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Abstract

Energy consumption in commercial and educational build-
ings is impacted by group activities such as meetings, work-
shops, classes and exams, and can be reduced by scheduling
these activities to take place at times and locations that are
favorable from an energy standpoint. This paper improves
on the effectiveness of energy-aware room-booking and oc-
cupancy scheduling approaches, by allowing the schedul-
ing decisions to rely on an explicit model of the building’s
occupancy-based HVAC control. The core component of
our approach is a mixed-integer linear programming (MILP)
model which optimally solves the joint occupancy scheduling
and occupancy-based HVAC control problem. To scale up to
realistic problem sizes, we embed this MILP model into a
large neighbourhood search (LNS). We obtain substantial en-
ergy reduction in comparison with occupancy-based HVAC
control using arbitrary schedules or using schedules obtained
by existing heuristic energy-aware scheduling approaches.

1 Introduction
Heating, ventilation and air-conditioning (HVAC) systems
are responsible for 20% of the USA total energy consump-
tion (Pérez-Lombard, Ortiz, and Pout 2008) and account
for one hundred billion dollars/year electrical expenditure.
These high energy costs together with rising environmental
pollution levels call for innovative computational sustain-
ability research focused on improving energy management
in buildings.

Recent studies show that building HVAC consumption
can be significantly reduced by adopting occupancy-based
control strategies that exploit measured or predicted occu-
pancy information (Erickson et al. 2009; Agarwal et al.
2010; West, Ward, and Wall 2014). For instance, model pre-
dictive control strategies determine supply air flow rate and
temperature over longer time horizons so as to optimise en-
ergy consumption, whilst remaining within air flow and tem-
perature bounds that reflect the predicted occupancy of var-
ious building zones (Goyal, Ingley, and Barooah 2013).

Another recent research line investigates the proactive
control of occupancy in order to minimise HVAC consump-
tion (Kwak et al. 2013; Majumdar, Albonesi, and Bose 2012;
Pan et al. 2012). Many office and university buildings offer
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some scope for occupancy control via their room booking
and scheduling systems. For instance meetings, exams, use
of special purpose rooms, and other short-term activities can
be scheduled to occur at times and in rooms that are bene-
ficial from an energy standpoint. Unfortunately, existing oc-
cupancy scheduling approaches assume conventional HVAC
control strategies (Kwak et al. 2013). Moreover, since rea-
soning using explicit models of the HVAC and the building
is computationally expensive, they typically adopt subopti-
mal scheduling strategies guided by proxies for the optimi-
sation criterion. One such proxy is the minimisation of the
number of rooms used and of the time gap between succes-
sive meetings; it is used to guide the search towards solutions
that take advantage of thermal inertia and schedule meetings
to take place back-to-back in as few rooms as possible (Pan
et al. 2012; Majumdar, Albonesi, and Bose 2012).

This paper presents an approach which aims at combin-
ing the strengths of the above research directions. A naı̈ve
combination would be to schedule occupancy in a first phase
using existing methods, and then control HVAC based on
this occupancy schedule. In contrast, we model and solve
the joint HVAC control and occupancy scheduling problem.
This results in an integrated approach whose benefits exceed
the naı̈ve superposition of both of its parts, as the scheduling
fully exploits the capabilities of the underlying occupancy-
based HVAC control across available times and locations.

In more detail, the joint problem we consider is that of
deciding the respective times and locations (rooms) of a set
of meetings or similar activities, as well as the HVAC sup-
ply air temperature and air flow rate for each zone and time,
in such a way as to optimise the overall HVAC consump-
tion over a long time horizon. The schedule complies with
the HVAC and building dynamics models, and with comfort
and air-flow rate bounds that depend on the scheduled zone
occupancy. It also satisfies typical meeting scheduling con-
straints, including constraints on meetings times, on meeting
locations (e.g. room capacity, equipment availability), and
on participant attendance conflicts. Once built, such a sched-
ule can be used in any building equipped with an occupancy-
based HVAC controller by simply complementing the oc-
cupancy forecast (Mamidi, Chang, and Maheswaran 2012)
with the occupancy information captured in the schedule.
Our approach can even be used with a conventional HVAC
control system by constraining the bounds on supply air flow



rate/temperature and the temperature setpoints to be those
found in the optimal solution to the joint problem.

