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Abstract—The development of hydraulic fracturing technology
has dramatically increased the supply and lowered the cost
of natural gas in the United States, driving an expansion of
natural gas-fired generation capacity in several electrical inter-
connections. Gas-fired generators have the capability to ramp
quickly and are often utilized by grid operators to balance
intermittency caused by wind generation. The time-varying
output of these generators results in time-varying natural gas
consumption rates that impact the pressure and line-pack of the
gas network. As gas system operators assume nearly constant
gas consumption when estimating pipeline transfer capacity and
for planning operations, such fluctuations are a source of risk
to their system. Here, we develop a new method to assess this
risk. We consider a model of gas networks with consumption
modeled through two components: forecasted consumption and
small spatio-temporarily varying consumption due to the gas-
fired generators being used to balance wind. While the forecasted
consumption is globally balanced over longer time scales, the
fluctuating consumption causes pressure fluctuations in the gas
system to grow diffusively in time with a diffusion rate sensitive
to the steady but spatially-inhomogeneous forecasted distribution
of mass flow. To motivate our approach, we analyze the effect
of fluctuating gas consumption on a model of the Transco gas
pipeline that extends from the Gulf of Mexico to the Northeast
of the United States.
Index Terms—Natural Gas Networks; Gas-Electric Coupling;
Stochasticity; Reliability

I. INTRODUCTION

A dominant new load on gas pipeline systems is natural
gas-fired generators [1], [2]. An example of this dramatic
change is seen on the gas pipelines that supply the elec-
trical grid controlled by the Independent System Operator
of New England (ISO-NE) where natural gas-fired electrical
generation increased from 5% of total capacity to 50% in a
span of 20 years [3]. A parallel development in many U.S.
electrical grids is the expansion of intermittent renewable
generation such as wind and photovoltaic (PV) generation—a
trend that is expected to continue as utilities work to meet
renewable portfolio standards [4], [5] that mandate a certain
fraction of electrical generation be derived from renewable
sources. In contrast to traditional coal, hydro or gas-fired
generation, these intermittent renewable generators have lim-
ited controllability. To maintain balance of generation and
load, other grid resources must respond to counteract these
new fluctuations. Although many different types of advanced

control of nontraditional resources are under consideration to
provide balancing services, e.g. grid-scale battery storage and
demand response, the control of fast-responding traditional
generation (i.e. gas) is the current state-of-practice.
Gas pipelines have traditionally supplied Load Distribution
Companies (LDC) that primarily serve space or water heating
loads that evolve slowly throughout the day in a relatively
well-known pattern that is predicted based on historical in-
formation and weather forecasts. Other traditional pipeline
customers are industrial loads that change from day-to-day,
but are very predictable over the span of twenty-four hours.
The combination of expanded natural gas-fired generation and
its use to balance intermittent renewable generation is creating
loads on natural gas pipelines that are significantly different
than historical behavior and will challenge the current pipeline
operating paradigm that is used to control gas pressure.
The flow in natural gas pipeline is determined via bilateral
transactions between buyers and sellers in a day-ahead market
with market clearing and gas flow scheduling done in advance
of the subsequent 24-hour period of gas delivery. Scheduling
consists of determining the locations and constant rates of gas
injections. The initial market clearing assumes that gas con-
sumptions are uniform over the subsequent 24-hour delivery
period. Over the gas day, gas buyers improve their estimate
of actual gas needs, and mid-course corrections are allowed
through the transaction and scheduling of gas flows in two
subsequent intra-day markets at 10 and 14 hours after the start
of the 24-hour delivery period.
When serving traditional gas loads, the variability during the
gas day is relatively small and slow and is well managed
by linepack, i.e. compressed gas stored in the pipeline. The
pressure in a gas transmission pipeline ranges between a
maximum set by engineering limits and a minimum delivery
pressure set by contracts. A typical maximum pressure is
around 800 psi, and flow of the gas causes the pressure to
fall along the pipeline. As the minimum pressure (∼ 500 psi)
is approached, gas compressors installed along the pipeline are
used to boost the pressure back near the maximum. Typical
spacing between compressors is ∼ 50-100 km
The relatively high operating pressures enable large gas trans-
fer rates, and the spread between maximum and minimum
pressure allows the pipeline to operate with an imbalance



