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Abstract

This paper considers the power system restoration planning problem (PSRPP) for dis-
aster recovery, a fundamental problem faced by all populated areas. PSRPPs are complex
stochastic optimization problems that combine resource allocation, warehouse location, and
vehicle routing considerations. Furthermore, electrical power systems are complex systems
whose behavior can only be determined by physics simulations. Moreover, these problems
must be solved under tight runtime constraints to be practical in real-world disaster sit-
uations. This work is threefold; It formalizes the specification of PSRPPs, introduces a
simple optimization-simulation hybridization necessary for solving PSRPPs, and presents
a complete restoration algorithm that utilizes the strengths of mixed integer programming,
constraint programming, and large neighborhood search.

1 Background & Motivation

Every year seasonal hurricanes threaten coastal areas. The severity of hurricane damage varies
from year to year, but significant power outages are always caused by seasonal hurricanes.
Power outages have significant impacts on both quality of life (e.g. crippled medical services)
and economic welfare. Therefore, considerable human and monetary resources are always spent
to prepare for and recover from power threatening disasters. At this time, policy makers work
together with power system engineers to make the critical decisions relating to how money
and resources are allocated for preparation and recovery of the power system. Unfortunately,
due to the complex nature of electrical power networks, these preparation and recovery plans
are limited by the expertise and intuition of the power engineer. Furthermore, the National
Hurricane Center (NHC) of the National Weather Service in the United States (among others)
is highly skilled at generating ensembles of possible hurricane tracks but current preparation
methods often ignore this information.

This paper aims to solve this disaster recovery problem more rigorously by combining opti-
mization techniques and disaster-specific information given by NHC predictions. The problem is
not only hard from a combinatorial optimization standpoint, but it requires modeling of a com-
plex physical system (i.e. the electrical power network) which is a challenging sub-problem. The
electrical power industry has developed several tools for modeling the power system’s behavior
(e.g. T2000, PSLF, Powerworld, PSS), each with its own strengths and weaknesses. Further-
more, the electrical power industry recognizes there is not a single model for understanding
the behavior of an electrical power network. For that reason, this work seeks to build solution
procedures that are independent of any specific electrical power simulation tool.

The paper considers the following abstract disaster recovery problem: How to store supplies
throughout a populated area to minimize the amount of time each customer is without electricity
after a disaster has occurred. It makes the following technical contributions:

1. It formalizes the Power System Restoration Planning Problem (PSRPP).

2. It proposes a Constraint Programming and Simulation Hybrid System for optimization of
complex network-flow systems
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3. It proposes a multi-stage hybrid-optimization decomposition for PSRPPs, combining Con-
straint Programming, Large Neighborhood Search, and Power Simulation.

4. It validates the approach on power restoration for hurricane recovery in the United States.

Section 2 of this paper reviews similar work on power system recovery and vehicle routing
problems. Section 3 presents a mathematical formulation of the power system recovery problem
and sets up the notations for the rest of paper. Section 4 discusses the methodology for a hybrid
simulation-optimization framework. Section 5 presents the a high level model of the problem.
Section 6 reports experimental results of the algorithm on some benchmark instances to validate
the approach and Section 7 concludes the paper.

2 Previous Work

Power engineers have been studying power system restoration (PSR) since at least the 1980s
(see [1] for a comprehensive collection of work) and the work is still ongoing. The goal of PSR
research is to find fast and reliable ways to restore a power system to its normal operational
state after a black-out event. This kind of logistics optimization problem is traditionally solved
with techniques from the Industrial Engineering and Operations Research sciences. However,
PSR has a number of unique features that prevent the application of traditional optimization
methods, including:

1. Steady-State Behavior: The flow of electricity over a power system is governed by
the laws of physics (e.g., Kirchoff’s current law and Ohm’s law). Hence, evaluating the
behavior of the network requires solving a system of non-linear equations. This can be
time-consuming and there is no guarantee that a feasible solution can be found.

2. Dynamic Behavior: During the process of modifying the power system’s state (e.g.,
energizing components and changing component parameters), the system is briefly subject
to transient states. These short but extreme states may cause unexpected failures [2].