To ensure the existence of a feasible control (for ade-
quately sized HVACs) and improve on current occupancy-
based HVAC control practices, we introduce a standby mode
enabling the HVAC to re-activate at night if this is necessary
to meet the temperature bounds of an early morning meet-
ing or results in reduced consumption. To address the chal-
lenges caused by the presence of non-linear HVAC control
constraints, we relax them in a principled way to obtain a
mixed-integer linear (MILP) model guaranteed to provide a
lower bound on the objective function. To tame the problem
complexity further and scale to large problems, we combine
the MILP model with Large Neighbourhood Search (LNS).
LNS destroys parts of the schedule and MILP repairs them.

Our experiments illustrate the circumstances under which
the standby mode is beneficial, demonstrate the approach’s
scalability, and show the superiority (over 50% consumption
reduction) of our joint MILP model compared to heuristic
scheduling solutions and to more naı̈ve integrations of meet-
ing scheduling and occupancy-based HVAC control.

To summarise, the main contributions of the paper are: a)
an efficient MILP model for occupancy-based HVAC con-
trol which can be used in a range of applications, b) a scal-
able and effective approach to occupancy scheduling which
exploits the capabilities of HVAC control and c) experiments
showing a substantial reduction in energy consumption over
the state of the art.

2 Occupancy-Based HVAC Control
This section introduces the occupancy-based HVAC con-
trol aspects of our MILP model. Section 3 will cover the
scheduling aspects. We describe in turn the type of HVAC
system we focus on along with the objective function we
consider, the bounds the control must comply with, the ef-
fect of the control on the building thermal dynamics, and the
linear relaxation of the non-linear constraints.

Our HVAC control model builds on well-accepted work
by Goyal et al. (2012; 2013), but introduces a number of
significant changes required to be suitable as a subcom-
ponent of our more complex joint scheduling and control
model. Notably, the control model studied by (Goyal, Ingley,
and Barooah 2013) is a purely continuous non-linear model
which does not consider occupancy. Our experiments using
the IPOPT solver (Wächter and Biegler 2006) revealed that
this model is impractical for our application, in terms of both
memory and run-time requirements. In contrast, our model
is an efficient linear model that incorporates discrete vari-
ables to capture occupancy and our standby mode.

2.1 VAV System and Objective Function
Following Goyal et al. (2013), we consider variable-air-
volume (VAV) based HVAC systems, which are widely de-
ployed in commercial buildings. With such systems, the
building is divided into a number of zones (or locations)
L ⊆ N, each of which can be an individual room or a group
of rooms. To simplify notation, we assume that each zone
corresponds to a single room. Figure 1 shows a schematic of
a VAV system connected to two building zones.

Figure 1: VAV System with Two Zones

Let K = {1 . . . n} be a finite set of discrete time steps
considered over the optimisation horizon. For simplicity, we
assume that successive time steps are separated by a fixed
duration ∆t ∈ R+; that is, ∀k ∈ K, we have tk ∈ R+

and tk − tk−1 = ∆t. The objective is to minimise the total
energy consumed over the optimisation horizon:

minimise:
∑
k∈K

ek (1)

where ek is the energy consumed at time step k:
ek = pk ×∆t ∀k ∈ K (2)

The power pk is consumed by the three main operations
shown in Figure 1 and detailed below: the air condition-
ing operation performed centrally by the air handling unit
(AHU) consumes pCondk ; the fan operation, also performed
centrally, consumes pFank ; and the reheating operation per-
formed locally at each zone l ∈ L by the zone’s VAV unit
consumes pHeatl,k at each zone:

pk =

(
pCondk + pFank +

∑
l∈L

pHeatl,k

)
∀k ∈ K (3)

Air Conditioning Operation. The air handling unit (AHU)
admits a mixture of outside air at temperature TOAk and re-
turn air, and conditions it to a pre-set conditioned air tem-
perature TCA (usually 12.8C). The conditioned air is then
distributed through the supply duct to the VAV unit at each
zone. The AHU consumption pCondk is the power consumed
in cooling the total air flow required. Let aSAl,k denote the air
flow rate required by location l at time step k and Cpa the
heat capacity of air at constant pressure (1.005 kJ/kg·K):

pCondk = Cpa
(
TOAk − TCA

)∑
l∈L

aSAl,k ∀k ∈ K (4)

Fan Operation. The supply fan, driven by a variable fre-
quency drive, maintains a constant static pressure in the sup-
ply duct. When the opening of the VAV dampers increases
to pull in more air flow into the conditioned space (resp. de-
creases to pull less air flow), the fan speeds up (resp. slows
down). The fan consumption is the power consumed to push
the total air flow required through the supply duct, which is
proportional to the sum of the air flow rates aSAl,k required
over all locations. Let β be the fan coefficient (0.65):

pFank = β
∑
l∈L

aSAl,k ∀k ∈ K (5)