of gas injections and consumptions for hours at a time. An
injection-consumption imbalance modifies the amount of gas
stored in the pipeline via pressure changes, i.e. changes to
the linepack. Linepack is sufficient to buffer the imbalance
when serving traditional gas loads. However, the hydraulic
fracturing-driven expansion of natural gas-fired generation
capacity [6] and its use to balance intermittent renewable
fluctuations will result in larger and faster fluctuations in
consumption (and possibly production) creating challenges to
historical pipeline operations and reliability.
The analysis in this manuscript is motivated by these new
challenges. Our approach is built on top of any solution
of the steady gas flow problem that determines the spatial
dependence of gas flow and pressure and the dispatch of gas
compressors to maintain pressure. For example, the steady
flow solution can be found by solving an optimal gas flow
(OGF) problem [7] or using a model that approximates com-
pressor dispatch decisions in current gas pipeline operations.
Using these steady solutions, we build on the ideas of [8] and
develop analysis tools to provide a probabilistic measure of the
impact on pipeline reliability created by stochastic deviations
of gas consumption from the forecasted values used in the
steady solution (and scheduled during market clearing). These
new tools are based on a linearization of the basic gas flow
equations around the forecasted solution that retains the effect
of stochasticity in consumption. The effect of this stochasticity
is assessed on a model of the Transco gas pipeline that extends
from the Gulf of Mexico to the Northeast of the United States
(See Fig. 1 and [7]).
This manuscript builds on recent work [7], [8] to develop a
theoretic and computational approach to analyze the evolution
of pressure in a gas system over time and space when the
system is imbalanced. The three main contributions of this
approach are:

• An analysis of spatiotemporal behavior of line-pack when
the pipeline is subjected to stochastic gas consumptions.
We observe that, even when fluctuations of the consump-
tion and production are on average zero, the pressure
fluctuations grow diffusively with time. We coin the term
– diffusive jitter of pressure fluctuations to describe this
effect.

• We show that the diffusive jitter of pressure is a nonlocal
phenomenon where the pressure swings at one location
depend on the behavior at all other locations.

• We show that diffusive jitter is spatially inhomogeneous
and dependent on the spatial distribution of the forecasted
(stationary) solution.

The rest of the manuscript is organized as follows. Sections
II and III provide a technical introduction to gas pipeline
modeling. Section IV provides a brief summary of approaches
used to solve the steady gas flow problem. Section V describes
a generalization of [8] that linearizes the gas flow equations
around the steady solution that includes the effect of stochastic
gas consumption. The asymptotic solution of these linearized
equations describes the diffusive jitter of the pressure fluctua-

Fig. 1. Schematic representation of the Transco gas transmission network.

tions. Section VI applies the theoretical results to a model of
the Transco pipeline. Section VII summarizes our main results
and offers a brief discussion of future work.

II. DYNAMIC GAS FLOW (DGF) OVER A SINGLE PIPE

Before analyzing a pipeline network, we introduce the gas flow
equations and notations for a single pipe. Major transmission
pipelines are typically 16-48 inches in diameter and operate
at high pressures (e.g. 200 to 1500 psi) and high mass flows
(millions of cubic feet of gas per day) [9], [10]. Under these
conditions, the pressure drop and energy loss due to shear
is modeled by a nearly constant phenomenological friction
factor f . The resulting gas flow model is a nonlinear partial
differential equation (PDE) with one spatial dimension x
(along the pipe axis) and one time dimension [11], [12], [13]:

∂tρ+∂x(uρ) = 0, (1)

∂t(ρu)+∂x(ρu2)+∂x p =−ρu|u|
2d

f −ρgsinα, (2)

p = ρZRT. (3)

Here, u, p, and ρ are the spatially-dependent velocity, pressure,
and density, respectively; Z is the gas compressibility factor; T
is the temperature, R is the gas constant, and d is the diameter
of the pipe.
Eqs. (1, 2, 3) describe mass conservation, momentum balance
and the ideal gas thermodynamic relation, respectively. The
first term on the righthand side (rhs) of Eq. (2) describes the
friction losses in the pipe. The second term on the rhs of
Eq. (2) includes the gain or loss of momentum due to gravity
g when the pipe is tilted by angle α. The frictional losses
typically dominate the gravity term, which is often dropped.
Because the flow velocities are usually small compared to the
sound velocity, the gas inertia term ∂t(ρu) and the advection
term ∂x(ρu2) are typically small compared to the frictional
losses and can also be dropped [11], [12], [13]. For simplicity
of presentation, we have also assumed that the temperature
does not change significantly along the pipe.
Under these assumptions, Eqs. (1, 2, 3) are rewritten in terms
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Fig. 2. Schematic illustration of a gas network and associated notation. a)
A schematic illustration of a single edge (i, j) of a network. Nodes at either
end are indicated by open circles and labeled by their nodal pressure pi and
p j . Compressors are indicated with filled squares. Mass flow φi j is directed
from i to j and nodal injections qi and q j contribute to this flow. Nodal
pressure pi is modified by the compression ratio αi→ j yielding pi j(xi j = 0).
The pressure falls along {i, j} reaching pi j(xi j = Li j). If compressor α j→i is
not present, then pi j(xi j = Li j) = p j . b) A schematic of many edges connected
in a meshed network. Nodes are indexed by i = 0,1, · · · , where node 0 is
typically reserved for the swing node – the node where pressure is maintained
constant throughout the dynamics. Compressors, injections and edge mass
flows are the same as in a).

