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Strategic Stockpiling of Power System Supplies
for Disaster Recovery

Carleton Coffrin, Pascal Van Hentenryck, and Russell Bent

Abstract—This paper studies the Power System Stochastic
Storage Problem (PSSSP), a novel application in power restora-
tion which consists of deciding how to store power system
components throughout a populated area to maximize the amount
of power served after disaster restoration. The paper proposes
an exact mixed-integer formulation for the linearized DC power
flow model and a general column-generation approach. Both
formulations were evaluated experimentally on real-life bench-
marks. The results show that the column-generation algorithm
produces near-optimal solutions quickly and produces orders
of magnitude speedups over the exact formulation for large
benchmarks. Moreover, both the exact and the column-generation
formulations produce significant improvements over a greedy
approach and hence should yield significant benefits in practice.

I. BACKGROUND & MOTIVATION

VERY year, seasonal hurricanes threaten coastal areas.

The severity of hurricane damage varies from year to
year, but hurricanes often cause power outages that have con-
siderable impacts on both quality of life (e.g., crippled medical
services) and economic welfare. Therefore considerable hu-
man and monetary resources are always spent to prepare for,
and recover from, threatening disasters. At this time, policy
makers work together with power system engineers to make
the critical decisions relating to how money and resources are
allocated for preparation and recovery of the power system.
Unfortunately, due to the complex nature of electrical power
networks, these preparation and recovery plans are limited by
the expertise and intuition of power engineers.

This paper is part of a larger effort to combine mathematical
optimization and disaster-specific predictions in order to plan
and react to disasters more effectively. The overall goal is
to exploit the high-quality predictions (e.g., ensembles of
possible hurricane tracks) produced by, say, the National
Hurricane Center (NHC) of the National Weather Service and
optimization techniques to produce, in reasonable time, robust
planning and response plans that significant outperform the
practice in the field.

In particular, this paper considers a strategic planning
problem arising in this process: How to store power system
repair components throughout a populated area to maximize
the amount of power served after disaster restoration. This
Power System Stochastic Storage Problem (PSSSP) raises
some fundamental computational issues as it involves, not only
discrete storage decisions in a stochastic setting, but also the

C. Coffrin and P. Van Hentenryck are with the Department of Computer
Science, Brown University, Providence RI 02912, USA.
R. Bent is with Los Alamos National Laboratory, Los Alamos NM 87545.

modeling of the electrical power network, which is a complex
physical system. In particular, simply evaluating the benefits of
a specific storage configuration for a single scenario requires
the solving of a complex optimization model quite similar to
optimal transmission switching models (e.g., [1]).

The main contributions of this paper is to present an
exact mixed-integer programming (MIP) formulation to the
PSSSP (assuming a linearized DC power flow model) and
a column-generation algorithm that produces near-optimal
solutions under tight time constraints. The column-generation
algorithm is an iterative process which alternates between
generating storage configurations for each scenario indepen-
dently (the subproblem) and selecting the best configurations
for each scenario globally (the Master problem). The two
formulations were evaluated on benchmarks produced by the
Los Alamos National Laboratory, using the United States
infrastructure and disaster scenarios generated by state-of-the-
art hurricane simulation tools similar to those used by the
National Hurricane Center. Experimental results indicates that
both formulations provide significant benefits in recovering
from disasters over greedy approaches (which should already
improve over existing practice in the field). Moreover, the
column-generation algorithm is shown to scale well to large-
scale disasters, producing orders of magnitude improvements
over the exact MIP approach. Note also that our column-
generation algorithm is independent of any specific electrical
power simulation tool. This is important since the electrical
power industry has developed several tools for modeling the
behavior (e.g. T2000, PSLF, Powerworld, PSS) and recognizes
that there is not a single model for completely understanding
the behavior of the electrical power network.

The rest of the paper is organized as follows. Section II
positions this research with respect to related work in system
recovery. Section III presents a specification of the PSSSP
problem. Section IV presents an exact MIP formulation using
a linearized DC power flow model. Section V presents the
column-generation algorithm for solving PSSSPs. Section VI
presents greedy algorithms for PSSSPs aimed at modeling
current practice in the field. Section VII reports experimental
results of the algorithms on some benchmark instances to val-
idate the approach and Section VIII concludes the paper. Note
that, although the focus is on hurricanes, the techniques are
largely disaster independent and also applies to earthquakes.