Reheating Operation. Each zone l has a VAV unit con-
nected to the supply duct. The unit is equipped with con-
tinuously adjustable valves and reheat coils. These enable
regulating the air flow rate aSAl,k into the zone and modu-
lating the supply air temperature TSAl,k to maintain the zone
temperature within given bounds, if necessary by reheating
the supply air. Here we consider the power pHeatl,k consumed
by the reheating process to heat the supply air from the con-
ditioned temperature TCA to an appropriate location supply
air temperature TSAl,k .

pHeatl,k = Cpa(TSAl,k − TCA)aSAl,k ∀l ∈ L, k ∈ K (6)

Decision Variables. The two key HVAC decision variables
are the supply air flow rate aSAl,k and temperature TSAl,k at each
location l ∈ L and time step k ∈ K. We determine an opti-
mal control for these variables, given occupancy information
and bounds on supply air temperature, supply air flow rate,
and room temperature during vacant and occupied periods.
Below we will introduce a third decision variable (wl,k) to
decide when the HVAC should activate at night, which in
turn will influence the bounds. When taking the HVAC con-
trol model in isolation, the building occupancy is an input
to the model. When we integrate scheduling to the model in
Section 3, occupancy will become a variable.

2.2 Temperature and Air Flow Bounds
We now model the constraints on the temperature, supply
air temperature and supply air flow rate in each location,
as a function of the location occupancy and the time of the
day. We introduce the auxiliary variable Tl,k ∈ R repre-
senting the actual temperature in location l ∈ L at time
step k ∈ K, and the boolean input zl,k which is true iff
l is occupied at time step k. When a location is not occu-
pied, its temperature can lie freely within a wide tempera-
ture range [Tunocc,lb, Tunocc,ub], whilst the temperature is
otherwise constrained to lie within a more restricted com-
fort range [Tunocc,lb+Clb, Tunocc,ub−Cub], whereClb and
Cub are appropriate constants. This constraint is expressed
as follows: ∀l ∈ L, k ∈ K

Tunocc,lb+Clbzl,k≤Tl,k≤Tunocc,ub−Cubzl,k (7)

Further, the supply air temperature and flow rate at each
location are constrained in a way that depends on the HVAC
operating mode at the current time step. We have two oper-
ating modes: active and standby. Let Ks ⊆ K be the set of
time steps that fall within standard operating hours (6am to
6pm). During standard hours (k ∈ Ks) the HVAC is always
in active mode. The supply air temperature TSAl,k at location
l must fall within [TCA, TSA,ub]. The supply air flow rate
aSAl,k must fall within [aSA,lbl , aSA,ub] where the upper bound
is the air flow rate obtained when the dampers are fully open,
and the lower bound is a constant (depending on the area size
of the location and on the return air ratio) necessary to en-
sure that the minimal fresh outside air requirements are met.
This yields the constraints:

TCA ≤ TSAl,k ≤ TSA,ub ∀l ∈ L, k ∈ Ks (8)
aSA,lbl ≤ aSAl,k ≤ aSA,ub ∀l ∈ L, k ∈ Ks (9)

(a) Zone (b) Lumped-RC Network

Figure 2: Thermal Model

Outside business hours (k ∈ K \ Ks), the HVAC is in
stand-by mode and will only activate if this enables or low-
ers the cost of satisfying a future constraint. For instance, it
could activate at night and benefit from the low outside night
temperature to more cheaply cool the supply air to meet
the temperature bounds in (7) for an early morning meet-
ing. Note that this is different from conventional operations
where HVACs are always off outside hours; as our experi-
ments will show, the standby mode enables model-predictive
approaches to occupancy-based control to meet constraints
and save energy. The decision of whether or not HVAC acti-
vation is required by location l is represented by the boolean
decision variable wl,k. The presence of these boolean vari-
ables makes our model a mixed-integer model. When wl,k
is true, the supply air flow rate and temperature are con-
strained to lie within [TCA, TSA,ub] and [aSA,lbl , aSA,ub],
respectively, and when wl,k is false, aSAl,k is set to zero and
the value of TSAl,k is irrelevant (and for simplicity may as well
also be zero). This is captured by the following constraints:

