
Form 836 (7/06) 

LA-UR- 
Approved for public release;  
distribution is unlimited. 

 
 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Title:  

Author(s):  

Intended for:  

10-07890

Randomized Discrepancy Bounded Local Search for
Transmission Expansion Planning

Russell Bent
William Daniel

Power Engineering Society Conference



1

Randomized Discrepancy Bounded Local Search for
Transmission Expansion Planning

Russell Bent and W. Brent Daniel

Abstract—In recent years the transmission network expansion
planning problem (TNEP) has become increasingly complex. As
the TNEP is a non-linear and non-convex optimization problem,
researchers have traditionally focused on approximate models of
power flows to solve the TNEP. Existing approaches are often
tightly coupled to the approximation choice. Until recently these
approximations have produced results that are straight-forward
to adapt to the more complex (real) problem. However, the power
grid is evolving towards a state where the adaptations are no
longer easy (e.g. large amounts of limited control, renewable
generation) and necessitates new approaches. Recent work on
deterministic Discrepancy Bounded Local Search (DBLS) has
shown it to be quite effective in addressing this question. DBLS
encapsulates the complexity of power flow modeling in a black
box that may be queried for information about the quality of
proposed expansions. In this paper, we propose a randomization
strategy that builds on DBLS and dramatically increases the
computational efficiency of the algorithm.

Index Terms—Transmission Expansion Planning, TNEP, Local
Search.

I. INTRODUCTION

RECENT years have seen an increase in awareness that
one of the major challenges of the 21st century is the

problem of how to provide clean, sustainable, and cheap
energy to the world’s rising population [1], [2]. To address this
challenge, the United States Department of Energy released a
report in 2008 that stated the goal of having 20% of the U.S.’s
energy come from wind by 2030 [3]. An important aspect of
this report is the question of how to best upgrade and expand
the electric power transmission grid to incorporate sustainable,
renewable energy sources that are located in transmission
deficient areas. This optimization problem has been well-
studied as Transmission Network Expansion Planning (TNEP)
[4], [5], [6], [7]; however, the requirements for the future grid
raise a number of challenges, including:

1) The inability of expansion plans based on linearized DC
models of power flows to guarantee an easy modification
to account for nonlinear power flows under conditions
imposed by uncontrollable generation [8].

2) With a few exceptions (e.g., [9]), expansion algorithms
are designed for specific models of power flow.

In previous work [10], we presented a novel approach
to address these challenges. This approach, Discrepancy-
Bounded Local Search (DBLS), embedded ideas from simu-
lation optimization [11], [12], [13] in a local search procedure
that generalizes constructive heuristics [14], [15], constraint-
based local search [16], [17], and is related to global search
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techniques such as limited discrepancy search [18], [19], [20].
The key idea of the approach is the encapsulation of the
power model within a simulation black box. The DBLS is
allowed to query the black box for power flow information
about proposed expansion plans. Unlike traditional simulation
optimization that typically uses the “black box” only for
evaluation (objective function) or feasibility checking, our ap-
proach uses information (i.e. flows) from the simulation to help
influence the choices of the DBLS algorithm. While powerful,
the approach requires large amounts of computation to solve
large scale problems with complex power flow models. This
paper considers this computational challenge and demonstrates
how the introduction of randomization can significantly boost
the computational performance of DBLS.

In short, the key contributions of this paper include:
• An approach for randomizing DBLS to improve compu-

tational performance.
• A TNEP approach that is decoupled from the details of

how power flows are modeled.
• A TNEP approach that handles non-linear models of

power flow.
• An algorithm that generalizes existing TNEP heuristics.
• An algorithm that scales to large scale realistic problems.
• A framework for supporting multi-objective expansion

planning.
• A coupling of simulation and optimization that allows the

simulation results to influence the optimization choices.
Literature Review The literature on TNEP is extensive and
references [4], [5], [6], [7] provide excellent surveys of the
field. In general, existing approaches have focused on model-
ing power flows with transportation models or the linearized
DC model in order to reduce computational overhead. Until
recently it has been been easy to adapt plans derived from
these models to more realistic conditions (see [21], [22]). The
approaches tend to fall into three categories, complete search
based upon mixed-integer program (MIP) formulations [21],
[23], locally optimal search such as constructive heuristics
[14], [15], and meta-heuristics [24], [25], [26], [27], [28], [29].