II. PREVIOUS WORK

Power engineers have been studying power system restora-
tion (PSR) for at least 30 years (see [2] for a comprehensive



collection of work). The goal of PSR research is to find fast
and reliable ways to restore a power system to its normal
operational state after a blackout event. PSR research has
considered not only steady-state behavior, in which the flow
of electricity is modeled by physical laws, but also dynamic
behavior which considers transient states occurring during the
process of modifying the power system state (e.g., when en-
ergizing components). Indeed, these short, but extreme, states
may cause unexpected failures which must also be considered
carefully [3]. Moreover, power systems are comprised of
many different components (e.g., generators, transformers, and
capacitors) which have some flexibility in their operational
parameters but may be constrained arbitrarily. For example,
generators often have a set of discrete generation levels and
transformers have a continuous but narrow range of tap ratios.
Restoration algorithms must take these into account.

The PSR research community has recognized that global
optimization is often impractical for such complex non-linear
systems and adopted two main solutions strategies. The first
strategy is to use domain-expert knowledge (i.e., the power en-
gineer intuition) to guide an incomplete search of the solution
space. These incomplete search methods include knowledge-
based and expert systems [4], [5], [6], [7] and local search
[8], [9]. The second strategy is to approximate the power
system with a linear model and to try solving the approximate
problem optimally [10], [1], [11]. Some work also hybridize
both strategies by designing expert systems that solve a series
of approximate problems optimally [12], [13]. It is important
to emphasize, however, that most PSR work assumes that all
network components are operational and need to be reactivated
(e.g., [3], [6]). The PSR focus is thus to determine the best
order of restoration and the best reconfiguration of the system
components.

This paper considers the stochastic stockpiling of replace-
ment parts in disaster planning, i.e., How to stockpile power-
system components in order to restore as much power as
possible after a disaster. The stochastic stockpiling problem is
only concerned with the steady-state behavior of the network,
but it introduces both a stochastic element and an inventory
component to the restoration of a power system. To the best
of our knowledge, this is the first PSR application to consider
strategic stockpiling decisions for a collection of disaster
predictions.

III. POWER SYSTEM STOCHASTIC STORAGE

The PSSSP consists of choosing which power system repair
components (e.g., components for repairing lines, generators,
capacitors, and transformers) to stockpile before a disaster
strikes and how those components are allocated to repair
the disaster damages. A disaster is specified as a set of
scenarios, each of which characterized by a probability and a
set of damaged components. In practice, the repository storage
constraints may preclude a full restoration of the electrical
system after a disaster. Therefore, the goal is to select the
items to be restored in order to maximize the amount of power
served in each disaster scenario prior to external resources
being brought in. The primary outputs of a PSSSPs are:

Given:
Power Network: P
Network Item: i € N
Item Type: t;
Component Types: ¢t € T
Volume: v,
Storage Locations: [ € L
Capacity: ¢
Scenario Data: s € S
Scenario Probability: p,
Damaged Items: Dy C N
Maximize:
Z Ds * flow,
sES
Subject To:
Storage Capacity
Output:
Which components to store at each location.
Which items to repair in each scenario.

Fig. 1. The Power System Stochastic Storage Problem Specification.

1) The amount of components to stockpile before a disaster
(first-stage variables);

2) For each scenario, which network items to repair
(second-stage variables).