TCAwl,k ≤ TSAl,k ≤ TSA,ubwl,k ∀l∈L, k∈K\Ks (10)

aSA,lbl wl,k≤aSAl,k ≤aSA,ubwl,k ∀l∈L, k∈K\Ks (11)

2.3 Building Thermal Dynamics
Having defined the space of decisions as the supply air flow
rate aSAl,k , the supply air temperature TSAl,k and the HVAC
activation requirement wl,k at each location and time step,
we now model the impact of these decisions on the build-
ing thermal exchanges. To model the thermal dynamics of
the building, we adopt a computationally efficient lumped
RC-network (Gouda, Danaher, and Underwood 2000) which
incorporates the thermal resistance and capacitance of each
zone and between adjacent zones, as well as the solar gain
and the internal heat gain in each zone – in particular the
heat gain arising from occupancy. For the sake of simplicity,
we ignore humidity and infiltration.

The principles behind the model are represented in Fig-
ure 2. Figure 2a shows the zone structure that we adopt.
Zone l is separated by a wall and a window from zone
z1 and by a wall from zones z2, z3, and z4, which could
represent either indoor or outdoor zones. It is also sepa-
rated by the ceiling and floor from zones c and f which
are above and below zone l, respectively. Zone l has a ca-
pacitance Cl that models the heat capacity of the air in the



zone. It also has a solar gain Qsl,k and heat gain Qpl,k at
time step k. Moreover, the inner (resp. outer) wall separat-
ing l from zone z ∈ Z = {z1, z2, z3, z4, f, c} has a ca-
pacitance Czl (resp. Clz), resistance Rzl (resp. Rlz), and tem-
perature T zl,k (resp. T lz,k) at time step k. The window has a
resistance Rwl . Finally, the internal node between the inner
and outer walls separating l from z ∈ {z1, z2, z3, z4} has a
constant resistance Rmid,zl . Capacitances, resistances, solar
gain, and (in this section) occupant heat gain are inputs to
the model whilst temperatures are auxiliary variables. The
interaction between zones is modeled using a lumped RC-
network. Specifically, we use 3R2C for walls separating two
zones, 2R1C for the ceiling and floor and 1R for windows.
The lumped network for Figure 2a is given in Figure 2b.

The lumped network translates into a set of coupled dif-
ference equations which can be summarised as follows. The
first difference equation defines the temperature Tl,k in zone
l at time step k as a function of the location, inner walls,
ceiling, floor and outdoor temperatures at the previous time
step, of the heat gain Qpl,k−1 at the previous time step and of
the enthalpy ∆Hl,k−1 of the location due to the supply air:

Cl
∆t

(Tl,k − Tl,k−1) = −

[∑
z∈Z

1

Rzl
+

1

Rwl

]
Tl,k−1

+
∑
z∈Z

T zl,k−1
Rzl

+
TOAk−1
Rwl

+Qpl,k−1 + ∆Hl,k−1

(12)

The heat gain Qpl,k is simply the heat gain qp generated per
person (75W), times the number of occupants ppl,k:

Qpl,k = qp × ppl,k (13)

Ignoring humidity, the enthalpy is defined as follows:

∆Hl,k = CpaaSAl,k (TSAl,k − Tl,k) (14)

The remaining difference equations define the tempera-
tures T zl,k and T lz,k of the inner and outer walls at time step
k as a function of each other and of the location tempera-
ture Tl,k−1 at the previous time step. Taking z = z1 in the
example of Figure 2a:

Clz1
∆t

(T lz1,k−T lz1,k−1)=−

[
1

Rlz1
+

1

Rmid,z1l

]
T lz1,k−1

+
Tz1,k−1
Rlz1

+
T z1l,k−1

Rmid,z1l

+Qsk−1

(15)

The definition of T z1l,k is symmetrical except for the absence
of solar gain Qsk−1. The equations for the other walls, and
the ceiling and floor are similar, so we omit them here.

2.4 MILP Relaxation
Observe that the model as presented so far is a mixed-integer
non-linear (MINLP) model. This is because of the bilinear
terms aSAl,k T

SA
l,k and aSAl,k Tl,k in Equations 6 and 14. From

a computational standpoint, it is better to relax these equa-
tions so as to obtain a MILP for which effective solvers exist
that are guaranteed to return a lower bound on the globally
optimal MINLP objective. To obtain a suitable MILP, we

use the linear programming relaxation of bilinear terms in-
troduced by McCormick (1976). This relaxation introduces
a new variable v for the bilinear term xy together with four
inequalities that define its convex envelope using the bounds
[x, x] and [y, y] on each of the two variables involved:

v ≥ xy + yx− xy
v ≥ xy + yx− xy
v ≤ xy + yx− xy
v ≤ xy + yx− xy

Hence, our MILP model is obtained by replacing the bi-
linear terms aSAl,k T

SA
l,k and aSAl,k Tl,k in Equations 6 and 14

with new variables and adding the corresponding convex en-
velope definitions. The relevant bounds are:

• aSAl,k ∈ [aSAl,k , a
SA
l,k ]=

{
[aSA,lb, aSA,ub] for k ∈ Ks

[0, aSA,ub] for k ∈K\Ks

• TSAl,k ∈ [TSAl,k , T
SA

l,k ]=

{
[TCA, TSA,ub] for k ∈ Ks

[0, TSA,ub] for k∈K\Ks

• Tl,k ∈ [T l,k, T l,k] = [Tunocc,lb, Tunocc,ub] for k ∈ K
This concludes the description of our MILP model for

occupancy-based HVAC control. Given the occupancy ppl,k
and zl,k, and the external temperature TOAk , it controls the
supply air flow rate aSAl,k and temperature TSAl,k and decides
when a location requires HVAC activation wl,k out of the
standby mode, in such a way as to optimise the total energy
consumption

∑
k∈K ek. The strengths of this model are its

integration of realism and computational efficiency, its ad-
equacy as a component of occupancy scheduling and other
more complex models, and its optional ability to activate out
of the standby mode when this improves consumption.

3 Occupancy Scheduling
Until now, zone occupancy over time was a model input. We
now present our joint HVAC control and meeting scheduling
model, in which occupancy is a decision variable.

Let M ⊆ N be a set of meetings to be scheduled to take
place at the locations in L during the time horizon K. Each
meeting m ∈ M is characterised by the following inputs:
its duration τm ∈ N (number of time steps), the set of al-
lowable time steps Km ⊆ K at which it can start, the set
of allowable locations Lm ⊆ M at which it can take place,
and its set of attendees Pm ⊆ A, for some appropriate set
of attendees A. In addition, let N ⊆ 2M be the set of meet-
ing sets which have at least one attendee in common, that
is N = {Mi ⊆ M | ∀m,m′ ∈ Mi, Pm ∩ Pm′ 6= ∅}. In
practice, only all pairs of incompatible meetings are needed.
Note that the sets Km and Lm can be used to encode a va-
riety of situations, such as room capacity requirements and
availability of special equipment such as video conferenc-
ing, as well as time deadlines for the meeting occurrence
and attendee availability constraints.

The main scheduling variable is the boolean decision vari-
able xm,l,k which is true iff meeting m ∈M is scheduled to
take place at location l ∈ Lm starting at time step k ∈ Km.
The scheduling part of the model interacts with the HVAC
control part via the auxiliary variables zl,k, which, as before,



is true iff location l is occupied at time step k, and ppl,k ∈ N,
which, as before, represents the number of occupants at lo-
cation l at time step k. These terms are used in Equations 7
and 13, respectively, but are now variables rather than inputs.

The set of MILP scheduling constraints are the following.
The first constraint ensures that all meetings are scheduled
to occur exactly once within the range of allowable locations
and start times: ∑

l∈Lm,k∈Km

xm,l,k = 1 ∀m ∈M (16)

The second constraint ensures that if a location is occupied
by a meeting then it is exclusively occupied by this meeting
during its entire duration:∑

m∈M,k′∈Km
such that

l∈Lm and k−τm+1≤k′≤k

xm,l,k′ ≤ zl,k ∀l ∈ L, k ∈ K (17)

As a result, no two meetings can occupy the same location
at the same time step. Observe that (17) also determines the
occupancy variable zl,k used in the occupancy-based HVAC
control part of the joint model.

The following constraint establishes the number of occu-
pants ppk,k of each location l at each time step k:∑

m∈M,k′∈Km
such that

l∈Lm and k−τm+1≤k′≤k

xm,l,k′×|Pm| = ppl,k ∀l ∈ L, k ∈ K (18)

This is used in equation 13 to establish the internal heat gain
arising from occupancy.