One of the most relevant papers related to the work pre-
sented here is that of [30] which presents an expansion
planning scenario where generation is fixed (also studied in
[15]). In these papers, generation is fixed in order to model
the challenges of economic dispatching, whereas the primary
motivation for fixing generation in this paper is renewable
energy sources. This is a pessimistic view of how power
systems operate, but is useful in terms of understanding how
worst case dispatching impacts expansion planning.

Reference [9] also shares a number of interesting similarities
with this paper. It presents a deterministic tree-based local
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search procedure which contains a truncation criteria not
unlike the discrepancy parameter of DBLS. Their approach
utilizes combinations of the transportation model and the
linearized DC model for modeling power flows. The paper
does state that the approach is generalizable to more complex
models of power flow, but this was not tested. It is important
to note that their search procedure is primarily guided by cost,
whereas DBLS is guided by both feasibility and cost.

Also of interest is the work of [31], [32] which is the
basis for many of the results contained in [3]. These papers
provide the fundamental motivations for the work of this paper.
They studied how to best integrate large amounts of wind
power into power grids spread over large geographic areas
using transportation models of power transmission. We seek to
address the question of how to account for non linear models
of power flow into such planning scenarios as considerable
effort is required to adapt models derived from transportation
models in this context [8].

The remainder of this paper is organized as follows. Sec-
tion II formally defines the TNEP. Section III describes the
algorithm used to generate expansion plans and the heuristics
used to guide the algorithm to reduce physical violations and
cost. Section IV describes how randomization is incorporated
into the DBLS. Section V discusses the experimental results
and Section VI concludes this paper.

II. PROBLEM DEFINITION

Buses The TNEP problem is described in terms of a set of
buses, B, that represent geographically located nodes in a
power network e.g. generators, loads, and substations. Each
bus, i, is defined by parameters gi, li, ι−i , ι+i , which represent
its generation, load (demand for power), minimum voltage (per
unit) and maximum voltage (per unit). P (gi) and Q(gi) are
used to denote the real and reactive components of generation.
Similarly, P (li) and Q(li) are used to denote real and reactive
components of load. For simplicity, Pi = P (gi) − P (li) and
Qi = Q(gi) − Q(li) are used to denote the real and reactive
power injected at bus i. The decision variable ci is used to
define the number of control components at i (in this paper,
shunt capacitors for regulating reactive power). ci has discrete
domain {c−i , c

−
i + 1, . . . , c+i − 1, c+i }. c

−
i is defined as the

number of control elements i starts with, ensuring that existing
controls are included.
Transmission Corridors The TNEP is also described by a
set of edges, E , called transmission corridors, connecting pairs
of nodes. A transmission corridor i, j between buses i and j
has a decision variable ci,j that defines the number of circuits
(power lines) in the corridor. The variable has discrete domain
{c−i,j , c

−
i,j + 1, . . . , c+i,j − 1, c+i,j} where c−i,j is defined as the

number of circuits the corridor starts with. c+i,j = c−i,j when no
circuits may be added to a corridor. A circuit is also defined by
parameter ψi,j which denotes the capacity of a single circuit
in the corridor. Similarly, ri,j , xi,j , bi,j denote the resistance,
reactance, and line charging of a single circuit in the corridor.
TNEP Solution A transmission network solution, σ, is defined
as a set of variable assignments

⋃
i∈B ci ← di∪

⋃
i,j∈E ci,j ←

di,j
1, where di is drawn from the domain of ci and di,j is

drawn from the domain of ci,j2. By convention, unassigned
variables are assumed to be c−i and c−i,j , respectively. σ(ci)
and σ(ci,j) are used to denote the variable assignments for σ.
Simulation TNEP algorithms have at their disposal a simulator
S for determining the behavior of power for σ. S(σ) returns
true when it is able to compute the behaviors. This is important
as some implementations of S use convergence approaches
(e.g. Newton’s method) that do not have guarantees on whether
or not they are able to obtain a solution. Szi,j (σ) denotes
the flow in corridor i, j and Svi(σ) the voltage at bus i. For
simplicity, this notation is shortened to zi,j and vi when S(σ)
is understood from context. The following equations provide
an example of S for the linear DC model where zi,j = −zj,i.