Figure 1 summarizes the entire problem, which we now
describe in detail. The power network is represented as a graph
P = (V, E) where V is a set of the network nodes (i.e., buses,
generators, and loads) and E is a set of the network edges (i.e.,
lines and transformers). Any of these items may be damaged
as a result of a disaster and hence we group them together
as a set N = V U E of network items. Each network item 4
has a type t; that indicates which component (e.g. parts for
lines, generators, or buses) is required to repair this item. Each
component type ¢ € T' in the network has a storage volume
v;. The components can be stored in a set L of warehouses,
each warehouse | € L being specified by a storage capacity
¢;. The disaster damages are specified by a set S of different
disaster scenarios, each scenario s having a probability ps of
occurring. Each scenario s also specifies its set Dy C N of
damaged items. The objective of the PSSSP is to maximize
the expected power flow over all the damage scenarios, where
flows denotes the power flow in scenario s. In PSSSPs, the
power flow is defined to be the amount of watts reaching the
load points. The algorithms assume that the power flow for a
network P and a set of damaged items D, can be calculated
by some simulation or optimization model. Note also that the
decisions on where to store the components can be tackled
in a second step. Once storage quantities are determined the
location aspect of the problem becomes deterministic and can
be modeled as a multi-dimensional knapsack [14].

IV. THE LINEAR POWER MODEL APPROACH

PSSSPs can be modeled as two-stage stochastic mixed-
integer programming model provided that the power flow
constraints for each scenario can be expressed as linear



constraints. The linearized DC model, suitably enhanced to
capture that some items may be switched on or off, is a natural
choice in this setting, since it was found to be reasonably
successful in optimal transmission switching [1] and network
interdiction [11]. Figure 2 presents a two-stage stochastic
mixed-integer programming model for solving PSSSPs opti-
mally (when using a linearized DC power model). The first-
stage decision variable z; denotes the number of stockpiled
components of type ¢t. Each second-stage is associated with a
scenario s. Variable y;s specifies whether item ¢ is working,
while z;s specifies whether item ¢ is operational. Auxiliary
variable flow; denotes the power flow for scenario s, P/, the
real power flow of line ¢, P, the real power flow of node
i, and 60;5 the phase angle of bus i. The objective function
(1) maximizes the expected power flow across all the disaster
scenarios. Constraint (2) ensures that the stockpiled compo-
nents do not exceed the storage capacity. Each scenario can
only repair damaged items using the stockpiled components.
Constraint (3) ensures that each scenario s uses no more than
the stockpiled components of type t. There may be more
damaged items of a certain type than the number of stockpiled
component of that type and the optimization model needs to
choose which ones to repair, if any. This is captured, for
each scenario s, using a linearized DC power flow model
(4-13), which extends optimal transmission switching [1] to
buses, generators, and loads since they may be damaged in
a disaster. Moreover, since we are interested in a best-case
power flow analysis, we assume that generation and load
can be dispatched and shed continuously. Constraints (4—
7) capture the operational state of the network and specify
whether item ¢ is working and/or operational in scenario s.
An item is operational only if all buses it is connected to are
also operational. Constraint (4) specifies that all undamaged
nodes and lines are working. Constraint (5-7) specify which
buses (5), load and generators (6), and lines (7) are operational.
Constraint (8) computes the total power flow of scenario s in
terms of variables P;,. The conservation of energy is modeled
in constraint (9). Constraint (10-11) specify the bounds on the
power produced/consumed/transmitted by generators, loads,
and lines. Observe that, when these items are not operational,
no power is consumed, produced, or transmitted. When a line
is non-operational, the effects of Kirchhoff’s laws must be
ignored, which is captured in the traditional power equations
through a big M transformation (12-13). In this setting, M
can be chosen as B; * . Note also that the logical constraints
can be easily linearized in terms of the 0/1 variables.

This MIP approach is appealing since it solves PSSSPs opti-
mally for a linearized DC model of power flow. In particular, it
provides a sound basis to compare other approaches. However,
it does not scale smoothly with the size of the disasters and
may be prohibitive computationally in real-life situations. To
remedy this limitation, the rest of this paper studies a column-
generation approach.

