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Transmission Network Expansion Planning with
Complex Power Flow Models

Russell Bent, G. Loren Toole, and Alan Berscheid

Abstract—In recent years the transmission network expansion
planning (TNEP) problem has become increasingly complex.
As this problem is a non-linear and non-convex optimization
problem, researchers have traditionally focused on approximate
models of power flows to solve the TNEP problem. Until recently,
these approximations have produced results that are straight-
forward to adapt to the more complex problem. However, the
power grid is evolving towards a state where the adaptations
are no longer as easy (e.g., large amounts of limited control,
renewable generation) necessitating new approaches. In this
paper, we propose a Discrepancy-Bounded Local Search (DBLS)
that encapsulates the complexity of power flow modeling in
a black box that may be queried for information about the
quality of a proposed expansion. This allows the development
of an optimization algorithm that is decoupled from the details
of the underlying power model. Case studies are presented to
demonstrate cost differences in plans developed under different
power flow models.

Index Terms—TNEP, Transmission Network Expansion Plan-
ning, Simulation Optimization, Non-linear Optimization, Local
Search.

I. INTRODUCTION

RECENT years have brought an increased awareness of
one of the major challenges of the 21st century: the

problem of how to provide clean, sustainable, and cheap
energy to the world’s rising population [1], [2]. To address this
challenge, the United States Department of Energy released a
report in 2008 that stated the goal of having 20% of the U.S.’s
energy come from wind by 2030 [3]. An important point is
raised in the report on how to best upgrade and expand the
electric power transmission grid to meet increased demand
for energy and to incorporate sustainable, renewable energy
sources that are often located in transmission deficient areas.
This optimization problem has been well studied under the
name of Transmission Network Expansion Planning (TNEP)
[4], [5], [6], [7]; however, the requirements for the future grid
raise a number of open challenges.

The challenges center on how power flows are modeled
in the TNEP and the degree to which expansions and grid
operations are constrained [8]. The literature has traditionally
(with the exception of [9]) focused on linearized models of real
(DC) power flows as these types of models account for most
network utilization, generation is controllable, the networks
are small, and planning horizons are short [7]. Under these
assumptions, it is generally considered easy for a planner
to modify a plan to accommodate the non-linear nature of
power flows (as well as reactive (AC) power) [10]. However,
recent studies by [3] that consider transmission planning for
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large-scale systems (the western United States), long plan-
ning horizons (30+ years), and large amounts of renewables
(i.e., solar and wind, with limited control capabilities, thus,
constraining operations) relax many of the assumptions prior
approaches have relied upon and make the problem more
difficult. Indeed, our preliminary work [11], [12] has shown
that failing to take into account AC power flows can yield
arbitrarily poor solutions. Even the seminal work of [13]
indicated AC modeling on a small six-node benchmark was
required as it contained a voltage violation.

To address these challenges, this paper presents a novel
approach, Discrepancy-Bounded Local Search (DBLS), for
embedding ideas from simulation optimization [14] in a local
search procedure that generalizes constructive heuristics [15],
[16], constraint-based local search [17], and is related to global
search techniques, such as limited discrepancy search [18],
[19]. The key idea of the approach is the encapsulation of
the power model within a simulation black box. The DBLS
is allowed to query the black box for power flow information
about proposed expansion plans. In this paper, DBLS is used
on the cost minimization variation of the TNEP problem and
is constrained to only consider line and shunt compensation
expansions. However, DBLS can be generalized to other
expansion criterion such as carbon emissions and reliability
and to other expansion options such as voltage upgrades and
generation.

In short, the key contributions of this paper include:
• A TNEP algorithm that can use AC power flow modeling
• An algorithm that generalizes existing constructive TNEP

heuristics to allow for more complete search and im-
proves their performance

• Case studies on constrained problems that demonstrate
the difference in cost of DC-based plans and AC-based
plans can be large

Literature Review The literature on TNEP is extensive and
references [4], [5], [6], [7], [10], [20] provide surveys of the
field. In general, existing approaches have focused on model-
ing power flows with transportation models or the linearized
DC model to reduce computational overhead [10]. Until re-
cently, it has been easy to adapt plans derived from these
models to more realistic conditions (see [21], [22]). TNEP
algorithms tend to fall into three categories: complete search
based on mixed-integer program (MIP) formulations [21],
[23], locally optimal search such as constructive heuristics
[15], [16], and meta-heuristics [8], [24], [25], [26].

One of the most relevant papers to the work presented
here is that of [27], which presents an expansion planning
scenario where generation is fixed (also studied in [16]) in
order to model the challenges of market-based economic
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dispatching. In this paper, the primary motivation for fixing
generation is the modeling of renewable energy sources. This
is a pessimistic view of how power systems operate, but
it is useful for modeling a worst case for dispatching and
expansion planning. These models also provide an opportunity
to understand the benefits and drawbacks of using approximate
models of power flow in expansion planning when generation
cannot be dispatched. Reference [28] also shares a number of
interesting similarities with this paper. It presents a tree-based
local search procedure that contains a truncation criterion not
unlike the discrepancy parameter of the algorithm discussed
later in this paper. Their approach utilizes combinations of the
transportation model and linearized DC model for modeling
power flows; they do state that the approach can be generalized
to more complex models of power flow, but this was not tested.
They also incorporate multiple scenarios and a reliability
criterion into the planning environment. It is important to
note that their search procedure is primarily guided by cost,
whereas our approach is guided by both feasibility and cost.