3. Side Constraints: Power systems are comprised of many different components, such as
generators, transformers, and capacitors. These components have some flexibility in their
operational parameters but they may be constrained arbitrarily. For example, generators
often have a set of discrete generation levels, and transformers have a continuous but
narrow range of tab ratios.

The PSR research recognizes global optimization is an unrealistic goal in such complex non-
linear systems and adopts two main solutions strategies. The first strategy is to use domain
expert knowledge (i.e. power engineer intuition) to guide an incomplete search of the solution
space. These incomplete search methods include Knowledge Based Systems [16], Expert Systems
[10, 3, 5], and Local Search [12, 13]. The second strategy is to approximate the power system with
a linear model and solve the approximate problem optimally [17]. Some work has hybridized both
strategies by designing Expert Systems that solves a series of approximate problems optimally
[14, 9].

Interestingly, most of the work in planning PSR has focused on the details of scheduling
power system restoration [2, 3]. More specifically, what is the best order of restoration and how
should system components be reconfigured during restoration? In fact, these methods assume
that all network components are operational and simply need to be reactivated. In this study we
consider the restoration of damaged components which must be repaired before reactivation can
occur. This introduces two additional decision problems: (1) Are replacement parts available
for a given repair; (2) How can the restoration teams be routed effectively perform all of the
repairs? To the best of our knowledge PSRPPs are the first PSR application that considers
strategic storage decisions and vehicle routing decisions.
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Given:
Power Network: PN

Repositories: Ri∈1..r

Capacity: RCi

Vehicles: Vi∈1..m

Capacity: V C
Start Depot: D+

i

End Depot: D−i

Network Items: Ni∈1..n

Item Type: NTi

Maintenance Time: Mi

Items Types: Ii∈1..t

Volume: IVi

Scenario Data: Si∈1..s

Scenario Probability: Pi

Item Damage: NDi ⊂ {1..n}
Travel Time Matrix: Ti,1..l,1..l

Output:
The items to store at each repository
Delivery schedules for each vehicle in each scenario

Let:
Ti = completion time of the last repair in scenario i
Unserved Poweri(t) = the size of the blackout area

in watts at time t in scenario i
Minimize:∑

i

Pi ∗
∫ Ti

0

UnservedPoweri(t) dt

Subject To:
Vehicle and repository capacities
Vehicles start and end locations
Travel matrix times
Electrical power system behavior

Figure 1: Power System Restoration Problem Specification

3 The Power System Restoration Problem (PSRPP)

In formalizing PSRPPs, a populated area is represented as a graph G = 〈L, T 〉 where L1..l

represents those locations of interest to the restoration problem, i.e., the basic components of
the electric power network (e.g., lines, buses, and generators), storage depots and repair vehicle
locations. The vehicles can travel to any node of the graph but the edge distances, T1..l,1..l, are
not generally Euclidean and may be a metric space due to transportation infrastructure and
road damage. The primary output of a PSRPP are: (1) which items should be stored at each
warehouse; (2) for each scenario and each vehicle, a delivery schedule that minimizes the power
restoration objective. Figure 1 summarizes the entire problem, which we now describe in detail.

Electrical Power Network An electrical power network model is necessary to understand
the behavior of the power network. Especially how the behavior changes as the restoration
procedure occurs. However, there are many competing models for representing electrical power
networks. To remain flexible in that regard this specification considers an abstract power network
model PN . The only requirement on the abstract model is that it can implement the interface
described in Section 4.

Electrical power networks are comprised of many different components, e.g. lines, generators,
loads, capacitors, and transformers. In this work we classify each network item, i, in to a
particular item type NTi. We assume that items of type t are homogeneous in terms of their
size IVt. The power network model PN captures how different components effect the total
power flow in the network.