of the pressure p and the mass flux φ = uρ:

c−2
s ∂t p+∂xφ = 0, (4)

∂x p+
β

2d
φ|φ|

p
= 0, (5)

where cs≡
√

ZRT and β≡ f ZRT are considered constant. The
solution of Eqs. (4, 5) for t ∈ [0,τ] and x∈ [0,L] requires initial
and boundary conditions,

∀x ∈ [0,L] : φ(0;x) = φ0(x), (6)

∀t : φ(t;0) = q(in)(t), φ(t;L) = q(out)(t), (7)

which are consistent, i.e. φ0(0) = q(in)(0) and φ0(L) =
q(out)(0), in addition fixing the initial pressure at the beginning
of the pipe, e.g. p(0;0) = p0.

III. DYNAMIC GAS FLOW (DGF) OVER A NETWORK

Next, we generalize the equations for a single pipe to a gas
network. The network is modeled by a graph G = (V ,E) with
vertices V and edges E , where the edges are directed (i, j) or
undirected {i, j} depending on the context. Each vertex i ∈V
represents a node with a gas mass injection or consumption
rate qi. Each edge (i, j) ∈ E is a single pipe with mass flow
φi j. The flow along each edge is described by a set of PDEs
adapted from Eqs. (4,5):

∀t ∈ [0,τ], ∀{i, j} ∈ E , ∀x ∈ [0;Li j] :

c−2
s ∂t pi j(t,x)+∂xφi j(t,x) = 0, (8)

∂x pi j(t,x)+
β

2d
φi j(t,x)|φi j(t,x)|

pi j(t,x)
= 0, (9)

where pi j(t,x) and φi j(t,x) are the pressure and mass flow,
respectively, at time t and position x along edge (i, j) of length
Li j. Here, pi j = p ji, φi j =−φ ji, and Li j = L ji. See Fig. 2a for
a schematic description of the variables.
The flow of gas creates a pressure gradient, and compressor
stations (potentially located at both ends of each edge {i, j})

are used to boost pressure. αi→ j denotes the compression
ratio of the station adjacent to node i that boosts pressure for
flow toward node j while α j→i denotes the compression ratio
adjacent to node j that boosts pressure for flow toward node i.
We choose to place compressors at both ends of every edge for
generality, which also simplifies the notations in the following
discussion. In reality there is no more than one compressor on
any particular edge of the graph and α = 1 when there is no
compressor. Note that αi→ j may be larger or smaller than 1,
allowing the modeling of compression or decompression. If
only compression is allowed, then αi→ j ≥ 1. The schematic in
Fig. 2 displays the spatial relationships between nodes, edges,
and compression ratios. These are expressed mathematically
as

∀t ∈ [0,τ], ∀(i, j) ∈ E : pi j(t,0) = pi→ j(t), (10)
pi j(t,Li j) = p j→i(t), pi→ j = piαi→ j, p j→i = p jα j→i,

where pi and pi→ j are the pressures at node i and pressure after
compression ratio αi→ j . If there is no compressor, then αi→ j =
1. Under current operating practices, compression ratios do
not change frequently 1. Thus, we assume that αi→ j does not
depend on time.
Eqs. (9,10) are complemented with mass conservation at all
nodes of the network:

∀t ∈ [0,τ], ∀i ∈ V : ∑
j:(i, j)∈E

φi j(t,0) = qi(t). (11)

When the gas injections q(t) = (qi(t)|i ∈ V ) are given for
t ∈ [0,τ], nodal conditions (11) generalizes the single-pipe
boundary conditions in (7) to a pipe network. Eqs. (8, 9,
10, 11) constitute a complete set of equations describing the
Dynamic Gas Flow (DGF) problem when they are supple-
mented with compression ratios, i.e. α = (αi→ j|(i, j) ∈ E),
initial conditions on the flows

t = 0, ∀{i, j} ∈ E , ∀xi j ∈ [0,Li j] : φi j(0;xi j) = φ
(in)
i j (xi j), ,

(12)
and pressure at one slack node, pi=0(0) = p0.