DBLS also shares a number of similarities with branch
and bound approaches. For example, reference [29] discusses
a branch and bound approach for solving the TNEP using
Bender’s cuts. This approach has some interesting parallels
with this paper where the cutting procedure could theoretically
use more complex power models (like AC), not unlike those
discussed in reference [30]. Reference [31] has also developed
a branch and bound approach for the TNEP, with a focus
on generalizing branch and bound to accommodate multiple
competing objective functions.

Reference [9] is one of the few papers that uses AC power
flows in the TNEP. They present a constructive heuristic that
incrementally selects the expansion that most improves the
load shed. Their approach was tested on problems that allowed
for the dispatching of generation. DBLS can be viewed as a
generalization of this approach when this constructive heuristic
can be embedded as the branching heuristic in DBLS (dis-
cussed later). Reference [31] has also taken steps to include
AC models in the TNEP. They evaluate a set of candidate plans
constructed from a DC-based branch-and-bound algorithm
with an N-1 reliability metric based on the AC power flow
model.

Also important is the work of [32], [33], which is the basis
of many of the results contained in [3]. These papers provide
the fundamental motivations for the work of this paper. They
studied how to best integrate large amounts of wind power
into large geographic areas based upon transportation models
of power transmission. We seek to address the question of
how to incorporate non-linear models of power flow into such
planning scenarios. Considerable effort was required to adapt
solutions derived from the transportation models used in these
planning scenarios [11].

Finally, it is important to note that the preliminary con-
ference version of this paper appeared in [12] (referred to
as limited discrepancy local search). However, this paper did
not generalize existing constructive heuristics, compare with
existing algorithms, or demonstrate the effectiveness of the
algorithm on DC power-flow models.

The remainder of this paper is organized as follows. Section

II formally defines the TNEP. Section III describes the algo-
rithm used to generate expansion plans. Section IV discusses
heuristics used to guide the algorithm to reduce physical
violations and cost. Section V discusses the experimental
results and Section VI concludes this paper.

II. PROBLEM DEFINITION

Buses The problem is described in terms of a set of buses,
B, that represent geographically located nodes in a power
network e.g., generators, loads, and substations. Each bus,
i, is defined by parameters gi, li, ι−i , ι+i , which represent
generation, load (demand for power), minimum voltage (per
unit), and maximum voltage (per unit). P (gi) and Q(gi) are
used to denote the real and reactive components of generation.
Similarly, P (li) and Q(li) are used to denote real and reactive
components of load. For simplicity, Pi = P (gi) − P (li) and
Qi = Q(gi) − Q(li) are used to denote the real and reactive
power injected at bus i. The decision variable ci defines
the number of control components at i (in this paper, shunt
capacitors (compensation) for regulating AC power). ci has
discrete domain {c−i , c

−
i +1, . . . , c+i −1, c+i }. c

−
i defines the

number of control elements i starts with, ensuring that existing
controls are included.
Transmission Corridors The TNEP is also described by a set
of edges, E , called transmission corridors, that connect pairs
of buses. A transmission corridor i, j between buses i and j
has a decision variable ci,j that defines the number of circuits
(power lines) in the corridor. The variable has discrete domain
{c−i,j , c

−
i,j + 1, . . . , c+i,j − 1, c+i,j} where c−i,j is defined as the

number of circuits the corridor starts with. c+i,j = c−i,j when no
circuits may be added to a corridor. A circuit is also defined by
parameter ψi,j , which denotes the capacity of a single circuit in
the corridor. Similarly, ri,j , xi,j , and bi,j denote the resistance,
reactance, and line charging of a single circuit in the corridor.
TNEP Solution A transmission network solution, σ, is defined
as a set of variable assignments

⋃
i∈B[ci ← di]∪

⋃
i,j∈E [ci,j ←

di,j ], where di is drawn from the domain of ci and di,j is
drawn from the domain of ci,j1. By convention, unassigned
variables are assumed to be c−i and c−i,j . σ(ci) and σ(ci,j)
are used to denote the variable assignments for σ. For conve-
nience, we use the notation y to denote a variable of type ci
or ci,j when they may be used interchangeably.
Simulation TNEP algorithms have at their disposal a simulator
S for determining the flow of power for σ. S(σ) returns
true if it computes the flows without divergence. Szi,j (σ)
denotes the flow in corridor i, j and Svi(σ) the voltage at
bus i. For simplicity, this notation is shortened to zi,j and
vi when S(σ) is understood from context. F(i, j) and T (i, j)
are used to denote the flow from and flow to bus of corridor
i, j, respectively.

A TNEP solution σ is feasible when the following con-
straints are satisfied, i.e.,

c−i,j ≤ ci,j ≤ c
+
i,j (i, j ∈ E) (1)

c−i ≤ ci ≤ c
+
i (i ∈ B) (2)

S(σ) = true (3)

1This formulation can be generalized for multiple types of control compo-
nents and circuits.
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Physical constraints are relaxed and incorporated into the
objective function in order to keep the search space connected
(similar to Lagrangian Relaxation). The overload of σ is
calculated as the sum of flow that exceeds the capacity of
the circuits (overloads), i.e., η(σ) =

∑
i,j∈E max(0,zi,j −

ψi,jci,j). The voltage violation of σ is calculated as the sum
of voltages that fall below ι−i or above ι+i , i.e., ν(σ) =∑
i∈Bmax(0, ι−i −vi, vi−ι

+
i ). Finally, the cost of σ is defined

by κ(σ) =
∑
i,j∈E ci,jκi,j +

∑
i∈B ciκi, where κi is the

cost of putting a control at bus i and κi,j is the cost of
putting a circuit in corridor i, j. The objective function, f(σ),
is then a lexicographic multi-objective function2 of the form
min f(σ) = 〈η(σ), ν(σ), κ(σ)〉.