∀i∈B Pi =
∑
j∈B zi,j (1)

∀i,j∈E zi,j = λi,jci,j(θi − θj) (2)

In this model, λi,j = −xi,j
r2i,j+x

2
i,j

is the susceptance of a
circuit in corridor i, j and θi is the phase angle at bus i. The
first constraint ensures conservation of flow (Kirchoff’s current
law) and constraint 2 expresses the relationship between phase
angle and DC power (Ohm’s law). This model does not use
control components and does not calculate voltages (assumed
to be 1). Implementing S as this set of equations allows the
incorporatation of the traditional TNEP power flow model.

A TNEP solution σ is feasible when the following con-
straints are satisfied, i.e.

c−i,j ≤ ci,j ≤ c
+
i,j (i, j ∈ E) (1)

c−i ≤ ci ≤ c
+
i (i ∈ B) (2)

S(σ) = true (3)

Physical constraints are relaxed and incorporated into the
objective function in order to keep the search space connected
(similar to Lagrangian Relaxation). The overload of σ is
calculated as the sum of flow that exceeds the capacity of
the circuits, i.e. η(σ) =

∑
i,j∈E max(0,zi,j − ψi,jci,j). The

voltage violation of σ is calculated as the sum of voltages that
fall below ι−i or above ι+i , i.e. ν(σ) =

∑
i∈Bmax(0, ι−i −

vi, vi − ι+i ). Finally, the cost of σ is defined by κ(σ) =∑
i,j∈E ci,jκi,j +

∑
i∈B ciκi, where κi is the cost of putting

a control at bus i and κi,j is the cost of putting a circuit
in corridor i, j. The objective function, f(σ), is then a lex-
icographic multi-objective function of the form min f(σ) =
〈η(σ), ν(σ), κ(σ)〉3.

III. DBLS ALGORITHM

In reference [10], a deterministic branch and bound algo-
rithm is presented for the TNEP. This algorithm builds on
simulation optimization ideas by encapsulating the behavior
of the network into a “black box” that may be queried by
the algorithm for information about how a TNEP solution
behaves (i.e. S(σ)) and embedding it in a discrepancy bounded

1ci ← di is used to denote the assignment of a value to a variable.
2This formulation can be generalized for multiple types of control compo-

nents and circuits.
3This is a tie-breaking procedure, where the algorithm first minimizes η

and then uses ν and κ to break ties in sequence. It is assumed that finding a
solution that has no physical violations is more important than cost.



3

local search (DBLS) that limits the full exploration of the
branch and bound search tree. The intuition behind DBLS
is to generalize heuristics that make good decisions on how
to build solutions, but make a few bad decisions from time-
to-time. DBLS embeds the heuristic in a search tree as the
branching heuristic and explores those solutions that are within
δ violations (discrepancies) of the heuristic, where δ is a
user-specified parameter. DBLS provides a natural way to
incorporate constructive heuristics from the TNEP literature,
e.g. [14], [15], into a more general framework and is related
to the approach of [9]. The formal model of DBLS for TNEP
is presented in Figure 1.

DBLS takes as arguments a starting solution σ, (often the
current state of the network, i.e.

⋃
i∈B ci ← c−i ∪

⋃
i,j∈E ci,j ←

c−i,j), a set of variables, X , drawn from
⋃
i∈B ci ∪

⋃
i,j∈E ci,j ,

a heuristic discrepancy parameter, δ, a worsening discrepancy
parameter α, and a divergence discrepancy parameter β. The δ
parameter is used to control the number of times the branching
heuristic may be violated in the search and is decremented
in line 16. As the TNEP has the property that f(σ) is non-
monotonic, i.e. adding components can make η(σ) and ν(σ)
rise or fall (sometimes referred to as Braess’s paradox), the
parameter α is used to limit the number of times in a row that
f(σ) may worsen (lines 8-10). A similar parameter is used in
[9]. Finally, as it is possible for S(σ) to fail (diverge) for a
given σ, a parameter β is introduced to limit the number of
times in a row that S(σ) may fail (lines 11-13).

