.8 23029.9 46152.3 40896.1
%Impr. -9.5 -1.7 -1.1 17.9 -10.9 -2.5 5.6 14.5 -9.5 -6.6 -0.4
CASD (2.5) 54423.3 40426.1 33387.2 22717.8 46063.0 38462.0 29460.6 20837.6 43235.2 39663.2
%Impr. -1.4 2.0 11.9 24.3 -2.5 -1.1 13.2 22.6 -2.6 -3.4 6.3
CATD (2.5) 46203.4 38061.9 33749.0 28799.4 40220.7 36499.3 32848.3 26997.1 37653.3 34791.7
%Impr. 13.9 7.8 11.0 4.0 10.5 4.0 3.2 -0.3 10.6 9.3 7.4
CARD (2.5) 65820.0 50880.9 43792.2 31651.3 56636.9 47119.1 37598.2 25336.4 54375.1 50583.8
%Impr. -22.6 -23.3 -15.5 -5.5 -26.0 -23.9 -10.8 5.9 -29.1 -31.9 -18.3
LNS (5) 51877.8 39871.7 34873.2 27549.9 43616.4 36400.2 31500.3 25323.0 40647.4 37109.6
VASD (5) 54743.7 40546.3 34540.3 22899.2 46174.3 36959.9 30188.5 21775.7 42417.0 38351.2
%Impr. -5.5 -1.7 1.0 16.9 -5.9 -1.5 4.2 14.0 -4.4 -3.3 1.4
CASD (5) 49454.3 38194.8 30138.7 21578.2 42203.5 34796.8 27451.5 20837.6 38577.2 35847.8
%Impr. 4.9 4.4 15.7 27.7 3.3 4.6 14.7 21.5 5.4 3.5 10.6
CATD (5) 44633.9 36339.7 31647.7 26463.1 39040.4 34816.3 29354.2 25357.9 36014.8 33517.4
%Impr. 14.0 8.9 9.2 3.9 10.5 4.4 6.8 -0.1 11.4 9.7 7.9
CARD(5) 58595.0 44269.4 37808.6 27458.0 49889.9 40801.7 32854.8 23217.5 47379.4 43606.2
%Impr. -5.5 -1.7 1.0 16.9 -5.9 -1.5 4.2 14.0 -4.4 -3.3 1.4
LNS (10) 50763.2 38737.0 34873.2 25195.6 42848.5 35342.0 29752.8 23665.7 39802.5 36378.8
VASD (10) 51950.6 39427.7 32426.1 22185.2 44327.2 35842.8 29264.1 21164.4 40519.9 37099.5
%Impr. -2.3 -1.8 7.0 11.9 -3.5 -1.4 1.6 10.6 -1.8 -2.0 1.8
CASD (10) 47371.3 37343.2 28991.6 21010.5 40890.2 33852.4 26566.4 20290.5 37112.5 34632.8
%Impr. 6.7 3.6 16.9 16.6 4.6 4.2 10.7 14.3 6.8 4.8 8.9
CATD (10) 44172.2 36339.7 31358.7 25469.9 38445.3 33830.0 29354.2 24371.9 35221.8 32786.1
%Impr. 13.0 6.2 10.1 -1.1 10.3 4.3 1.3 -3.0 11.5 9.9 6.2
CARD (10) 52845.8 40408.6 33549.5 24331.5 45462.6 36987.2 29852.5 23217.5 42537.3 38638.1
%Impr. -4.1 -4.3 3.8 3.4 -6.1 -4.7 -0.3 1.9 -6.9 -6.2 -2.3

Table 1. R2 Solution Quality Under Time Constraints.

Benefits of CAD Table 1 describes the solution quality under various time constraints
for LNS and various instantiations of CAD(LNS) on R2 problems. Each column de-
scribes a R2 instance with 1,000 customers and the best-known number of vehicles. The
clusters of rows consider various time constraints: 1, 2.5, 5, and 10 minutes. The row
BK specifies the travel distance of the best known solution (prior to this research). The
rows %Impr describes the improvement in solution quality of CAD(LNS) with respect
to LNS. CAD(LNS) is run withN = 200, i.e., the decomposition must contain at least
200 customers.