Objective The objective function aims at minimizing the total watt hours of blackout that
occur after the disaster. This is simply the amount of electrical demands that are unserved until
some time T . More formally,

Minimize
∑

i

Pi ∗
∫ Ti

0

UnservedPoweri(t) dt
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It is not obvious if it is possible to use available optimization and simulation tools to reason
over the continuous time domain. However, the restoration process can be seen as a series of
discrete events. Those are the times that each job is completed and the state of the power
network components (i.e. is it damage or not). The set of discrete events that effect the
PSRPP objective can be calculated from the vehicle delivery schedules. Three pieces of aggregate
information must be calculated: (1) the time that each job is completed Ti,j (2) the time of the
succeeding job Nexti,j (3) a function that can calculate the amount of unserved power at some
time Unserved Poweri(t). Given these discrete events the integral above can be calculated with
the following summation:

Minimize
∑

i

Pi ∗
∑

j

UnservedPoweri(Ti,j)(Nexti,j − Ti,j)

In Section 4 we discus the details of how the Unserved Poweri(t) function can be implemented
in practice.

Side Constraints The first set of side constraints concerns the storage locations which rep-
resent the electric company warehouses in the populated area. Each repository Ri∈1..n has a
maximum capacity RCi to store the repair items. The volume of the items stored at warehouse
i cannot exceed RCi.

The second set of side constraints concerns the routing. We are given a fleet of m vehicles
Vi∈1..m which are homogeneous in terms of their capacity V C. At any time in the routing
process the volume of items carried by vehicle i cannot exceed V C. Each vehicle has a unique
starting depot D+

i and ending depot D−i , and after delivering an item j it must wait for the
maintenance time Mj before continuing onto it’s next delivery task.

Stochasticity PRSPs are specified by a set of s different disaster scenarios Si∈1..s, each with
an associated probability Pi. After a disaster, some parts of the power network are damaged and
each scenario has a set NDi of network items that are inoperable due to the disaster damage.
Finally, site-to-site travel times Ti,1..l,1..l (where l = |L|) are given for each scenario and capture
transportation infrastructure damage.

Unique Features Different aspects of this problem were studied before in the context of vehi-
cle routing and power system restoration, and both have proven to be difficult problems in their
own right. The vehicle routing community has produced many insightful algorithms for solving
pickup and delivery routing problems (PDP). Unfortunately these techniques have focused on
simple objectives (e.g. minimum travel distance) and are not easily adaptable to the kind of
complex objective present in PSRPPs. The power system restoration community has produced
many helpful strategies for calculating good restoration schedules. However, they usually ignore
the intricacies of transportation and installation in these schedules. The optimization commu-
nity has studied many problems involving uncertainty, however is uncommon to see second stage
problems that involve difficult optimization problems (e.g. vehicle routing, power restoration
scheduling). By combining all three aspects of these problems PSRPPs produce restoration
preparations that are robust over several disaster contingencies and can be executed with all the
details of transportation and installation taken into consideration.

4 A Framework for Optimization with Simulation

As we have discussed before, there are many different models for electrical power networks. This
work seeks to develop optimization tools that are independent of any specific model. For this
reason we adopt a very simple and abstract power simulation interface in the hope that it can
be implemented by any power network model. In the context of restoration there is only one
principle attribute for each item on the power network, that is, which items are fully operational
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and which items are inoperable due to physical damage. We call this information the damage
state of the network. All of our algorithms ask one simple question, “Given a particular damage
state, how much real power reaches the network load points?”. More formally, given a power
network model PN , and a damage state DSi, we define the function:

DemandsMet(PN ,DSi)

That returns a real number representing the amount of power severed at each load node in the
power network. This interface is very simple and the amount of reasoning we can do with it is
limited, but this is the price of generality. If we adopt a more specific power network model we
may be able to perform stronger reasoning, but one of the goals of this work is to understand
how successful a very generic interface can be. The experimental results demonstrate that this
simple interface is sufficient for designing effective local search algorithms. This simple interface
also assumes that all the network loads have equal priority. Our future work will consider how
to extend this interface to support priorities for emergency services and contractual obligations.