Line 5 chooses a variable to explore based upon the results
provided by S. It is here that the results of S drive the search
and represent the largest departure from traditional simulation
optimization. Line 4 provides the heuristic for ordering the
domain of variable X. When η(σ) > 0 or ν(σ) > 0 the domain
is ordered by component additions, no change (σ(X)), and
component removals, i.e.4〈

σ(X) + 1, . . . ,X+, σ(X), σ(X)− 1, . . . ,X−
〉

otherwise it is ordered in reverse, i.e.〈
σ(X)− 1, . . . ,X−, σ(X), σ(X) + 1, . . . ,X+

〉
Line 5 unassigns the current variable assignment of X and
lines 6-16 iterate over the ordered domain of the variable. It is
worth noting that line 7 implicitly updates attributes associated
with the new σ and is where S is executed.

One of the challenges of this approach is that the per-
formance of DBLS is highly dependent on the quality of
early decisions. It can take a considerable amount of time to
revisit those choices due the amount of backtracking that is
required, especially on large scale problems. From a scalability
perspective in reference [10] it was found to be productive
to keep δ small when executing DBLS and iteratively restart
DBLS with improving starting solutions. The restart proce-
dure is described in the function OPTIMIZETNEP, where the
algorithm is continuously restarted until the solution no longer
improves.

4Recall that σ(X) is the assignment of a value to X in σ. Thus, σ(X) + 1
adds one to the variable assignment of σ.

OPTIMIZETNEP(σ,X , δ, α, β)
1 repeat
2 σ∗ ← σ;
3 σ ← DBLS(σ,X , δ, α, β);
4 until f(σ) ≥ f(σ∗);
5 return σ∗;

DBLS(σ,X , δ, α, β)
1 if δ ≤ 0 or α ≤ 0 or β ≤ 0
2 then return σ;
3 X ← CHOOSEVARIABLE(X , σ);
4 〈d1, d2, . . . , dk〉 ← ORDERDOMAIN(X);
5 σ ← σ \ [X ← σ(X)];
6 for i← 1 . . . k
7 do σi ← σ ∪ [X ← di];
8 if f(σi) < f(σ)
9 then αi ← 0;

10 else αi = α− 1;
11 if S(σi)
12 then βi ← 0;
13 else βi = β − 1;
14 if f(σi) ≤ f(σ∗) and S(σi)
15 then σ∗ ← σi;
16 DBLS(σi,X \ X, δ − i, αi, βi);
17 return σ∗;

Fig. 1. Discrepancy Bounded Local Search

In this paper two implementations of CHOOSEVARIABLE
are used. For ease of presentation, E(X ) is used to denote
those corridors that have circuit variables in X , i.e.

⋃
i, j ∈

E | ci,j ∈ X . B(X ) is used to denote those buses that have
capacitor variables in X , i.e.

⋃
i ∈ B | ci ∈ X .

The first implementation is described in Figure 2 and is
based upon the constructive heuristic presented in [14]. It first
chooses the variable corresponding to the corridor that is most
overloaded (lines 1-3), if one exists. Otherwise the heuristic
chooses the corridor within n = 1 hops of an overload that
decreases an overload the most (lines 7-16). It then iteratively
tries n = 2, 3, 4, . . . up to a user specified maximum until it
finds a decreasing f(σ) circuit addition (lines 6-17). If there
are no corridors that satisfy this criteria the heuristic selects the
bus with the lowest voltage to add shunt compensation (lines
18-19). This heuristic is used when η(σ) > 0 or ν(σ) > 0.

The second heuristic is based upon the standard cost reduc-
tion stages of constructive heuristics [14], [15] and chooses
to explore those variables whose removal of components will
decrease the cost the most (lines 1-2 of Figure 3). It is used
when η(σ) = ν(σ) = 0.