III. SIMULATION OPTIMIZATION DBLS ALGORITHM

As discussed earlier, branch and bound techniques have
been successful on small-scale problems with DC models of
flow [7], [29], [31]. On larger problems, heuristics and meta-
heuristics work well under specific models for calculating
power flows. Driven by the desire for TNEP algorithms that
apply to a wide variety of behavior (flow) models, including
non-linear models, we present a novel algorithm for addressing
this need. This algorithm builds on simulation optimization
ideas by encapsulating the behavior of the network into a
“black box” that may be queried by the algorithm for infor-
mation about how a TNEP solution behaves (i.e., S(σ)) and
embedding it in a DBLS that limits the full exploration of a
branch and bound search tree. The intuition behind DBLS is
to generalize constructive heuristics that make good decisions
on how to build solutions, but make a few bad decisions from
time to time. DBLS embeds the heuristic in a search tree as
the branching heuristic and explores those solutions that are
within δ violations (discrepancies) of the heuristic, where δ is
a user-specified parameter. DBLS provides a natural way to
incorporate constructive heuristics from the TNEP literature,
e.g., [15], [16], into a more general framework and is related
to the approach of [28]. The formal algorithm of DBLS for
TNEP is presented in Figure 1.

DBLS(σ,X , δ)
1 if δ = 0
2 then return σ;
3 σ∗ ← σ;
4 y ← CHOOSEVARIABLE(X , σ);
5 〈d1, d2, . . . , dk〉 ← ORDERDOMAIN(y);
6 σ ← σ \ [y ← σ(y)];
7 for i← 1 . . . k
8 do σi ← σ ∪ [y ← di];
9 if f(σi) ≤ f(σ∗) and S(σi)

10 then σ∗ ← σi;
11 DBLS(σi,X \ y, δ − i);
12 return σ∗;

Fig. 1. Discrepancy-Bounded Local Search

DBLS takes as arguments a solution σ, (often the current
state of the network, i.e.,

⋃
i∈B[ci ← c−i ] ∪

⋃
i,j∈E [ci,j ←

c−i,j ]); a set of variables, X , drawn from
⋃
i∈B ci ∪

⋃
i,j∈E ci,j ;

and a discrepancy parameter, δ. The first two lines of Figure
1 check if the number of discrepancies has dropped to 0.
Line 3 initializes the best solution discovered with the current

2Lexicographic objective functions define objective functions in order of
primacy. The first objective is used to compare two solutions. In the case of
ties, the second objective is used, and so forth.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Fig. 2. An example of the DBLS algorithm on a simplified binary search tree.
On the left is the portion of the search tree explored when δ = 0, i.e., only
expansion decisions suggested by the constructive heuristic are considered.
The subsequent pictures show the portions of the search tree explored when
δ = 1, 2 and 3.

solution. Line 4 chooses a variable y to explore. Line 5
executes the heuristic for ordering the domain of y. When
η(σ) > 0 or ν(σ) > 0 the domain is ordered by component
additions, no change (σ(y)), and component removals, i.e.,〈

σ(y) + 1, . . . , y+, σ(y), σ(y)− 1, . . . , y−
〉

otherwise it is ordered in reverse, i.e.,〈
σ(y)− 1, . . . , y−, σ(y), σ(y) + 1, . . . , y+

〉
Line 6 unassigns the current variable assignment of y (if

any) and lines 7–11 iterate over the ordered domain of the
variable. δ is decremented by violations in the ordering heuris-
tic. It is worth noting that line 9 implicitly updates attributes
associated with the new σ executes S. Line 12 returns the best
solution discovered. From a search tree perspective, Figure 2
provides an illustration of DBLS’s search on a binary tree for
δ = 0, 1, 2 and 3. As can be seen in the figure, the running
time of DBLS is exponential in δ and |X | (the number of plans
considered is

∑
i=1...δ

(|X |×k
i

)
, where k is the maximum size

of a variable’s domain) [34].
In studying the performance of DBLS, three key general-

izations boost the quality of the results [12]. First, f(σ) is
non-monotonic. Adding components can cause η(σ) and ν(σ)
to rise or fall (sometimes referred to as Braess’s paradox [35]).
To control this behavior, we introduce a parameter, α, to limit
the number of times in a row that f(σ) may worsen. A similar
parameter is used in [28]. Second, it is possible for S(σ) to
fail for a given σ. A parameter β is introduced to limit the
number of times in a row that S(σ) may fail. Finally, the
performance of DBLS on TNEP was highly dependent on the
quality of early decisions as it can take a considerable amount
of time to return to these decisions. Thus, it was productive
to iteratively restart DBLS with improving starting solutions
(generally keeping δ small).