Finally, the last constraint ensures that meetings with an
intersecting attendee set cannot overlap in time:∑

m∈ν,l∈Lm,k
′∈Km

such that
k−τm+1≤k′≤k

xm,l,k′ ≤ 1 ∀k ∈ K, ν ∈ N (19)

Our joint HVAC control and occupancy scheduling model
is simply obtained by adding equations 16-19 the HVAC
control model given by equations 1-15 (with 6 and 14 lin-
earised). The model optimises the total energy consumed not
only over the HVAC decision variables aSAl,k , TSAl,k and wl,k
as before, but also over the scheduling decision variables
xm,l,k. A building occupancy-based HVAC controller need
only use the schedules xm,l,k produced. A conventional con-
troller may instead use the bounds on room temperature and
supply air flow rate/temperature determined by equations 7,
10 and 11 as setpoints.

This concludes the description of our joint HVAC control
and occupancy scheduling model. The next section experi-
mentally investigates its benefits in terms of energy reduc-
tion, in comparison with more naı̈ve integrations of schedul-
ing and HVAC control. Section 5 shows that by embedding
this model into a large neighbourhood search, we can scale
to timetabling problems of practical relevance.

4 Benefits of the Model
Our experiments aim at explaining the usefulness of the
standby mode and at demonstrating that our HVAC-aware
scheduling model leads to significant consumption reduc-
tion (50% to 70% in our experiments) when compared to

Figure 3: HVAC control with and without standby mode.

occupancy-based HVAC control using arbitrary schedules or
energy-aware schedules generated by heuristic methods. Ex-
periments are conducted over 5 summer days with a row of
4 co-located zones, each consisting of a single 60 m2 room
with a capacity of 30 people. The zones differ by a high
or low value for their thermal resistance and capacitance.
The two end zones have three outside walls and the mid-
dle two zones have two. The duration between successive
time steps is ∆t = 30min, giving more than enough time
for thermal effects to occur. Shorter durations did not signif-
icantly affect the results. The input data and parameters are
available from the first author. The MILP models are solved
using Gurobi 5.6 (2014). All experiments were conducted
on a cluster consisting of 2× AMD 6-Core Opteron 4184,
2.8 GHz with 64 GB of memory.

4.1 Usefulness of Standby Mode
We start by illustrating the usefulness of the standby mode.
In conventional operations, HVACs are usually switched on
a few hours prior to start of business (6am) and are turned off
in the evening (6pm) and at night. Model predictive control
strategies are capable of pre-cooling a zone, but only when
the HVAC is switched on. Our standby mode enables the
HVAC to self activate outside business hours to provide ad-
ditional pre-cooling when this is beneficial. Because HVAC
consumption is highly dependent on the temperature gap be-
tween the outdoor temperature and the conditioned air tem-
perature, pre-cooling at night, when the outdoor air temper-
ature is cooler, can reduce energy consumption. The follow-
ing experiment shows that such pre-cooling can be beneficial
not only for early morning meetings, but also, more surpris-
ingly, for late afternoon meetings.

Figure 3 compares the operations of the HVAC optimally
controlled by the model in Section 2 with standby mode (S)
and without standby mode (N). For this experiment, a sin-
gle meeting is scheduled to occur between 16:00-17:00 in a
given zone on a given day. Observe that when the HVAC is
running with the standby mode enabled, it activates as early
as 02:30 and pushes between 2.2 and 1.2 kg/s of supply air at
12.8 C to bring down the zone temperature to approximately



19◦C by 09:00. Between 02:30 and 6:00, the outdoor tem-
perature lies between 15 and 17◦C, which is about 2-4◦C
higher than the 12.8◦C conditioned air temperature. With-
out the standby mode, supply air is pushed into the room at
a higher average rate between 2.0 and 1.5 kg/s right after the
HVAC is turned on at 06:00, which, as the outdoor temper-
ature is higher at that time (18-22◦C), requires a higher rate
of energy consumption. During the day, the zone tempera-
ture increases slightly due to the daytime thermal gain, and
at 15:00, one hour before the meeting starts, the room is pre-
cooled again. This time, the standby-mode enabled HVAC
requires cooling about half the amount of supply air, which
brings significant energy savings since the outside tempera-
ture is around 36◦C. Altogether, the standby mode reduces
consumption by 11.9% (12kWh) on this example.

As shown above, a standby-mode-enabled HVAC can be
effective in areas with high diurnal temperature variation.
In addition to decreasing energy consumption, it can pro-
vide pre-cooling at off-peak electricity cost. For organisa-
tions that are charged by electricity suppliers according to
their peak consumption, another benefit of the standby mode
is that it can help smooth the peak that is regularly observed
at the start of the operating hours.