IV. RANDOMIZED DBLS ALGORITHM

We now present two approaches for introducing randomness
into DBLS that dramatically improves its computational effi-
ciency. The first approach considers the discrepancy parameter
for worsening solutions. While a useful pruning mechanism,
it does not use information about the degree of worsening. To
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CHOOSEVARIABLE-FEASIBLE(X , σ)
1 i, j ← arg maxi,j∈E(X ) |zi,j | − ψi,jσ(ci,j);
2 if |zi,j | − ψi,jσ(ci,j) > 0
3 then return ci,j ;
4 Ê ← E ;
5 while |Ê | > 0
6 do for k ← 1 . . . n
7 do i, j ← arg maxi,j∈Ê |zi,j | − ψi,jσ(ci,j);
8 B̂ ← NEIGHBORS(i, n) ∪ NEIGHBORS(j, n);
9 Êi,j ← (B̂ × B̂) ∩ E(X );

10 for ˆi, j ∈ Êi,j
11 do σ̂ ← σ \ [c ˆi,j ← σ(c ˆi,j)];
12 σ̂ ← σ̂ ∪ [c ˆi,j ← min(c+ˆi,j , σ(c ˆi,j) + 1)];
13 ⊥ ˆi,j ← Szi,j (σ̂);
14 ˆi, j ← arg max ˆi,j∈Êi,j ⊥ ˆi,j ;
15 if ⊥ ˆi,j ≤ Szi,j (σ)
16 then return c ˆi,j ;
17 Ê ← Ê \ i, j;
18 i← arg mini∈B(X ) vi;
19 return ci;

Fig. 2. Feasibility Branching Heuristic

CHOOSEVARIABLE-COST(X , σ)
1 i, j ← arg maxi,j∈E(X ) | σ(ci,j) > c−i,j

κi,j ;
2 i← arg maxi∈B(X ) | σ(ci) > c−i

κi;
3 if κi,j ≥ κi
4 then return ci,j ;
5 return ci;

Fig. 3. Cost Reduction Branching Heuristic

address this limitation, we introduce a simulated annealing like
acceptance criteria for exploring a worsening solution as seen
in Line 12 of Figure 4, where T is the temperature parameter.
Like simulated annealing T is cooled by parameter t (line 13).

RDBLS(σ,X , δ, T )
1 if δ ≤ 0
2 then return σ;
3 X ← CHOOSEVARIABLE(X , σ);
4 〈d1, d2, . . . , dk〉 ← ORDERDOMAIN(X);
5 σ ← σ \ [X ← σ(X)];
6 for i← 1 . . . k
7 do σi ← σ ∪ [X ← di];
8 if f(σi) ≤ f(σ∗) and S(σi)
9 then σ∗ ← σi;

10 if RANDOM([0, 1]) ≤ e−
f(σi)−f(σ)

T

11 then DBLS(σi,X \ X, δ − i, T × t);
12 return σ∗;

Fig. 4. Randomized Discrepancy Bounded Local Search

The second approach adds randomness in how the dis-

crepancy search tree is explored as seen in Figure 5. The
search chooses P random paths in the tree (lines 4-8 of OPTI-
MIZETNEP). The random paths are guided by the branching
heuristic using determinism parameters ω and ζ (lines 4 and 8
of DPLS). When ω and ζ are near 1, the choice of variable and
variable assignment follow a uniform distribution. The larger
ω and ζ get, the more the branching follows the branching
heuristic for selecting x (line 5) and di (line 9). The parameters
control the influence of the branching heuristic. This approach
is referred to as Discrepancy Probe Local Search (DPLS)
throughout the rest of the paper.

OPTIMIZETNEP(σ,X , T )
1 repeat
2 σ∗ ← σ;
3 σ̂ ← σ;
4 for i← 1 . . . P
5 do σi ← DPLS(σ,X , T );
6 if f(σ)i < f(σ̂)
7 then σ̂ ← σi;
8 σ ← σ̂;
9 until f(σ) ≥ f(σ∗);

10 return σ∗;

DPLS(σ,X , T )
1 if δ ≤ 0
2 then return σ;
3 〈X1,X2, . . . ,Xk〉 ← ORDERVARIABLES(X , σ);
4 j ← bRANDOM([0, 1])ω × |X |c;
5 X ← Xj ;
6 〈d1, d2, . . . , dk〉 ← ORDERDOMAIN(X);
7 σ ← σ \ [X ← σ(X)];
8 i← bRANDOM([0, 1])ζ × (X+ − X−)c;
9 σi ← σ ∪ [X ← di];