IV. BRANCHING HEURISTICS

We next discuss five implementations of CHOOSEVARI-
ABLE. The first four heuristics are motivated by the difficulty
in minimizing η(σ) and are invoked when η(σ) > 0 or
ν(σ) > 0. The fifth heuristic for minimizing cost is invoked
when η(σ) = 0 and ν(σ) = 0. The first three heuristics
focus on circuit expansions. If no circuit expansions exist, the
functions choose the bus with the lowest voltage to add or
subtract shunt compensation

In the nomenclature of [16], these implementations repre-
sent least-effort heuristics that use electrical system perfor-
mance to create a sensitivity index (ranking function) for each
variable. The appendix provides formal definitions of each
implementation in pseudo-code.
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Maximum Utilization The first implementation of CHOOSE-
VARIABLE is referred to as maximum utilization (MU). This
heuristic chooses the corridor with the most utilized capacity.
Interestingly, this choice can have a negative effect on over-
loaded corridors; adding capacity increases the conductance
of the corridor and can increase the flow in the corridor.
This observation provides the intuition for adding capacity
to corridors that are not overloaded. Corridors that are near
capacity are clearly attractive routes for power, so adding
capacity (conductance) may divert power from areas that are
overloaded.
Flow Diversion The second implementation of CHOOSEVARI-
ABLE is referred to as flow diversion (FD). This heuristic
looks for a circuit (i, j) that is overloaded and considers
portions of the network that are upstream and downstream
from the overloaded circuit. It selects circuit expansions that
divert power away from upstream locations or accept power
downstream. Intuitively, this selects circuits that may bypass
the overloaded circuit more conductive.
Alternate Path Around The third implementation of CHOO-
SEVARIABLE is referred to as alternate path around (APA).
This heuristic looks for a circuit (i, j) that is overloaded
and selects expansions that are on power flows paths that
bypass (i, j) and bring power from upstream generators to
downstream loads.
Most Improving The fourth implementation of CHOOSE-
VARIABLE is referred to as most improving (MI) and it is
based on constructive heuristics that choose an expansion
variable whose modification most improves the current plan.
Variations of this heuristic are presented in [9], [15], [16],
among others. MI increases the number of simulations per-
formed at each node in the search tree by O(E), so it can be
computationally burdensome. However, it can more accurately
assess the impact to f when adding a component.
Minimize Cost This fifth heuristic is based on the cost
reduction stages of constructive heuristics [15], [16]. It chooses
the most expensive variable that has been expanded.

V. EXPERIMENTAL RESULTS

In order to evaluate our approach, we considered four
benchmarks from the TNEP literature [27] and an expansion
scenario based on the electric power grid in New Mexico.
The New Mexico scenario uses the load and wind generation
growth projections of [3]. The commercial electric power
simulation package T2000 [36] and the linearized DC flow
model are used as implementations of S. All results are
obtained using an Intel Xeon 2.83 Ghz processor. The intent is
to 1) demonstrate that DBLS can find high-quality solutions
to the TNEP, 2) compare the performance of different con-
structive heuristics when embedded in DBLS, 3) demonstrate
that DBLS can be used with the AC power flow model, and 4)
show examples where solutions based on the DC power flow
model need considerable reinforcement under the AC power
flow model.

Reference [27] proposed 4 TNEP benchmarks (G1, G2,
G3, and G4) based on the 24-bus RTS-79 problem of [37].
Reference [27] grew demand and generation of the RTS by
200–300%. The problems allow up to 3 additional circuits in

TABLE I
AC GENERATION

Bus G1 Q(g) G2 Q(g) G3 Q(g) G4 Q(g) Q(g)max Q(g)min
1 94.43 76.24 94.43 85.25 240.0 -150.0
2 46.8 46.8 46.8 42.32 240.0 -150.0
7 193.5 155.23 193.5 174.58 540.0 0.0

13 758.8 609.43 623.55 684.32 720.0 0.0
14 41.1 41.1 41.1 41.1 200.0 -150.0
15 0.15 0.15 0.08 0.13 330.0 0.0
16 75.66 75.66 45.88 68.17 240.0 -150.0
18 412.2 412.2 207.13 246.63 600.0 -150.0
21 324.6 324.6 257.24 291.32 600.0 -150.0
22 -89.28 -89.28 -89.28 -89.28 288.0 -180.0
23 64.6 195.45 406.08 287.94 930.0 -375.0

TABLE II
AC LOAD

Bus Q(g) Bus Q(g) Bus Q(g) Bus Q(g) Bus Q(g)
1 66 5 42 8 105 13 162 18 204
2 60 6 84 9 108 15 192 19 111
3 111 7 75 10 120 16 60 20 78
4 45

the 34 existing corridors and in 7 new corridors (the domain of
each variable has size 4). The problems pessimistically assume
that generation cannot be dispatched. This provides worst case
scenarios, e.g., all generation is wind-based.

The definition of the original RTS problems provide all the
parameters for solving AC and DC power flows. However,
as reference [27] used DC power flows, some information
was not provided in the new problems, namely growth in
AC generation and demand and line charging for circuits in
new corridors. Thus, we scaled the AC load and generation
by the same factors as [27]. We also modeled the generators
as voltage controlled. The AC generation parameters for
problems G1, G2, G3, and G4 are in Tables I, II, and III.
Finally, bus 6 is allowed up to three additional inductive shunts
(ci), each of size 100 MVar and cost $1000.