Recall the power restoration objective from Figure 1, this objective can be calculated using
the DemandsMet function is the following way: Given some time t let damage state DSt bet
the set of non-operation items at time t. Also let MaxPower be the maximum amount of power
served when the power system is fully repaired. Then the power restoration objective can be
modeled as follows,

Minimize
∑

i

Pi ∗
∫ Ti

0

MaxPower−DemandsMet(PN ,DSt) dt

The constraint programming (CP) paradigm (from the artificial intelligence community) has
proven to be effective for solving a variety of combinatorial optimization problems. Specifically
constraint programming is often the state-of-the-art solution technique for complex scheduling
and vehicle routing problems. Because we are developing an algorithm for a combined scheduling
and vehicle routing problem with many side constraints a constraint programming framework
is a natural choice. However, due to the complexity of the problem we use large neighborhood
search (LNS) to find high-quality solutions with in the runtime requirements. In the rest of
this paper we give the high level intuition for how the DemandsMet function can be used in
algorithms for modeling the behavior of an electrical power network.

5 The Basic Approach

This section presents the basic approach for solving the PSRPP. Previous work on location
routing (e.g. [7, 4, 15]) has shown that reasoning over a storage problem and a routing prob-
lem simultaneously is extremely hard computationally. Furthermore we suffer from additional
computation challenges due to the overhead of electric power simulation. To address these diffi-
culties, we propose two primary stages in our algorithm that decomposes the storage, customer
allocation, and routing decisions. The two primary stages, and the key decisions of each stage
are as follows:

1. Storage & Customer Allocation: Which repositories store the repair items and how
are the items allocated to each damaged item in each scenario?

2. Restoration Routing: For each scenario, what is the best routing plan to minimize the
power restoration objective?

The decisions of each stage are independent and can use the optimization technique most ap-
propriate to their nature. The first stage is formulated as a Mixed Integer Program (MIP). This
is very natural as MIPs are excellent for two-stage stochastic programming. The second stage
is solved using CP but LNS is used for larger instances where a pure CP approach is impracti-
cal. This is also a natural choice as CP and LNS are successful at combinatorial optimization
of Vehicle Routing Problems (VRP) with unique side constraints. Previous work has shown
that problem decomposition can bring significant runtime benefits with minimal degradation in
solution quality [6].
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Benchmark r m s n Max(|NDi|) LNS Timeout (seconds)
BM1 8 13 3 326 22 1200
BM3 8 13 18 266 61 1200
BM4 8 13 18 326 121 1200

Table 1: PSRPP Benchmark Statistics

Stochastic Storage The stochastic storage problem consists in choosing where to store re-
pair items and how those items are allocated to the scenario damage. In practice, the repository
storage constraints may prevent full restoration of the electrical grid after a disaster. Therefore,
a smart selection of restoration items is necessary to ensure the maximum amount of power is
served in each disaster scenario. For this reason we choose to model this as a multi-objective
optimization problem consisting of two parts. The first part of the objective consists of minimiz-
ing the total unserved demands after all the restoration is complete. The second part consists
of minimizing the distance of each repair item to its damage location. The relative importance
of the objectives are controlled with parameters Wp and Wt respectively. More precisely, given
a decision variable Dsij , that indicates that an item from repository i is used to repair network
item j in scenario s, then the stochastic storage objective consists in minimizing,

Wp ∗
∑

s

Ps ∗ (MaxPower−DemandsMet(PN , {j :
∨
i

Dsij = 0})) + Wt ∗
∑

s

Ps ∗
∑
i,j

Tsij ∗Dsij

subject to the repository storage capacity constraints, RCi.

Restoration Routing Once the storage and repair allocation are computed, the uncertainty
is revealed and the second stage reduces to a deterministic multi-depot, multiple-vehicle capac-
itated routing problem whose objective consists in minimizing the power restoration objective
(defined in Section 3). This problem is similar to classic Pickup and Delivery VRPs however
evaluation of the power restoration objective requires the use of an electrical power model. More
precisely, given a decision variable Ti that represents the repair time of item i and Nexti the
time of the job succeeding i, then the restoration routing objective consists in minimizing,∑

i

(MaxPower−DemandsMet(PN , {j : Tj ≤ Ti})) ∗ (Nexti − Ti)

subject to the travel time matrix and vehicle capacity constraints. The addition of power
simulation to the objective function adds considerable computational complexity compared the
classic routing objectives (e.g. minimum travel distance).