It is interesting to observe that Table 1 provides very different conclusions than the
results on classes RC1 and R1. High-quality solutions to R2 problems are characterized
by fewer vehicles serving many more customers over wide temporal regions. This puts
VASD at a disadvantage as decompositions typically violate the natural spatial bound-
aries of the wedge due to the need to include all customers of vehicles. This is best
illustrated by the 5 minute results, when the CASD scheme vastly outperforms VASD.
After 2.5, 5, and 10 minutes, CASD produces average improvements of 6.3%, 10.6%,



Fig. 9. Benefits of CAD on R2 10 1 and R2 10 3.

and 8.9% over LNS, while VASD degrades the performance after 2.5 minutes and
produces improvements of 1.4% and 1.6% for 5 and 10 minutes. On some benchmarks,
CASD produces more than 10% over LNS. Interestingly, CATD produces excellent re-
sults on class R2 and produces average improvements of 0.3%, 7.5%, 7.9%, and 6.2%
after 1, 2.5, 5, and 10 minutes. Moreover, it significantly outperforms other decomposi-
tions on several benchmarks where it can produce improvements up to 14%. On closer
inspection, CATD performs very well on those problems whose customers have narrow
time windows. The explanation for this behavior is interesting: when a customer has a
wide time window, it can be served early or late. If it is initially served early when it
should be served late, it is impossible to find a solution that moves the customer to a
later time period, unless every intermediate temporal decoupling provides an improving
solution. On problems with customers with narrow time windows, the problem struc-
ture itself enforces the correct temporal locations of the customers, making a temporal
decomposition very natural.

Figure 9 depicts the typical behavior of LNS and CAD(LNS) on two benchmarks
in the R2 class. In the left graph, the R2 problem has narrow time windows and CATD
is clearly the best, further demonstrating the natural benefits of this decomposition when
customers have narrow time windows. It also shows the limitations of the VASD ap-
proach under the conditions of class 2 problems. The right part of the figure shows
results on a class 2 problem with wide time windows. Here we see a reversal of the ef-
fectiveness of CATD where CASD is clearly better. Note also that CASD(LNS) and
CATD(LNS) still dominates LNS when both algorithms run for an hour.

Overall, these results clearly show the benefits of customer-based decompositions
and the complementary between spatial and temporal decompositions.

Hybrid Implementations To exploit this complementarity, We also considered some
hybrid approaches between CASD and CATD to determine if a single approach would
perform well on all instances (for example good on both R2 10 1 and R2 10 3). Two
hybrids worked quite well. The first hybrid chooses to either follow a CATD decou-
pling or a CASD decoupling randomly at each iteration. The second hybrid creates a



Fig. 10. Benefits of Hybrid Approaches.

decoupling at each iteration that contains N/2 customers from a CATD selection and
N/2 from CASD selection. Both schemes generated very consistent results on all prob-
lems, in general being within 1% of the best CASD or CATD result on each problem.
This indicates that when problem structure is unknown or varied, a hybrid approach
may produce the best results. Figure 10 demonstrates how the first hybrid approach
smoothes out performance.

8 Related Work

There are literally hundreds of papers discussing vehicle routing problems and their
variations and it is beyond the scope of this paper to provide a comprehensive literature
review. The reader is invited to see [8, 9, 11, 16, 27, 25] for recent surveys. Almost all
papers focus on problems of relatively small size which, as mentioned earlier, are al-
ready extremely difficult. Unfortunately, many of the proposed techniques do not scale
well and some recent papers specifically address large-scale problems. We now focus
attention on recent work that have considered decomposition ideas.

Decomposition comes in many different varieties in literature. In some papers, like
[5, 6], decomposition focuses on decomposing the search strategy space (as opposed to
problem structure). Related to this idea is the view of decomposition across attributes
(variables) of the problems. Multi-stage approaches such as [15, 2, 21, 18, 10, 7] can
be classified in this way (i.e., first minimizing the number vehicles required and then
minimizing the travel distance). [12] suggests a general framework for breaking prob-
lems across attribute boundaries using evolutionary algorithms. The different subprob-
lems communicate results via population exchanges. The framework is tested on the
VRPTW. They key difference between attribute decomposition and CAD is that our
approach retains information about the entire problem and simplifies the problem by
decreasing their scale.