TABLE III
NEW CORRIDOR LINE CHARGING

Bus Bus b Bus Bus b Bus Bus b
1 8 0.043 13 14 0.088 19 23 0.122
2 8 0.034 14 23 0.14 16 23 0.179
6 7 0.052

DC Power Flow Model The first set of results considers these
benchmarks when S is implemented with the linearized DC
power flow equations. This allows a comparison of DBLS with
results in the literature. Table IV reports the performance of
the different branching heuristics on these benchmarks. It de-
scribes the best result (and the parameter settings for achieving
the result) for minimizing η and κ. The possible parameters
are drawn from δ = {1, 2, 3, 4, 5} and α = {1, 2, 3, 4, 5}
(divergence does not occur in the DC power flow model, so
β does not impact the search). In the case of a tie, the result
with the minimal number of search tree node explorations is
reported. In these problems, each branching heuristic is able
to achieve the same quality solution. From a search efficiency
perspective, the results are less clear as no heuristic dominates
in terms of number of search node explorations required to
achieve their best solution. However, the difference between
the best and worst approaches is never greater than double.
This provides some evidence that, for these problems for
the DC power flow model, all of the branching heuristics
are reasonable choices. It is important to recall that all four
feasibility-based branching heuristics use the same heuristic
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TABLE IV
BEST SOLUTIONS OBTAINED FOR DIFFERENT IMPLEMENTATIONS OF

CHOOSEVARIABLE UNDER THE DC MODEL

η κ
BH δ α f NC δ α f NC

G1 MI 1 1 15 0 3 1 390K 552
FD 1 1 12 0 3 1 390K 669

APA 1 1 12 0 3 1 390K 707
MU 1 1 15 0 3 1 390K 539

G2 MI 1 1 27 0 3 1 424K 697
FD 1 1 13 0 3 1 424K 841

APA 1 1 13 0 3 1 424K 835
MU 1 1 18 0 3 1 424K 714

G3 MI 1 1 7 0 5 3 294K 5757
FD 1 1 7 0 5 3 294K 5735

APA 1 1 7 0 5 3 294K 5780
MU 1 1 7 0 5 3 294K 5725

G4 MI 1 1 8 0 4 2 354K 64
FD 1 1 8 0 4 2 354K 55

APA 1 1 8 0 4 2 354K 55
MU 1 1 8 0 4 2 354K 55

(a) (b)

Fig. 3. The performance of the branching heuristics for δ = 5 and α = 3
on problem G3 for the DC power flow model in terms of number of search
tree nodes (a) and CPU time (b).

for reducing cost and they are invoked when the search re-
enters portions of the search tree where η > 0.

Figure 3 drills deeper into the results of Table IV to better
understand the performance of the branching heuristics as
they progress towards achieving the best result. This figure
considers δ = 5 and α = 3 on problem G3. The figure plots the
best solution seen during the search as a function of number of
search tree nodes explored (a). In terms of nodes explored, all
four branching algorithms behave in essentially the same way.
This is a typical result for a wide range of parameters on all
four problems. As all five heuristics require about the same
number of search tree node explorations to achieve similar
quality results, a useful metric of comparison is CPU time
(b). MU is a slightly better performing branching heuristic
(all results require 1 CPU minutes regardless), which is not
surprising given the computational simplicity of its selection
process. The other three algorithms require traversals of the
network or multiple executions of S to choose a variable.

Finally, it is important to consider how varying α impacts
the search. Figure 4 shows how the performance of MI changes
when δ = 4 and α is varied. It is clear from these results that
allowing α to increase to 3 improves the quality of the results.
After that point it is more productive to increase δ rather than
α. Surveying the results, allowing α to be more than 3 rarely
improves the quality or efficiency of the results. This provides
empirical evidence that it is important to prune the search tree
when worsening solutions are encountered.

Finally, Table V compares the quality of the results dis-
covered by DBLS with the best solutions in the reviewed

Fig. 4. The performance of MI for δ = 4 and varying α on problem G3 for
the DC power flow model.

TABLE V
BEST DC SOLUTIONS TO BENCHMARKS OF [27]

Problem Best Known Ref Best Found
G1 438K RRMS 390K
G2 451K FH 424K
G3 218K RRMS 294K
G4 376K FH 354K

literature. In this table, RRMS refers to [16] and FH refers to
[27]. In three cases, DBLS improved the best known solutions
in the literature for the DC model. These solutions are shown
in Table VI.
AC Power Flow Model The second set of results uses a non-
linear AC power flow model implemented by the commercial
T2000 software package [36] for S. This model was tested on
the RTS-79 benchmarks of the previous section. As the initial
network topologies with modified generation and load do not
generally exhibit convergent behavior in S , the best solutions
obtained under the DC power flow model are used as a starting
point (Table VI). Note that the algorithm is allowed to remove
edges proposed by the DC power model.

Table VII compares the solutions for RTS benchmarks when
the AC power flow model is used. It describes the best result
(and the parameter settings for achieving the result). The pos-
sible parameter settings are down from δ = {1, 2, 3, 4, 5}, α =
{1, 2, 3, 4, 5}, and β = {1, 2, 3, 4, 5}. Once again, in the case
of ties, the result with the minimal number of search tree
explorations is reported. From these results, MI is the best
heuristic. It removes all overloads in all four problems (every
other heuristic fails to achieve this result at least once). MI
also achieves the best result κ in all four cases (although at
higher node counts). These results also suggest that α = β is
a good parameter choice in general.

Figure 6 considers the results of Table VII more closely
for δ = 5, α = 3, β = 3 on problem G1. In the figure,
(a) plots the best solution of η seen during the search as a
function of the number of search tree nodes explored. There
are a couple of interesting points that are common across many
parameter choices. First, MU and FD are very good at finding
high-quality solutions quickly, however, they terminate more
quickly as α and β are invoked more often and prune out large

TABLE VI
SOLUTIONS TO THE RTS-79 BENCHMARKS FOR DC POWER FLOW MODEL.