V. A COLUMN-GENERATION APPROACH

When the optimal values of the first-stage variables are
known, the PSSSP reduces to solving a restoration problem for

Let:
DtS:{iEDsZti:t}
VP ={i € N :t; = bus} - the set of network busses
V¥ = the set of generators connected to bus ¢
V! = the set of loads connected to bus i
L = the set of network lines
L; = the from bus of line %
L] = the to bus of line i
LOy, = the set of exiting lines from bus b
LI, = the set of entering lines from bus b
B; = susceptance of line ¢
]511 = transmission capacity of line %
P? = maximum capacity or load of node ¢

Variables:
xe €N - number of stockpiled items of type ¢
vis € {0,1} - item 4 is working in scenario s
zis € {0,1} - item ¢ is operational in scenario s
flows € R - served power for scenario s

P}, € (—P}, P}) - power flow on line i
PP € (0,P) - power flow on node i
&

0is € (=%, %) - phase angle on bus i

Maximize:
> s+ flow, (1)
ses

Subject To:

th*mtSZq 2
l

teT

> v <wm WeTseS 3)

1€D¢s

yis=1 Vi¢ D, VseS %)

Zis =Yis Vi€VP Vse€S 5)

zis =Yis NYjs Vi€V, VieVIUV],ses (6)

Zis = Yis NYp+,NY,—, VieL,se€S (7

flow, = Z Z P’ VseS (8)
i€Vt jev}

Y=Y R Y P Y A vievhs o

jev} Jevy JELI; JELO;

0< Py <Plszs VieVIUV/ ses (10)

_Pils*zis SPils Spjls*zis Vi e L,Vs (11)

PlL<Bix(0,4+,—0,-)+Mx(-zis) VieLseS (12)
P> Bix(0,+,—0,-)—Mx(-zis) VieLseS (13)

Fig. 2. The MIP Model for Power System Stochastic Storage Problems.

each scenario s, i.e., to maximize the power flow for scenario s
under the stored resources specified by the first-stage variables.

The column-generation approach takes the dual approach:
It aims at combining feasible solutions of each scenario to
obtain high-quality values for the first-stage variables. In this
setting, a configuration is a tuple w = (wy,...,wg) (T =
{1,...,k}) where w, specifies the number of items of type ¢
being stockpiled. A configuration is feasible if it satisfies the
storage constraints, i.e.,

th*wt chl.

teT leL

For each scenario s, the optimal power flow of a feasible
configuration w is denoted by flow,,s. Once a set of feasible
configurations is available, a mixed-integer program (the Mas-
ter problem) selects a set of configurations, one per scenario,



Let:
W - the set of configurations
wy - the amount of components of type ¢ in w € W
flow,,, - the served power for w in scenario s
Variables:
x¢ € N - number of stockpiled items of type ¢
Yws € {0,1} - 1 if configuration w is used in s
flows € RT - power flow for scenario s
Maximize:
> ps* flow, (1)
seS
Subject To:

th*xt§2q )

teT l

D wek yus < x4 Vst 3)
weWw

> Yus =1Vs )
weW

Z flowys * yus = flows Vs (@)
weWw

Fig. 3. The The Master Problem for the PSSSP.

maximizing the expected power flow across all scenarios.
Figure 3 presents the MIP model. In the model, the objective
(1) specifies that the goal is to maximize the expected flow.
Constraint (2) enforces the storage requirements, while con-
straint (3) links the number of components x; of type ¢t used
by scenario s with the configuration variables y,,s. Constraint
(4) specifies that each scenario uses exactly one configuration.
Constraint (5) computes the power flow of scenario s using
the configuration variables ¥,s.

It is obviously impractical to generate all configurations
for all scenarios. As a result, we follow a column-generation
approach in which configurations are generated on demand to
improve the objective of the Master problem. Recall that our
goal is twofold: First, we aim at designing an approach which
is largely independent of the power flow simulation or opti-
mization model. Second, we aim at producing an optimization
model which scales to large disasters. For these reasons, we
generate configurations based on techniques inspired by online
stochastic combinatorial optimization [15], [16].