4.2 Joint Model vs Simpler Models
Whilst the standby mode is beneficial, the much larger gains
in our approach stem from the joint model: we now com-
pare our joint model with simpler approaches representative
of the existing literature on occupancy-based HVAC con-
trol and energy-aware meeting scheduling, and observe a
50%-70% energy consumption improvement. Specifically,
we consider a set of timetabling problems derived from
the PATAT (2002) Melbourne University dataset and com-
pare the optimal (O) solutions produced by the joint model
in Section 3, with those produced by giving arbitrary (A)
schedules and heuristic (H) energy-aware schedules as in-
put to the HVAC control model in Section 2. Several au-
thors have argued that scheduling meetings back to back in
as few rooms as possible is a suitable heuristic that takes
advantage of thermal inertia to reduce energy consumption
(Kwak et al. 2013; Majumdar, Albonesi, and Bose 2012;
Pan et al. 2012). In line with this, the heuristic we compare
to minimise the number of rooms used and the time gap be-
tween meetings in these rooms, subject to the scheduling
constraints 16-19.1 In all three cases (A,H,O), we run the
HVAC control model with standby mode (S) and without it
(N), resulting in six different methods labeled AN, AS, HN,
HS, ON, OS, where for example, HS denotes HVAC control
with standby mode using heuristic schedules.

To examine problems with different degree of constrai-
nedness, we extracted 70 problem instances from the PATAT
dataset, consisting of 40 instances of 10 meetings each, 20
instances of 20 meetings each, and 10 instances of 50 meet-

1Majumdar et al. (Majumdar, Albonesi, and Bose 2012) ob-
serve that the single most important predictor of performance is
good match between the room capacity and the size of the meet-
ings. However this does not play a role in our experiments since all
four rooms have the same capacity.

Strategy Average energy
consumption (kWh)

Excess consumption
vs. baseline

AN 212.14 74.84%
AS 199.94 64.78%
HN 184.26 51.86%
HS 177.32 46.14%
ON 124.13 2.30%
OS 121.34 baseline

Table 1: Comparison of arbitrary (A), heuristic (H), and opti-
mal (O) scheduling strategies over HVAC with (S) and with-
out (N) standby mode.

ings each. All meetings have up to 30 attendees, a 1.5h dura-
tion and an allowable time range of one or two random days
(09:00-17:00) within the 5 days of the experiment.

The AN/AS results are obtained by selecting, for each in-
stance, an arbitrary schedule consistent with the schedul-
ing constraints 16-19 in Section 3 and using it as input
to the occupancy-based HVAC control model in Section 2.
Similarly, the HN/HS results are obtained by selecting the
schedule optimising the heuristic among those consistent
with the scheduling constraints, and using it as input to the
occupancy-based HVAC control model. The ON/OS results
are obtained by solving the joint model for each instance.

Table 1 shows, for each of the 6 approaches, the average
energy consumption per room over the 70 instances, and the
percentage excess consumption taking OS as the baseline.
The results show a clear improvement as we move from ar-
bitrary schedules (AN/AS), that are currently the norm with
room booking systems, to energy aware schedules (HN/HS),
and a much greater improvement when these schedules take
into account the capabilities of occupancy-based HVAC con-
trol (ON/OS). The interactions between the various schedul-
ing constraints, the thermal dynamics of the building and
the HVAC control are so complex that heuristic methods
can only achieve a fraction of the performance of the global
optimisation methods enabled by our MILP model. As ex-
pected, the gain conferred by the standby mode decreases
as we move to schedules that make better time and location
decisions. Similarly, we observed that for more constrained
problems (e.g. with 50 meetings), the standby mode is more
effective, because there is a greater likelihood that meetings
need to be scheduled in rooms that require higher cooling
load which the standby mode can mitigate by pre-cooling.

5 Scaling to Large Problems
MILP enables us to easily manage the tightly constrained
interactions between meeting scheduling and its direct im-
pact on energy consumption. However, it only allows us to
solve small problem instances in reasonable time. To scale to
problem sizes that universities face when scheduling exams,
we developed a hybrid solution that embeds the MILP model
into a large neighbourhood search (LNS) (Shaw 1998).

LNS is a local search metaheuristic, which iteratively im-
proves an initial solution by alternating between a destroy
step and a repair step. The main idea behind LNS is that a
large neighbourhood allows the heuristic to easily navigate



Figure 4: Performance of LNS, MILP and HS.

through the solution space and escape local minima even
when the problem is highly-constrained. One important de-
cision when implementing the destroy step is determining
the amount of destruction. If too little is destroyed the effect
of a large neighbourhood is lost and if too much is destroyed
then the approach turns into repeated re-optimization. An-
other important decision is whether the repair step should
be optimal or not. An optimal repair will be slower than a
heuristic, but may potentially lead to high quality solutions
in a few iterations. As a result, some parameter tuning will
be essential in achieving good performance overall.