IV. OPTIMUM GAS FLOW APPROACHES

Later in the manuscript, we analyze the DGF problem by
linearization of the fluctuations about a stationary solution.
Here, we summarize two approaches to finding this stationary
solution. We first solve a stationary version of the DGF
problem, i.e, the Gas Flow (GF) problem, where the steady
state pressure and flows are expressed in terms of compres-
sion ratios. The time-independent compression ratios are then
determined via solution of the OGF problem.

1Compressors are automated to a degree in that they are run in modes
with one of those modes considered in this manuscript being a constant
compression ratio. Then pressure fluctuations at the inlet of a compressor
are amplified at the outlet of that compressor. Other modes of compressor
operation may lead to different results for the fluctuation amplitude. There is
relatively fast local control on the compressor to maintain this ratio. However,
the set points for the ratio is updated very rarely. Adjusting this set point is
the main effect the pipeline operator has on the system and this adjustment
is done rarely throughout the operating day.



A. Stationary Gas Flow

In the GF problem, all input parameters (consump-
tions/injections, compression ratios and the pressure at the
slack bus) are constant in time. The total injection and con-
sumption is balanced

∑
i∈V

q(st)
i = 0. (13)

The steady solution of Eq. (8) is uniform mass flow along
each pipe in the network, ∀{i, j} : φi→ j = const. Substituting
this result into Eq. (9) and integrating over space yields the
algebraic relationship between pressure at position x ∈ [0;Li j],
compression, and (constant) flow through the pipe

∀(i, j) ∈ E : p(st)
i→ j = p(st)

i αi→ j;

(p(st)
i j (x))2 = (p(st)

i→ j)
2− βx

d
φ
(st)
i j |φ

(st)
i j |. (14)

The GF problem has a unique solution provided the compres-
sion ratios are known, and the GF solution in (14) is the basis
for many approaches to solving the OGF problem.

B. Optimum Gas Flow

The solution to the GF problem leaves the time-independent
compression ratios α unknown. These are chosen by the
pipeline operators based on a combination of economic and
operational factors. Here, we describe two approaches for
selecting the α. The first is a greedy algorithm that approxi-
mates the current pipeline operations in the US. The guiding
principle is that compressors are activated when the pressure
prior to the next compressor drops below the acceptable lower
bound. When activated, a compressor is set to its maximum
compression ratio α. This algorithm is described in detail
in [7]. The second approach is based on solutions to the
optimal gas flow (OGF) problem [14], [15], [16], [7]. Here,
we summarize a Geometric Programming (GP) approach to
solving the OGF problem that minimizes the total compressor
power to move the gas.
The total power used in pipeline gas compression (assuming
that the gas is ideal and compression is isentropic) is

∑
(i, j)∈E

ci→ jφ
(st)
i j

ηi→ j

(
max{αm

i→ j,1}−1
)
, (15)

where ci→ j is a constant that depends on the compressor,
m = (γ− 1)/γ where γ is the gas heat capacity ratio, and
ηi→ j is the efficiency factor of the compressor. It is important
to note that fluctuations caused by compressor consumption
are negligible when compared to gas loads. The term φ

(st)
i j

denotes the directional mass flow for edge i, j, when the edge
is oriented from i to j. The OGF formulation assumes that
the flow through the compressor is from i to j, i.e., φ

(st)
i j > 0,

thus the direction of flow must be selected before hand. For
tree networks, the magnitude and direction of the flows are
computed exactly apriori and do not depend on the choice of
compression ratios. For an edge i, j, let Gi and G j be the two

disjoint graphs obtained by removing (i, j). The flows φ
(st)
i j are

computed as

φ
(st)
i j = ∑

i∈Gi

q(st)i =− ∑
i∈G j

q(st)i . (16)

In networks with loops, flow direction is chosen using heuris-
tics or through the introduction of binary variables [16].
Using the cost function in Eq. (15), the OGF problem is
formulated as

min
α,p ∑

(i, j)∈E

ci→ jφi j

ηi→ j

(
max{αm

i→ j,1}−1
)