A. The Column-Generation Subproblem

In our column-generation approach, the configurations are
generated for each scenario independently and in a systematic
fashion. Figure 4 describes a generic optimization model for
generating a configuration. In the model, the storage and power
flow constraints are abstracted for generality. The storage
constraints contain at least the storage constraints of the PSSSP
but generally adds additional constraints to generate “interest-
ing” configurations for the Master problem. The power flow
constraints are abstracted to make the approach independent
of the power flow model. The optimization model features
a lexicographic objective (1), seeking first to maximize the
power flow and then to minimize the number of repaired
components. The storage constraints (2) are expressed in terms

Let:

s - a scenario

T, ={i € N :t; =t} - the set of nodes of type ¢
Variables:

r; € {0,1} - 1 if item ¢ is repaired

flow € RT - served power

Maximize:
(flow, =3, ;) M
Subject To:
storageConstraint({T; }rer, {7 }ien) 2)
flowConstraints(P, Ds,{7;}icn, flow) )

Fig. 4. The Generic Configuration-Generation Model For a Scenario.

of the decision variables r; that indicates whether item ¢
is repaired: They will be described shortly. Constraint (3)
encapsulates the power flow model which computes the flow
from the values of the decision variables.

The column-generation algorithm generates two fundamen-
tal types of configurations for a given scenario. Each type
takes into account information from the other scenarios and
instantiates the generic model in Figure 4 with specific storage
constraints.

a) Upward Configurations: The intuition behind upward
configurations is as follows. Some storage decisions coming
from other scenarios are fixed by a configuration w and
the goal is to generate as best a configuration as possible
for scenario s given these decisions, i.e., a configuration for
scenario s that maximizes its power flow given the fact that the
repairs must include at least w; components of type t. More
precisely, upwardConfiguration(w,s) denotes the solution to the
model in Figure 4 where the storage constraint becomes

th * max(wy, Z r;) < ch.
1

teT €Ty

b) Downward Configurations: The intuition behind
downward configurations is as follows. Our goal is to give
an opportunity for a configuration w coming from another
scenario to be selected in the Master problem, while ensuring
that all other scenarios generate a mutually compatible config-
uration. As a result, we seek to maximize the power flow for
scenario s, while not exceeding the storage requirements of
w. More precisely, downwardConfiguration(w,s) denotes the
solution to the model in Figure 4 where the storage constraint
becomes

VteT: Zrigwt.
€Ty

Two special cases of upward and downward configurations are
important for initializing the column-generation process: the
clairvoyant and the no-repair configurations.

c) Clairvoyant Configurations: The clairvoyant configu-
ration for a scenario s is simply the upward configuration with
no storage constraint imposed:

clairvoyant(s) = upwardConfiguration({0,...,0),s).

Scenarios for which their clairvoyant configuration is selected
in the Master problem cannot be improved.



d) No-Repair Configurations: The no-repair configura-
tion for a scenario s is simply the downward configuration
with no storage availability, i.e.,

no-repair(s) = downwardConfiguration((0, ..., 0), s).

The no-repair configuration guarantees that each scenario can
select at least one configuration in the Master problem.

B. The Column-Generation Algorithm

Figure 5 presents the complete column-generation algo-
rithm. Lines 1-4 describe the initialization process, while lines
7-12 specify how to generate new configurations. The overall
algorithm terminates when the newly generated configurations
do not improve the quality of the Master problem.

e) Initialization: The initialization step generates the
initial set of configurations. These contain the clairvoyant
and the no-repair configurations for each scenario, as well
as the downward configurations obtained from the expected
clairvoyant, i.e., the configuration w® whose element ¢ is
defined by

wy = Zps * clairvoyant(s).
ses

f) The Colum-Generation Process: At each iteration, the
algorithm solves the Master problem. If the solution has not
improved over the previous iteration, the algorithm completes
and returns its configuration, i.e., the values of the decision
variables x; describing how many elements of component type
t must be stockpiled.

Otherwise, the algorithm considers each scenario s in iso-
lation. The key idea is to solve the Master problem without
scenario s, which we call a restricted Master problem, and to
derive new configurations from its solution w™?. In particular,
for each scenario s, the column-generation algorithm generates

1) one upward configuration for s (line 9);
2) one downward configuration for every other scenario in
S\ {s} (line 12).