Line G1 G2 G4 Line G1 G2 G4
(1,5) 1 1 2 (14,16) 1 1 1
(3,24) 1 1 1 (15,24) 1 1 1
(6,10) 1 1 1 (16,17) 2 2 1
(7,8) 2 1 2 (16,19) 1 1 0

(10,12) 0 1 1 (17,18) 2 2 0
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TABLE VII
BEST SOLUTIONS OBTAINED FOR DIFFERENT IMPLEMENTATIONS OF

CHOOSEVARIABLE UNDER THE AC MODEL

η κ
BH δ α β f NC δ α β f NC

G1 MI 3 4 1 0 2184 4 4 1 1303K 8521
FD 3 3 3 0 943 5 5 5 1425K 14928

APA 2 2 1 0 205 5 5 5 1510K 50758
MU 3 5 5 0 2843 5 5 5 1895K 37381

G2 MI 5 3 3 0 31464 5 3 3 1681K 31975
FD 5 5 5 11 36444 X X X X X

APA 3 5 5 5 4886 X X X X X
MU 2 5 5 7 76347 X X X X X

G3 MI 5 5 5 0 36298 5 5 5 1128K 38537
FD 4 1 1 9 871 X X X X X

APA 5 3 3 8 5825 X X X X X
MU 3 5 5 0 3263 5 3 3 1919K 5436

G4 MI 4 4 1 0 6063 4 4 1 1802K 6223
FD 5 5 5 1 51714 X X X X X

APA 5 3 3 12 13461 X X X X X
MU 5 5 5 0 66042 5 5 5 2417K X

(a) (b)

Fig. 5. The performance of the branching heuristics for δ = 5, α = 3, and
β = 3 on problem G1 on the AC power flow model in terms of search nodes
(a) and CPU time (b).

portions of the search tree space. Second, in the mid-range,
APA is the best, however, MI is typically best in the long run.
In short, MI does not direct the search into bad regions of
the search space (where α and β are invoked) as often as the
other heuristics and is able to perform a more complete and
productive search for a given δ. In terms of CPU time, as seen
in (b), the results are similar. MU is seen to be very efficient,
but has a sparse search tree. These results suggest a mixed
strategy, where MU is used to find a high quality solution
quickly, followed by a switch to MI to refine the results.

Finally, it is important to consider the impacts of varying
α and β on the search. Generally speaking, the smaller of
α or β dominates the pruning, so this figure only considers
results for α = β. It is clear that allowing α and β to increase
up to 3 provides benefits, however, beyond that point there
is limited improvement and increasing δ is more productive.
This provides additional evidence that pruning based upon α
and β leads to better results empirically.

Table VIII compares the quality of the best results for κ
discovered for the DC power flow model and the AC power
flow model. Note that the cost of expansion under the AC
power flow model can be as much as 5.1 times more expensive
(solution G3) than the DC power flow model. This indicates
that under constrained planning scenarios, the plans obtained
under the DC approximation underestimate the required costs
considerably. The solutions are shown in Table IX. For these
solutions, no shunt compensation was added to bus 6.

It is important to note that the large additional expense is a
product of the problems being over-constrained (no dispatch-

Fig. 6. The performance of MI for δ = 3 and varying α and β on problem
G3 for the AC power flow model.

TABLE VIII
COMPARISON OF THE BEST COST DC AND AC SOLUTIONS TO

BENCHMARKS OF [27]. THE COLUMN LABELED η PROVIDES THE
OVERLOAD FOR THE DC PLAN WHEN SOLVED USING THE AC MODEL.

THE COLUMN LABELED ν PROVIDES THE CUMULATIVE VOLTAGE
VIOLATIONS FOR THE DC PLAN WHEN SOLVED USING THE AC MODEL. IN

BOTH COLUMNS THE NUMBER IN PARENTHESIS IS THE NUMBER OF
CORRIDORS AND BUSES IN VIOLATION, RESPECTIVELY.

Problem DC Best κ η ν AC Best κ
G1 390K 269.60 (3) .0267 (3) 1303K
G2 424K 197.28 (3) .0787 (3) 1681K
G3 218K 267.08 (3) .1585 (3) 1128K
G4 354K 158.23 (2) .0414 (3) 1802K

ing, the DC solution having nearly maximized reinforcements
in many corridors, and limited options for adding shunt
compensation). If the constraints are relaxed, the expenses
drop considerably. For example, if compensation is allowed at
all nodes up to 300 MVar in 100 MVar increments (inductive
and capacitive), the solutions are considerably less expensive.
Table X provides the results. The solution to problem G1 adds
200 MVar of compensation to buses 6 and 18. Solutions to
problems G2, G3, and G4 add 200 MVar in compensation at
bus 6 (used in capacitive mode). Under this scenario, the most
expensive addition is now roughly a factor of 4 (G3).

We also tested DBLS on the RTS problem of reference [9],
which is based on the G0 problem of [27]. This problem
has excess generation capacity that can be dispatched and
allows for unlimited compensation. We were able to achieve
the same solution as reference for [9] for δ = 1 and found
no better solution for δ = 5. Interestingly, the AC solution
with dispatching and unlimited compensation is considerable
less costly than the DC solutions for similar problems G1–
G4. This also provides evidence that the loosening constraints
reduces the cost impact of AC power flows.
New Mexico Test Case Finally, we tested the approach on a
problem based on a real system. This problem comes from the