10 if f(σi) ≤ f(σ∗) and S(σi)
11 then σ∗ ← σi;
12 if RANDOM([0, 1]) ≤ e−

f(σi)−f(σ)
T

13 then DPLS(σi,X \ X, T × t); return σ∗;

Fig. 5. Discrepancy Probe Local Search

V. EXPERIMENTAL RESULTS

In order to evaluate our approach we considered four
expansion planning benchmarks from the TNEP literature [30].
The approach was also tested on an expansion scenario for
the electric power grid of the state of New Mexico based
upon load and wind generation growth projections found in
[3]. The commercial nonlinear AC electric power simulation
package T2000 [33] and the linearized DC flow model are
used as implementations of S. It is important to note that since
T2000 uses convergence methods for solving the power flow
equations, there is no guarantee of a unique solution. Thus,
it is possible that a stable flows exists for a σ that achieves
a better value η than the one returned by S. However, as the
approach is not tied to a particular choice of S, a user may
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TABLE I
AC GENERATION

Bus G1 Q(g) G2 Q(g) G3 Q(g) G4 Q(g) Q(g)max Q(g)min
1 94.43 76.24 94.43 85.25 240.0 -150.0
2 46.8 46.8 46.8 42.32 240.0 -150.0
7 193.5 155.23 193.5 174.58 540.0 0.0
13 758.8 609.43 623.55 684.32 720.0 0.0
14 41.1 41.1 41.1 41.1 200.0 -150.0
15 0.15 0.15 0.08 0.13 330.0 0.0
16 75.66 75.66 45.88 68.17 240.0 -150.0
18 412.2 412.2 207.13 246.63 600.0 -150.0
21 324.6 324.6 257.24 291.32 600.0 -150.0
22 -89.28 -89.28 -89.28 -89.28 288.0 -180.0
23 64.6 195.45 406.08 287.94 930.0 -375.0

TABLE II
AC LOAD

Bus Q(g) Bus Q(g) Bus Q(g) Bus Q(g) Bus Q(g)
1 66 5 42 8 105 13 162 18 204
2 60 6 84 9 108 15 192 19 111
3 111 7 75 10 120 16 60 20 78
4 45

supply a simulation model that either returns a unique solution
or the best of a set of solutions, if desired.

The four benchmarks proposed in reference [30] are based
on the RTS-79 and RTS-96 problems of [34], [35]. [30]
grew demand and generation of the RTS by 200-300%. The
problems allow up to 3 additional circuits in the 34 existing
corridors and up to 3 circuits in each of 7 new corridors
(thus, the domain of each circuit variable has size 4). The
benchmarks pessimistically assume that generation cannot
be dispatched. This provides worst case scenarios, e.g. all
generation is wind-based. The approach described here does
not depend on this property, as dispatching and/or optimal
power flow are definable within S, when appropriate.

The definition of the original RTS problems provide all the
parameters for solving AC and DC power flows, however, as
[30] used DC power flows, some information was not provided
in the new problems, namely growth in AC generation and
demand and line charging for circuits in new corridors. To
overcome this limitation the AC load and generation were
scaled by the same factors as [30]. We also modeled the
generators as “voltage” controlled, thereby allowing S to
adjust reactive generation to achieve certain voltage levels.
This makes the problems easier, as the intent of the bench-
marks is to make generation fixed. However, allowing reactive
generation to fluctuate does provide a fairer comparison with
results based on DC flows (as the behavior of the AC flows can
be improved with flexible AC generation). The AC generation
parameters for problems G1, G2, G3, and G4 are in Tables I,
II, and III.

TABLE III
NEW CORRIDOR LINE CHARGING

Bus Bus b Bus Bus b Bus Bus b
1 8 0.043 13 14 0.088 19 23 0.122
2 8 0.034 14 23 0.14 16 23 0.179
6 7 0.052

DC Power Flow Expansions We first test the approach
on the benchmarks of [30] using the linearized DC power
flow equations. The first results are described in Figure 6

Fig. 6. A comparison of the different parameter settings of DPLS on problem
G2 for η.