The upward configuration for s is simply the best possible
configuration given the decisions in the restricted Master
problem, i.e.,

upwardConfiguration(w™?°, s)

The downward configurations for the other scenarios are
obtained by selecting an existing configuration w™® for s
which, if added to the restricted Master solution, would violate
the storage constraint: Downward configurations of the form

downwardConfiguration(w™*, §)

are then computed for each scenario j € S\{s} in order to give
the Master an opportunity to select wt®. The configuration
w™t* aims at being desirable for s, while taking into account
the requirement of the other scenarios. Initially, w™* is the
clairvoyant solution. In general, w™* is the configuration in
W which, when scaled to satisfy the storage constraints,

CONGIGURATIONGENERATION()
1 W « {no-repair(s) | s € S}

2 W — WU clairvoyant(s) | s € S}

3 w® « expectedClairvoyant(S)

4 W — WU downwardConfiguration(w®,s) | s € S}
5 while The master objective is increasing

6 do w™ — Master(S)

7 for s€ S

8 do w* «— Master(S\ {s})

9 W — WU upwardConfiguration(w ™%, s)

10 wts «— selectConfiguration(w™*, s)
11 for j € S\ {s}

12 do W «— W U downwardConfiguration(w™?, j)

13  return w™

Fig. 5. The Column-Generation Algorithm for the PSSSP.

maximizes the power flow for scenario s, i.e.,

maxy,ecyw P * flowy,

subject to
JeT: w >w,®
VieT :pxwy <w, *®
0<p<l1

g) Simulation-Independent Optimization: The column-
generation algorithm only relies on the power flow model in
the subproblem of Figure 4. This is essentially an optimal
transmission switching model with limits on the component
types that can be repaired. It can be solved in various ways,
making the overall approach independent of the power flow
model.

VI. A GREEDY STORAGE MODEL

This section presents a basic greedy storage model which
emulates standard practice in storage procedures and provides
a baseline for evaluating our optimization algorithms. How-
ever, to the best of our knowledge, the storage models used in
practice are rather ad-hoc or based on past experience and the
models presented in this section probably improve existing
procedures. In fact, it is well-known that power companies
often rely on spare parts from neighboring regions in post-
disaster situations.

The greedy storage algorithm generates a storage configu-
ration w” by computing first a distribution of the component
types and then filling the available storage capacity with
components to match this distribution. Once a scenario s is
revealed, the quality of greedy storage can be evaluated by
computing a downward configuration

downwardConfiguration(w", s).

The distribution used to produce w" is based on the number
of occurrences of the component types in the undamaged
network. This metric is meaningful because it models the
assumption that every component type is equally likely to
be damaged in a disaster. The computation for a distribution



[ Benchmark | [NT [ [S] [ maxsecs([Ds]) ]

BM1 326 3 22

BM3 266 18 61

BM4 326 18 121

BM5 1789 4 255
TABLE 1

FEATURES OF THE PSSSP BENCHMARKS.

Pr proceeds as follows. When all of the components have a
uniform size v, the quantity of component type ¢ is

LQ_cox Pr(i))/v).
leL

When the component types have different sizes, the storage
configuration is the solution of the optimization problem

h
. w .
min |7th — Pr(i)]
teT D ier Wi
subject to
E wf * Uy < ch
teT leL
0< wf.

VII. BENCHMARKS & RESULTS

This section reports the experimental results of the proposed
models. It starts by describing the benchmarks and the algo-
rithms. It then presents the quality results and the efficiency
results. It concludes by reporting a variety of statistics on the
behavior of the column-generation algorithms.

A. Benchmarks

The benchmarks were produced by Los Alamos National
Laboratory and are based on the electrical infrastructure of
the United States. The disaster scenarios were generated by
state-of-the-art hurricane simulation tools similar to those used
by the National Hurricane Center [17], [18]. Their sizes are
presented in Table I which gives the number of network items,
the number of scenarios, and the size of the largest damage
produced by the scenarios. For instance, BM5 considers a
network with 1789 items and 4 disaster scenarios. The worst
disaster damages 255 items in the network. Each of these
benchmarks is evaluated for a large variety of storage capac-
ities (i.e., different values of ¢;). This makes it possible to
evaluate the behavior of the algorithms under a wide variety
of circumstances, as well as to study the tradeoff between
storage (or budget) and the quality of the restoration. Overall,
more than 70 configurations of each algorithm were studied
in these experiments.