TABLE IX
SOLUTIONS TO THE RTS-79 BENCHMARKS FOR AC POWER FLOW MODEL

Line G1 G2 G3 G4 Line G1 G2 G3 G4
(1,2) 2 1 2 2 (9,12) 1 1 3 2
(1,3) 1 3 0 1 (11,13) 1 2 1 2
(1,5) 2 1 0 2 (12,13) 0 0 1 0
(2,4) 1 0 1 1 (14,16) 1 2 1 2
(2,6) 3 3 3 3 (15,16) 1 0 0 0
(3,9) 0 1 1 0 (15,21) 0 1 0 1
(3,24) 3 3 0 3 (15,24) 1 2 0 2
(5,10) 2 3 3 3 (16,17) 2 2 1 1
(6,7) 3 3 3 3 (16,19) 1 0 2 0
(6,10) 1 1 2 1 (17,18) 1 2 0 0
(7,8) 3 2 3 3 (18,21) 1 0 0 1
(8,9) 1 2 2 2 (19,23) 0 0 0 1
(8,10) 2 1 1 1 (20,23) 0 0 1 0
(9,11) 1 2 2 3 (21,22) 0 0 0 1
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(a) (b)
Fig. 7. New Mexico expansion example for 2020 renewable energy penetration. (a) shows the network state after 2020 load growth and renewable generation
are added to the existing system. Lines colored red (dark gray) are over capacity. Triangles marked in red (dark gray) are buses with voltage problems. (b)
shows the network after expansion. Lines colored in blue (dark gray) indicate where lines were added.

TABLE X
SOLUTIONS TO THE RTS-79 BENCHMARKS FOR AC POWER FLOW MODEL

WITH ADDITIONAL SHUNT COMPENSATION OPTIONS.

Line G1 G2 G3 G4 Line G1 G2 G3 G4
(1,3) 0 0 2 0 (10,12) 1 1 2 0
(1,5) 2 1 0 2 (11,13) 0 2 1 1
(2,4) 1 0 1 0 (12,13) 1 0 0 0
(2,6) 0 1 0 0 (12,23) 0 0 1 0
(3,9) 0 1 0 0 (14,16) 1 2 0 2
(3,24) 3 2 0 2 (15,16) 1 0 0 0
(6,7) 0 0 1 0 (15,21) 1 1 0 0
(6,10) 2 2 3 2 (15,24) 1 1 0 1
(7,8) 3 2 2 2 (16,17) 1 2 1 1
(8,9) 0 0 2 0 (16,19) 1 0 2 0
(8,10) 0 0 2 0 (17,18) 1 2 0 0
(9,11) 0 2 2 0 (20,23) 0 0 1 0

(10,11) 0 0 0 2
733K 911K 877K 592K

transmission system of the state of New Mexico. This problem
is an order of magnitude larger than problems traditionally
considered in the TNEP literature, with 900 buses and 1020
transmission corridors. The results on this scenario provide
some evidence of the scalability of DBLS. The problem uses
the demand and renewable generation penetration assumptions
of [3]. Under the DC power flow model there are 840 MW
in overloads spread across 27 transmission corridors. The cost
to upgrade is roughly $60 million, using the expansion cost
estimates of [38]. The upgrades include adding 25 lines in 20
different corridors.

Under the AC power flow model, there are 1450 MVA in
overloads, spread across 29 transmission corridors. There are
also 15 buses with voltages below .9 pu. The cost to upgrade is
roughly $115 million, also using the expansion cost estimates
of [38] (almost twice as much as the DC model). Figure 7
shows the network before expansions are applied and where
expansions are added to remove the physical violations. This
solution puts 78 additional lines in 28 corridors.

VI. CONCLUSION

The electric power system is undergoing a revolutionary
transformation that requires new approaches for solving the
TNEP. Increased desire and the need to incorporate sustainable
power generation that is less controllable, such as wind and

solar, creates a situation where nonlinear flows must be
accounted for when evaluating plans. We have shown that
DBLS is a powerful approach for solving problems with non-
linear representations. It relies on encapsulating portions of
the problem’s model as a black box, similar to simulation
optimization. The core algorithmic contribution of this paper
is a general search procedure that achieves solutions to the
TNEP using linear and non-linear flow equations.

Given, the success of the approach described in this paper,
it will be interesting to explore how to further exploit S,
especially when S fails to converge. It will also be important
to account for uncertainty in the planning process as described
in [39], [40], [41], in particular as it relates to the intermittent
output of renewable energy. It will also be interesting to
generalize DBLS to handle non-lexicographic, multi-objective
functions such as those developed in [31], [42]. Finally, it will
be important to the study the effects on solution quality when
dispatchable generation, load management, or other types of
control are included in the models of power systems [43]. This
may reduce the need for expansion.
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APPENDIX

In this section we provide formal descriptions of the imple-
mentations of CHOOSEVARIABLE discussed in Section IV. For
ease of presentation, E(X ) is used to denote those corridors
that have circuit variables in X , i.e.,

⋃
i, j ∈ E | ci,j ∈ X . We

use B(X ) to denote those buses that have shunt compensation
variables in X , i.e.,

⋃
i ∈ B | ci ∈ X .

MU is described formally in Figure 8. MU chooses the
corridor with the most utilized capacity (line 2 of Figure 8).
If no circuit variables exist, the function chooses the bus with
the lowest voltage to add or subtract shunt compensation (lines
4–5).