Fig. 7. A comparison of the different parameter settings of DPLS on problem
G2 for κ.

and consider some of the parameter settings of DPLS on
problem G2 for η. It shows the performance of varying
ω = ζ = {1, 5, 10, 100} and keeping the other parameters
fixed. The figure plots the best η found during the course of the
search on average for P = 100 (the number of nodes visited
in the search tree (iterations)). It is clear that some randomness
around the branching heuristic improves the efficiency of the
search. However, with too much randomness (ω = ζ = 1),
the search quality begins to degrade, thereby providing an
indication of the value of the branching heuristic as a guide
for the search. These results are further confirmed in Figure 7
which plots the best κ found during the search. Once again,
a determinism factor of between 5 and 10 brings the most
benefit.

Figure 8 compares DBLS and DPLS on problem G2. The
figure plots κ as a function of the number of nodes visited
in the search tree. The figure plots the best performance of
DBLS from its set of possible parameter settings (between 1
and 5 for δ, α, and β). The DPLS parameters are set statically
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TABLE IV
NODE COUNTS FOR ACHIEVING THE BEST QUALITY SOLUTION FOR

DIFFERENT PORTIONS OF THE OBJECTIVE FUNCTION.

DBLS DPLS
Problem η(σ) κ(σ) η(σ) κ(σ)

G1 52 431 8 8
G2 32 7881 11 1028
G3 7 NA 5 65
G4 8 NA 7 70

Fig. 8. A comparison between DBLS and DPLS.

as ω = ζ = 10, P = 100, T = 1 and t = .25 and the results
are an average of multiple runs. DBLS initially performs
better, however it is very quickly outperformed by DPLS. This
provides evidence that while the branching heuristic is a good
guide, the deterministic version of the search can spend time
in unproductive regions of the search tree. The randomized
version is able to more quickly probe other areas of the search
tree, biased by the guidance of the branching heuristic. This
observation is reinforced by the results in Table IV. This table
shows the best performance of DPLS and DBLS in terms of
number of search tree nodes explored to find the best values
for η and κ. Note that on problems G3 and G4, DBLS is
unable to match the the performance of DPLS after 10,000
search tree nodes.

Finally, Table V provides the best solutions that we are
aware of in the literature for the benchmarks and the best
solution found by the approaches presented in this paper. All
results have eta = ν = 0. In the table RRMS refers to [15]
and FH refers to [30]. In three cases, improved solutions are
discovered. The solutions are shown in Table VI.
AC Power Flow Expansions The second test of the DPLS
algorithm uses nonlinear AC for S on the benchmarks of [30].
The behavior of DBLS and DPLS for nonlinear AC is illus-

TABLE V
BEST SOLUTIONS TO BENCHMARKS OF [30]

Problem Best Known Ref Best Found
G1 438K RRMS 390K
G2 451K FH 392K
G3 218K RRMS 272K
G4 376K FH 341K

TABLE VI
SOLUTIONS TO THE RTS-96 BENCHMARKS FOR DC POWER FLOW MODEL.

CORRIDORS WITH NO CIRCUIT ADDITIONS IN ANY SOLUTION ARE
OMITTED.

Line G1 G2 G4 Line G1 G2 G4
(1,5) 1 1 0 (10,12) 0 0 1
(1,8) 0 0 0 (14,16) 1 1 1
(3,9) 0 0 1 (15,24) 1 1 1
(3,24) 1 1 1 (16,17) 1 2 1
(6,10) 1 1 1 (16,19) 1 0 0
(7,8) 2 1 2 (17,18) 2 2 0

(10,11) 0 1 0

Fig. 9. A comparison of η on DBLS and DPLS when using nonlinear AC
for S.
trated in Figure 9. The figure plots the best case performance
of DBLS for α = β = δ = {1, 2, 3, 4, 5} and the average
case performance of DPLS for ω = ζ = 10, P = 100, T = 1
and t = .1. For the most part, the algorithms behave roughly
the same early in the search procedure. However, as the search
proceeds, DBLS begins to explore poorer regions of the search
space whereas DPLS is able to more quickly sample solutions
from other areas of the search space.