(17)

s.t. ∀(i, j) ∈ E : α
2
i→ j =

p2
j +

βLi j
di j

φ2
i j

p2
i

, (18)

∀i ∈ V : 0≤ pi ≤ pi ≤ pi, (19)
∀(i, j) ∈ E : αi→ j ≤ αi→ j ≤ αi→ j, (20)

where Eq. (18) is obtained from Eq. (14). The upper bound in
Eq. (19) represents engineering limits on pipes and the lower
bound represents contractual obligations. The upper and lower
bounds in Eq. (20) refer to maximum allowed compression
and decompression at each compressor. If decompression is
not allowed, αi→ j =1.
There are a variety of methods for solving the OGF over trees,
and in this paper, we use the geometric programming (GP)
approach described in [7]. The GP approach relaxes the lower
bound αi→ j in Eq. (20), i.e. αi→ j =0. Under this relaxation,
the OGF is transformed into a GP of the form

min
t̂,β̂

log

(
∑

(i, j)∈E
di jemt̂i j

)
, ∀i ∈ V (21)

s.t. 2 log(pi)≤ β̂i ≤ 2log(p̄i) (22)

0≤ t̂i j ≤ log(ᾱi j), (23)

log
(

eβ̂ j−β̂i−t̂i j +δ
1
i je
−β̂i−t̂i j

)
≤ 0, (24)

∀(i, j) ∈ E .

The transformed variables are related to the original ones via
the following equations

p2
i = eβi , δ

1
i j =

βLi j

di j
φ

2
i j. (25)

The OGF in Eqs. (21-24) is solved using convex optimization.
When decompression is not allowed, αi→ j=1 in Eq. (20),
we use a signomial programming (SP) method, which is a
heuristic version of GP based on solving a sequence of convex
programs [7]. Here, we use SP to solve the OGF.

V. DIFFUSIVE JITTER OF PRESSURE FLUCTUATIONS

The main contribution of this manuscript builds on the so-
lution of the OGF by introducing a model of stochastic
gas consumption and the analysis of its effects on pressure
fluctuations–diffusive jitter. Our approach linearizes the DGF
equations (Eqs. 8,9) around a solution to the GF problem
(augmented with compression ratios from the OGF or the
greedy compression scenario).



The linearized model captures the relationship between the
fluctuating consumption and the fluctuating pressure. Asymp-
totically, the accumulated changes in pressure provide an indi-
cation of how fast the pressure will drift (the jitter) and exceed
an operating limit in the absence of operator intervention. As
the DGF solution drifts further from the original GF solution,
the quality of the linearization degrades. However, we expect
that the linearized solution to the DGF remains a strong
relative indicator of how quickly a system will experience
problems due to stochastic consumption.
Formally, the stochastic consumption is defined by q(t) =
q(st) + ξ(t) where the components of ξ(t) = (ξi(t)|i ∈ V )
are time varying but relatively small in comparison to q(st).
We assume a linearized solution of the DGF problem of
the form p(t) = p(st)+ δp(t) and φ(t) = φ(st)+ δφ(t), where
the respective corrections are small, i.e. |δp(t)| � p(st) and
|δφ(t)| � φ(st). The linearized versions of Eqs. (8, 9, 10, 11)
are

∀t ∈ [0,τ], ∀{i, j} ∈ E , ∀x ∈ [0;Li j] :

c−2
s ∂tδpi j +∂xδφi j = 0, (26)

∂xδpi j +
β

2d

(
δφi j|φ

(st)
i j |

p(st)
i j

+

φ
(st)
i j |δφi j|

p(st)
i j

−
δpi jφ

(st)
i j |φ

(st)
i j |

(p(st)
i j )2

)
= 0, (27)

∀t ∈ [0,τ], ∀(i, j) ∈ E :
δpi→ j = δpiαi→ j, (28)
δpi j(t,0) = δpi→ j(t), δpi j(t,Li j) = δp j→i(t), (29)

∀t ∈ [0,τ], ∀i ∈ V : ∑
j:(i, j)∈E

δφi j(t,0) = ξi(t). (30)

We seek asymptotic solutions to the PDE of Eqs. (26, 27,
28,29,30), where asymptotic implies finding solutions for
time τ longer than the correlation time of the fluctuation
consumption ξ. In addition, we seek solutions of Eqs. (26,
27,28,29,30) that connect the nodal quantities by algebraic
relationships thereby eliminating the complexity of the orginal
PDE.
The solution approach is an extension of the work in [8].
Following [8], we solve Eqs. (26, 27) for each pipe using
a proposed solution of the form