6 Benchmarks & Results

Benchmarks The benchmarks were produced by Los Alamos National Laboratory and are
based on the infrastructure of the United States. The disaster scenarios were generated by state-
of-the-art hurricane simulation tools similar to those used by the National Hurricane Center.
Their sizes are presented in Table 1(The table also depicts the algorithm parameters). The size
of the largest NDi set is included because it is a good metric for difficulty of a benchmark. It
is also important to emphasize that, these benchmarks are significantly large in size compared
similar work in this field.

The Algorithm Implementation and the Baseline Algorithm The final algorithm was
implemented in the Comet system [8] and the experiments were run on Intel Core 2 Duo
CPU 2.53GHz machines running OS X 10.5. The power simulator IEISS (a proprietary power
simulation tool of LANL) was used to evaluate the behavior of the power system. To validate our
results, we compare our PSRPP algorithm to a variant of the same algorithm that models what is
done in practice. The baseline algorithm is designed to model the decision making process of an
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Benchmark BM1 BM3 BM4
Baseline 192866 606090 668064
PSRPP 141919 328673 355695

Improvement 26.4% 45.8% 46.8%

Table 2: PSRPP Benchmark Results (Power Restoration Objective)
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Figure 2: PSRPP Routing Results Comparison

electric power utility before and during the recovery process. There is little documentation on the
process utilities use for stockpiling supplies for disaster recovery. Therefore, we design a simple
greedy heuristic to model the storage decision process. Having no information about which
disasters will occur, the utility may assume each item in the network has an equal probability
of being destroyed in a disaster. In that case we should stockpile restoration items relative to
their occurrence in the network (subject to the storage capacity constraint). Furthermore, it
is not clear where to store the restoration items, so we choose to place them in equal quantity
in each warehouse. After a disaster has occurred the utility’s process goes roughly like this:
(1) the power system engineers use their intuition for the network to prioritize the restoration
actions based upon contractual obligations and restoration of emergency services; (2) restoration
teams are dispatched to make the necessary repairs; (3) crews prefer to fix all broken items near
the area they are dispatched to. We model this process in the routing stages of the PSRPP
algorithm in the following way: (1) the restoration order is fixed by a greedy heuristic that has
full understanding of the electrical network’s behavior. It repeatedly chooses to repair the item
that will bring the largest increase in network flow. This roughly captures the knowledge that a
power systems engineer uses to organize a restoration effort; (2) the routing problem is similar
to the one discussed in Section 5 but the routing objective is different because each vehicle crew
works independently to do their repairs as fast as possible. The objective seeks to minimize
the total travel distance of each vehicle and not power restoration objective. This variant of
the PSRPP algorithm roughly approximates current power system restoration procedures and
is thus a good baseline for comparison.

Results Table 2 compares the quality of the power restoration objective of the PSRPP al-
gorithm and the baseline algorithm. As you can see the PSRPP algorithm brings a 26% im-
provement over the baseline on smaller benchmarks and up to 45% on larger benchmarks. Each
benchmark has several disaster scenarios, each with a unique vehicle routing problem. Figure
2 illustrates the benefits of the restoration routing aspects of this problem over the baseline on
two scenarios the 15th scenario of benchmark 3 (left), and the 10th scenario of benchmark 4
(right). Results on other scenarios are similar but omitted for space reasons.
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7 Conclusion
This paper presented a novel problem in the field of humanitarian logistics, the Power System
Restoration Problem (PSRPP). The PSRPP models the strategic planning process for post
disaster power system recovery. This paper proposed a multi-stage stochastic hybrid optimiza-
tion algorithm that yields high quality solutions to real-world benchmarks provided by Los
Alamos National Laboratory (LANL). The algorithm uses a variety of technologies, including
MIP, constraint programming, and large neighborhood search, to exploit the structure of each
optimization sub-problem. The experimental results on hurricane disaster benchmarks indi-
cate that the algorithm is practical from a computational standpoint and produce significant
improvements over existing relief delivery procedures.
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