Recent and concurrent work has focused on dividing the problem into smaller sub-
problems across structural boundaries that is very much in the spirit of VASD. [20]



presents a deterministic hierarchical decomposition scheme for evolutionary algorithms.
The VRPTW spatial region is divided into rectangles, defining sub problems that are
solved independently. The rectangles are recursively merged into larger subproblems
which rely on the smaller problems as starting solutions for the larger subproblems. [1]
introduces spatial-based decomposition ideas in a genetic algorithm. Their approach
randomly applies the evolutionary operations to either the whole problem or spatially
defined sub regions. [23, 22] presents some interesting spatial decomposition approaches
based on clustering (POPMUSIC). At a high level, POPMUSIC iteratively chooses
routes and creates subproblems based on nearness to that route (different approaches to
defining nearness are explored). The algorithm iterates until it has created subproblems
on all routes without improvement. Finally, the work of [13] proposes a decoupling
scheme for the air-taxi problem based on spatial boundaries.

In many ways, all of these approach can be viewed as variations of VASD. The key
difference between these approaches and our framework is that they decompose prob-
lems based on routes as opposed to customers. This makes the merging of solutions
from the subproblems to the global problem easy. However, by structuring the decom-
positions on a customer basis, we are able to create subproblems within routes, a prop-
erty that is very important when routes cross multiple spatial and temporal boundaries.
But is important to note that this related work also supports our claim that decomposi-
tion improves algorithm performance.

It is useful to contrast the deconstruction steps of LNS ([29, 26, 28, 24]) and the
CAD scheme. In LNS, the basic step consists of removing related customers (often
based on spatial or temporal relationships) from a plan σ and to reinsert them in σ us-
ing an optimization algorithm. The CAD scheme can also be thought of as removing
related customers with two fundamental differences: 1) the removed customers defines
a VRPTW subproblem of (significantly) smaller size which can solved independently
and 2) Subproblems restrict neighborhood explorations to being within the decomposi-
tion itself. This is critical for finding high-quality solution quickly. Obviously, the two
approaches are synergetic since our results are obtained using CAD(LNS).

Finally, it is useful to relate CAD to the approach in [17] which impose specific
temporal constraints to obtain decouplings. CAD uses spatial and temporal decouplings
that constrain specific subsets of customers to be served by designated vehicles. More-
over, the use of decoupling is fundamentally different. The idea is to iteratively obtain
new decouplings to optimize an existing plan by re-optimizing subproblems. This use of
decouplings also contrast with traditional decomposition techniques in constraint satis-
faction [14].

9 Conclusion

This paper reconsidered the adaptive decomposition framework to quickly find high-
quality solutions to large-scale vehicle routing problems with time windows. Earlier
work had focused vehicle-based decompositions that partition the vehicles across the
subproblems which makes it easy to define the subproblems and merge their solutions.
Although vehicle-based spatial decompositions are very effective on classes R1 and
RC1 of the extended Solomon benchmarks, the paper identified some of their limita-



tions and, in particular, the difficulty in adapting them to temporal decompositions. This
paper then proposed customer-based decompositions which generalize vehicle-based
decouplings and allow for focused spatial and temporal decompositions. Experimen-
tal results on class R2 of the extended Solomon benchmarks demonstrated the benefits
of the customer-based adaptive decomposition scheme and its spatial, temporal, and
hybrid instantiations. In particular, the results show significant benefits over the use
of large neighborhood search and vehicle-based spatial decompositions. For instance,
customer-based temporal decompositions yield an average improvement of 7.4% over
LNS after 2.5 minutes, while the vehicle-based spatial decomposition degrades the per-
formance by 0.4% in average. Similarly, customer-based spatial decompositions yield
an average improvement of 10.6% over LNS after 5 minutes, while the vehicle-based
spatial decomposition improves the performance by only 1.4% in average. The com-
plementary between spatial and temporal decompositions was also highlighted and hy-
bridizations were shown to be particularly effective in producing robust results across
all benchmarks. An intriguing future research direction is to determine whether the de-
composition can be chosen automatically from the instance structure.
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