CHOOSEVARIABLE-MU(X , σ)
1 if |E(X )| > 0
2 then i, j ← arg maxi,j∈E(X) |zi,j | − ψi,jσ(ci,j);
3 return ci,j ;
4 i← arg mini∈B(X) vi;
5 return ci;

Fig. 8. Maximum Utilization (MU) Branching Heuristic

FD is described in Figure 9. FD heuristic first looks for
a circuit (i, j) that is overloaded (lines 1–3) and expands
on the variable that is more overloaded (if it exists). Line
4 creates a temporary set of edges (Ê) to consider for flow
diversion. It then iteratively considers overloaded circuits and
chooses the expansion variable of a transmission corridor that
could divert flow away from the overloaded circuits (lines
5–12). Line 6 determines the most overloaded transmission
corridor remaining in (Ê). Line 7 collects the buses (B̂) that
are within n corridors (hops) of the overloaded circuit (where
n is a user parameter), using the function NEIGHBORS. Line
8 constructs the set of all transmission corridors formed by
the cross product of (B̂), which is intersected with the set of
available expansion variables. The expansion variable of the
circuit with the highest flow diversion value, F , is chosen (line
10), where F is calculated by

F (i, j) =



i = F(i, j) or j = T (i, j) |zi,j | (1)
j = F(i, j) or i = T (i, j) −|zi,j | (2)
i ∈ BF and j ∈ BF −|zi,j | (3)
i ∈ BT and j ∈ BT , −|zi,j | (4)
i ∈ BF or j ∈ BT |zi,j | (5)
j ∈ BF or i ∈ BT −|zi,j | (6)

This function favors corridors that conduct lots of power
away from the topological neighborhood of the overloaded
corridor. For example, equation (5) favors corridors that move
power out of the neighborhood of T (i, j). Intuitively, if
outgoing corridors other than i, j become more conductive,
then some of the power entering the neighborhood may exit the
neighborhood on a corridor other than i, j. If no corridor exists
(i, j) is removed from (Ê) (line 12) and the process repeats.
If no circuit variables exist, the function chooses the bus with
the lowest voltage to add or subtract shunt compensation (lines
14–15).

APA is described in Figure 10. This heuristic uses a function
EXISTSFLOW(a, b, c, d) that determines if there exists a path
of flow from a bus in set a to a bus in set b using corridor c
but not corridor d. The wild card (∗, ∗) is used to denote any
corridor. It first looks for an overloaded circuit variable (lines
1–3) and selects the one that is most overloaded (if it exists).

CHOOSEVARIABLE-FD(X , σ)
1 i, j ← arg maxi,j∈E(X) |zi,j | − ψi,jσ(ci,j);
2 if |zi,j | − ψi,jσ(ci,j) > 0
3 then return ci,j ;
4 Ê ← E;
5 while |Ê| > 0
6 do i, j ← arg maxi,j∈Ê |zi,j | − ψi,jσ(ci,j);

7 B̂ ← NEIGHBORS(F(i, j), n) ∪ NEIGHBORS(T (i, j), n);
8 Êi,j ← (B̂ × B̂) ∩ E(X );
9 if |Êi,j | > 0

10 then ˆi, j ← arg max ˆi,j∈Êi,j
F ( ˆi, j);

11 return c ˆi,j ;

12 Ê ← Ê \ i, j;
13 i← arg mini∈B(X) vi;
14 return ci;

Fig. 9. Flow Diversion (FD) Branching Heuristic

Line 4 creates a temporary set of edges (Ê) to consider for
flow diversion.

APA then iteratively considers the overloaded circuits and
chooses a circuit (i, j) on an alternate path bringing power
from generators to loads downstream from (i, j) (lines 5–13).
Line 6 determines the most overloaded transmission corridor
remaining in (Ê). Line 7 calculates the loads (LT (i,j)) that
are downstream from (i, j). Line 8 collects all the possible
generators (GT (i,j)). Line 9 collects all the corridors that have
expansion variables and lie on a flow path from GT (i,j) to
LT (i,j) that does not include (i, j). The expansion variable
of the circuit with the greatest flow value is chosen. If no
corridor exists, (i, j) is removed from (Ê) (line 12) and the
process repeats. If no circuit variables exist, the function
chooses the bus with the lowest voltage to add or subtract
shunt compensation (lines 14–15).
CHOOSEVARIABLE-APA(X , σ)

1 i, j ← arg maxi,j∈E(X) |zi,j | − ψi,jσ(ci,j);
2 if |zi,j | − ψi,jσ(ci,j) > 0
3 then return ci,j ;
4 Ê ← E;
5 while |Ê| > 0
6 do i, j ← arg maxi,j∈Ê |zi,j | − ψi,jσ(ci,j);
7 LT (i,j) ←

⋃
b∈B | lb>0 and EXISTSFLOW({T (i,j)},{b},(∗,∗),(i,j));

8 GT (i,j) ←
⋃
b∈B | gb>0;

9 Êi,j ←
⋃

ˆi,j∈E(X) | EXISTSFLOW(GT (i,j),LT (i,j),(
ˆi,j),(i,j));

10 if |Êi,j | > 0
11 then ˆi, j ← arg max ˆi,j∈Êi,j

|z ˆi,j |;
12 return c ˆi,j ;

13 Ê ← Ê \ i, j;
14 i← arg mini∈B(X) vi;
15 return ci;

Fig. 10. Alternate Path Around (APA) Branching Heuristic

MI is described in Figure 11. MI chooses the expansion
that improves the current plan the most. In Figure 11, line 1
makes the first assignment (d1(y))) of each variable in X and
chooses the one that creates an expansion plan with the best
objective value.

CHOOSEVARIABLE-MI(X , σ)
1 return arg miny∈X f(σ ∪ [σ(y)← d1(y)]);

Fig. 11. Most Improving (MI) Branching Heuristic

The Minimize Cost heuristic is formally presented in Figure
12, where line 1 chooses the most expensive variable (y) that
has been expanded.

CHOOSEVARIABLE-COST(X , σ)
1 return y ← arg max

y∈X | σ(cy)>c−y
κy ;

Fig. 12. Cost Reduction Branching Heuristic