In our destroy step, we remove all meetings in two, three,
or four randomly selected zones. This forms a subprob-
lem that the repair step can effectively solve using MILP.
We do, however, limit the MILP runtime to avoid excessive
search during repair. That means we do not necessarily solve
the subproblem to optimality, but given that MILP solvers
are anytime algorithms, we do improve solution quality in
many of the LNS iterations. We used the sequential model-
based algorithm configuration (SMAC) methodology (Hut-
ter, Hoos, and Leyton-Brown 2011) on an independent set
of problems to optimise the parameters of the probability of
the number of rooms to destroy and the MILP run time.

Figure 4 compares the average energy consumption ob-
tained by LNS, MILP and the HS heuristic on 100 runs
for each of 80 larger instances extracted from the PATAT
dataset. These consist of 8 groups of 10 instances each,
ranging from 20 to 500 1-1.5h meetings to be scheduled in
20 to 50 rooms over the 5 days. For each run, both MILP
and LNS were seeded with HS as the initial solution and
were given the same run-time limit of 15 minutes. The per-
centages in the figure show the average excess consump-
tion of MILP and HS, taking LNS as the baseline. The
bottom bars give the average excess over all instances and
runs. The figure shows that LNS is capable of returning
significantly better solutions on large problems. The perfor-
mance gap increases as the problem scales, and is higher for
problems that are neither too weakly nor too tightly con-
strained (e.g. 100M/20R, 200M/50R). For the largest in-

stances (500M/50R) MILP could not improve at all over the
heuristic. MILP’s performance did not measurably improve
with a 2h run-time.

6 Conclusion, Related and Future Work
In this paper we focus on meeting scheduling, but our model
is more broadly applicable to scheduling occupant activities
within specified time windows, and ultimately, can be in-
tegrated into a range of room booking and scheduling sys-
tems. To bring awareness of the capabilities of the build-
ing’s HVAC system to the scheduling process, we solve
a joint HVAC control and occupancy scheduling problem.
This problem involves determining the times and locations
of a set of meetings, as well as the supply air temperature and
air flow rate for each building zone, so as to minimize HVAC
consumption. Existing approaches solve the HVAC control
problem and the occupancy scheduling problem in isolation.
While the joint problem is more challenging, it does achieve
a much higher rate of energy savings. By combining LNS
and MILP we are able to generate good solutions to large
instances within 15 minutes, making the approach practical
for university timetabling applications.

Combining constraint-based methods with LNS is not
new. For example, Di Gaspero et al. (2013) used LNS with
CP in balancing bike sharing systems and Le Bras et al.
(2013) used LNS with MILP in planning for wildlife con-
servation. We are, however, unaware of its application in the
smart buildings space.

Previous work on occupancy-based HVAC control treats
occupancy information as an input parameter and not as a
control variable (Agarwal et al. 2010; Brooks and Barooah
2014; Mady et al. 2011; Parisio et al. 2013; Xu et al. 2009).
Our work is different as it incorporates both HVAC control
and occupancy scheduling into a unified model. Moreover,
our standby mode improves the feasibility and solution qual-
ity of model-predictive HVAC control methods.

Energy-aware scheduling methods typically take advan-
tage of thermal inertia using heuristics such as minimizing
the number of rooms used and/or assigning lower costs to
meetings scheduled back to back in the same room (Pan et
al. 2012; Kwak et al. 2013; Majumdar, Albonesi, and Bose
2012). An important limit of these works is that they all
share a black-box modeling approach for calculating HVAC
energy consumption. This black-box approach confines the
search to a rather limited space that does not exploit the
HVAC’s full capabilities. Another limitation is the assump-
tion of an anonymous list of meeting participants, which
leads to ignore the existence of meeting conflicts and the
fundamental need for resolving them.

Directions for future work include: (1) extending our
model to include more HVAC parameters such as humidity,
(2) incorporating dynamic temperature bounds that adjust
thermal comfort bounds based on outdoor temperature, (3)
investigating the application of multi-objective optimisation
to over-constrained problems where, additionally, violation
of scheduling constraints needs to be minimised, and (4) in-
tegrating online scheduling and cancellation of meeting re-
quests in real-time as in (Kwak et al. 2013).
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