B. Implementation of the Algorithms

The optimization algorithms were implemented in the
COMET system [19], [20], [21] and the experiments were run
on Intel Xeon CPU 2.80GHz machines running 64-bit Linux
Debian. The experiments use the standard linearized DC power
flow equations for the subproblems. To quantify its benefits
compared to the practice in the field, the column-generation
algorithm is compared to the greedy storage procedures pre-
sented earlier. The global quality of the column-generation

Stochastic Storage Power Flow
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Fig. 6. Solution Quality for the PSSSP Algorithms on Benchmark 4.

algorithm is evaluated by comparison to the optimal MIP
model presented in Section IV and to the clairvoyant solution,
i.e., the solution obtained when the actual disaster scenario
is known in advance. Benchmarks 1 and 3 are small enough
that the MIP models can be solved to optimality. However,
benchmarks 4 and 5 present large damage scenarios with over
100 damaged components and optimal solutions to the MIP
models may not be obtained in a reasonable amount of time.
The following time limits are then imposed: 18 hours of the
global MIP, 2 hours for the evaluation of each greedy and
clairvoyant scenario, and 15 minutes for column-generation
sub-problems.

C. Quality of the Algorithms

Figure 6 depicts the quality results for Benchmark 4, i.e., the
percentage of the backout restored by the various algorithms
for a given storage capacity. The figure shows the results for
the greedy procedure, the column-generation algorithm, the
MIP model, and the expected clairvoyant solution.

The results indicate that the MIP model and the column-
generation algorithm produce significant improvements over
the greedy approach, reducing the blackout by almost 20% in
the best case. The improvements are especially significant for
low storage capacities, which seems to be the case in prac-
tice as mentioned earlier. Remarkably, the column-generation
algorithm outperforms the quality of the MIP model, which
always reaches its time limit. On this set of benchmarks, the
MIP model and the column-generation algorithm are close
to the clairvoyant solution, indicating that the stochasticity
is reasonable in PSSSPs. This implies that our algorithms
produces high-quality solutions for the scenarios.

Space constraints prevent us from including similar graphs
for all benchmark classes. Instead, we present an aggregation
of these results for each benchmark class, averaging the quality



[ Benchmark [ Clairvoyant | MIP Model | Column Generation | Greedy |

BM1 100% 99.1% 98.5% 73.4%

BM3 100% 97.4% 96.6% 71.8%

BM4 100% 91.4% 97.5% 88.3%

BMS5 100% 77.5% 85.4% 69.3%
TABLE II

EXPERIMENTAL RESULTS ON AGGREGATED SOLUTION QUALITY.

[ Benchmark [ Clairvoyant | MIP Model | Column Generation | Greedy |

BM1 100% 97.9% 96.3% 66.0%

BM3 100% 92.8% 92.8% 21.9%

BM4 100% 62.7% 75.0% 34.2%

BM5 100% 70.7% 81.5% 11.4%
TABLE III

AGGREGATED SOLUTION QUALITY ON SMALL STORAGE CAPCITIES.

over 20 storage capacities for each benchmark. The results are
presented in Table II, which depicts the average relative gap
of each algorithm from the clairvoyant solution. The column-
generation approach brings substantial benefits over the greedy
approach in smaller benchmarks and over both the greedy and
MIP approach on larger ones, demonstrating its scalability.
Table III gives another perspective as it only aggregates results
for small storage capacities which often correspond to real-
life situations. The benefits of the column-generation approach
over the greedy algorithm are dramatic and the gap over the
MIP is even more significant on the larger benchmarks.