The solutions obtained under nonlinear AC power flow
models are interesting to compare with the solutions obtained
under linearized DC power flow models. Table VII provides
the AC solutions and costs, which are 3-5 times more expen-
sive. This provides evidence that in planning scenarios where
generation is not dispatchable, plans obtained using DC power
flow models do not necessarily approximate the expansions
required for AC based expansion very well.
New Mexico Expansions. While the algorithm is very effec-
tive in solving the benchmark problems, it is also important
test its effectiveness on real networks. To perform this test,
we took the transmission system for the state of New Mexico
and modified the peak power demands according to the 2020
projections of [3]. We also added the generation that is
scheduled to be built by 2020, which includes wind generation
in the eastern part of the state. Under this planning scenario,
if the grid is not upgraded, there is roughly 1700 MVA
of overloads (spread over 31 transmission corridors) in the
system as highlighted in Figure 10 (a). In order to resolve the
physical violations, DPLS finds a solution within 100 search
tree nodes that eliminates all physical violations at a cost of
about $300,000,000, using the transmission expansion cost
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TABLE VII
AC DERIVED SOLUTIONS TO RTS-96 BENCHMARKS. CORRIDORS WITH

NO CIRCUIT ADDITIONS IN ANY SOLUTION ARE OMITTED.

Line G1 G2 G3 G4 Line G1 G2 G3 G4
(1,2) 1 3 2 2 (9,12) 2 3 2 2
(1,3) 1 3 0 2 (11,13) 0 2 2 2
(1,5) 2 1 0 2 (11,14) 0 0 0 1
(1,8) 1 0 0 0 (12,13) 1 0 0 0
(2,4) 1 0 0 0 (14,16) 2 2 1 2
(2,6) 1 3 2 3 (15,16) 1 0 0 1
(2,8) 1 0 0 0 (15,21) 1 3 0 2
(3,9) 0 1 1 0 (15,24) 2 3 0 3

(3,24) 1 2 0 3 (16,17) 1 2 1 1
(5,10) 2 0 3 0 (16,19) 1 0 1 0
(6,7) 3 3 2 3 (17,18) 1 2 1 0

(6,10) 1 1 1 2 (18,21) 0 2 0 0
(7,8) 1 1 3 2 (19,23) 0 1 0 1
(8,9) 1 1 3 1 (20,23) 0 0 1 0

(8,10) 1 3 0 3 (21,22) 1 3 0 2
(9,11) 1 3 3 1
Cost 1316K1977K1003K1978K

estimates of [36]. This solution adds 30 circuits in 28 existing
corridors.

VI. CONCLUSION

The electric power system is currently undergoing a rev-
olutionary transformation that requires new approaches for
solving the TNEP. The increased desire and need to incor-
porate sustainable power generation (wind and solar) that
is less controllable has created a situation where nonlinear
flows must be accounted for when evaluating expansion plans.
Prior work has shown that DBLS is a powerful approach
for solving problems with non-linear representations. This
paper has shown that randomization strategies for the DBLS
vastly improves its computational efficiency, thereby scaling
the approach to larger problem instances. Furthermore, the
approach relies on encapsulating portions of the problem’s
model as a black box similar to simulation optimization. The
strength of this approach is that it uses the black box for
more than just an evaluation criteria, but to direct the search
procedure itself. A core contribution of the algorithms is a
general search procedure that is decouples the model used for
flows from the search and achieves solutions to the TNEP
using non-linear flow equations.

Given the success of the approach described in this paper, it
will be interesting to explore how to generalize this approach
to more types of expansion options such as generation expan-
sion, voltage upgrades, and other types of control components.
The randomization strategies should help improve computa-
tional efficiencies when the number of variables is increased.
Second, it will also be important to account for uncertainty in
the planning process as described in [37], [38], in particular
as it relates to the intermittent output of renewable energy.
Once again, this increases the scale of the problems and
DPLS should help make this problem tractable. Finally, it will
be important to the study the impacts to expansion solution
quality when dispatchable generation or load management is
included in S. This will allow an understanding of when the
DC power flow model is a good approximation of the more
complex power flows in expansion planning. The approach
suggested in [39] for comparing DC models with AC models
for different applications may be a good starting point for this
type of analysis.
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