D. Performance of the Algorithms

Figure 7 depicts the performance results for Benchmark 4
under 20 different storage capacities. It depicts the runtime
of the MIP Model and the column-generation algorithm in
seconds, using a log scale given the significant performance
difference between the algorithms. The results show substan-
tial improvements in performance for the column-generation
algorithm over the MIP model. This is especially the case
for low to medium storage capacities, which typically model
the reality in the field. For these storage configurations, the
column-generation algorithm runs from 2 to 100 times faster
than the MIP model (despite its time limit) and is about 3
times faster in average. In summary, on large instances, the
column-generation approach improves both the quality and
performance of the MIP models. Table IV presents the average
runtime results for all benchmarks. It also gives the time to
evaluate the greedy and expected clairvoyant problems as a
basis for comparison. These results are quite interesting in the
sense that the MIP model behaves very well for reasonably
small disasters, but does not scale well for larger ones. Since
our goal is to tackle disaster planning and restoration at the
state level, they point out to a fundamental limitation of a
pure MIP approach. It is also interesting to observe that the
column-generation algorithm takes about 4 times as much
as time as evaluating the greedy power flow. This is quite
remarkable and indicates that the column-generation is likely
to scale well to even larger problem sizes. Overall, these results
indicate that the column-generation algorithm produces near-
optimal solutions under tight time constraints and represents
an appealling approach to PSSSPs.
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Fig. 7. Experimental Results for the PSSSP Algorithm on Benchmark 4.

[ Benchmark [ Clairvoyant [ MIP Model [ Column Generation [ Greedy ]

BM1 2 6 8.84 2

BM3 18 21351 415 18

BM4 20551 64807 20038 5133

BM5 20544 63704 21349 8308
TABLE IV

PSSSP BENCHMARK RUNTIME (SECONDS)

E. Behavior of the Column-Generation Algorithm

It is useful to study the behavior of the column-generation
algorithm in order to understand its performance. Table VI
reports, in average, the number of configurations generated, as
well as the number of downward and upward configurations in
the final solution. The results indicate that the algorithm only
needs a small number of configurations to produce a high-
quality solution. Recall that there are 18 scenarios in BM3 and
BM4, which means that the algorithm generates in average less
than 7 configurations per scenario. The types of configurations
are relatively well balanced, although there are clearly more
upward configurations in average. This is partly caused by
the variance in the scenario damages. As the storage capacity
increase more of the small damage scenarios can select their
clairvoyant solution. Figure 8 details these results for BM4.

VIII. CONCLUSION

This paper studied a novel problem in power system restora-
tion: the Power System Stochastic Storage Problem (PSSSP).
The objective in PSSSPs is to decide how to stockpile com-
ponents in order to recover from blackouts as best as possible
after a disaster. PSSSPs are complex stochastic optimization
problems, combining power flow simulators, discrete storage
decisions, discrete repair decisions given the storage decisions,
and a collection of scenarios describing the potential effects
of the disaster. The paper proposed an exact mixed-integer
formulation and a column-generation approach. The column-
generation subproblem generates configurations from each
scenario independently, taking into account storage decisions



[ Benchmark [ Clairvoyant | MIP Model | Column Generation | Greedy |

BM1 2 4 10 2

BM3 12 13060 179 12

BM4 178 64807 3366 98

BMS5 14613 60502 10371 1123
TABLE V

BENCHMARK RUNTIME ON SMALL STORAGE CAPACITIES (SECONDS)

[ Benchmark [ Configurations [ Downward Config. [ Upward Config. ]

Stochastic Storage Runtime
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BMI 7.8 0.9 2.1

BM3 115.5 8.9 9.1

BM4 136.50 7.75 10.25

BM5 30.42 1.89 2.11
TABLE VI

THE BEHAVIOR OF THE COLUMN GENERATION FOR PSSSPs.

for other scenarios. A subset of these storage configurations
are then selected in the Master problem, to produce the
global storage decisions. The algorithms were evaluated on
benchmarks produced by the Los Alamos National Labora-
tory, using the electrical power infrastructure of the United
States. The disaster scenarios were generated by state-of-
the-art hurricane simulation tools similar to those used by
the National Hurricane Center. Experimental results show
that the column-generation algorithm produces near-optimal
solutions and produces orders of magnitude speedups over
the exact formulation for large benchmarks. Moreover, both
the exact and the column-generation formulations produce
significant improvements over greedy approaches and hence
should yield significant benefits in practice. The results also
seem to indicate that the column-generation algorithm should
nicely scale to even larger disasters, given the small number
of configurations necessary to reach a near-optimal solution.
As a result, the column-generation algorithm should provide
a practical tool for decision makers in the strategic planning
phase just before a disaster strikes.
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