δpi j = ai j(t)Zi j(x)+bi j(t,x), (31)

where the ai j(t) depend on time. In [8], it was argued that
the ai j(t)Zi j(x) term represents the asymptotic contribution
to the gas pressure fluctuations that grows in time. In con-
trast, bi j(t,x) represents smaller contributions to the pressure
fluctuations that do not grow in time. Here, we focus on the
contribution from the ai j(t)Zi j(x) term which is asymptotically
dominant at long times.2

2Bounds for the second term are derived and solved using inhomogeneous
linear equations for bi j .

Substitution of proposed solution (31) into Eqs. (26, 27) yields
an equation for Zi j, i.e.

∂xZi j−
β

2d

φ
(st)
i j |φ

(st)
i j |

(p(st)
i j )2

Zi j = 0, (32)

where Zi j(x) counts x from node i. The integration of Eq. (32)
over the spatial dependence of the stationary profile (14),
yields

Zi j(x) =
p(st)

i→ j + p(st)
j→i

2p(st)
i j (x)

, (33)

where the normalization constant is chosen to guarantee,∫ L
0 Zi j(x)dx/L = 1.

We solve for the time-dependent factor ai j(t) by substituting
δpi j ∼ ai j(t)Zi j(x) into Eq. (26) and integrating the result over
the entire spatial extent of the pipe {i, j} yielding

ai j(t) = c2
s

∫ t

0
dt ′
(
δφi j(t ′,0)−δφi j(t ′,L)

)
. (34)

In the asymptotic limit where δpi j ∼ ai j(t)Zi j(x) for every
pipe (graph edge), Eqs. (29) can only be satisfied if the ai j(t)
have the same functional dependence on time, i.e.,

∀{i, j} ∈ E : ai j(t) = a(t)ci j, (35)

where ci j = c ji is an edge specific constant.
To compute the global time-dependent factor a(t) we sum the
mass conservation equation over all the nodes of the graph

∑
i∈V

ξi = ∑
{i, j}∈E

(δφi j(t,0)−δφi j(t,Li j)) , (36)

integrate over time and define

Ξ(t) .
=

∫ t

0
dt ′ ∑

i∈V
ξi(t ′), (37)

and finally sum Eq. (35) overall edges:

a(t) =
c2

s Ξ(t)
∑{i, j}∈E ci j

. (38)

Therefore, ∀t, ∀{i, j} ∈ E , x ∈ [0,Li j] :

δpi j(t,x)≈
c2

s Ξ(t)
∑{i, j}∈E ci j

ci jZi j(x). (39)

The unknown edge constants ci j are derived by substituting
Eqs. (39) into Eqs. (28, 35) yielding

∀i, ∀ j,k s.t. (i, j),(i,k) ∈ E :
ci jZi j(0)

αi→ j
=

cikZik(0)
αi→k

. (40)

Eqs. (39, 40, 33) express the complete asymptotic (zero mode)
solution of the DGF problem.
Finally, we make several observations to connect the solution
for the pressure fluctuations in Eqs. (39, 40, 33) to a prob-
ability distribution over the pressure fluctuations. First, the
random gas load fluctuations ξi(t) are zero-mean, temporarily
homogeneous, and relatively short correlated in both time (the
correlation time is less than τ) and space (the correlation length



is less than the spatial extent of the network). Second, the
fluctuations of δpi j in Eq. (39) are given by a time-integral
and spatial-sum of the fluctuations. According to the Large
Deviation theory, these observations imply that the pressure
fluctuations form a Gaussian random process which jitters
diffusively in time. Specifically, the Probability Distribution
Function (PDF) of δpi j(t,x) is

P (δpi j(t,x) = δ)→ (2πtDi j(x))
−1/2 exp

(
− δ2

2tDi j(x)

)
, (41)

Di j =

(
c2

s ci jZi j(x)
∑{k,l}∈E ckl

)2〈(
∑

n∈V
ξn(t ′)

)2〉
, (42)

where the correlation function on the right-hand-side does not
depend on t ′ due to assumption of the statistical homogeneity
of ξ.

VI. NUMERICAL EXPERIMENTS

Inspection of Eq. (42) shows that the variance of the pressure
fluctuations as a function of position in the network is related
to the coefficients Di j(x), referred to collectively as D. Higher
values of D correspond to larger pressure fluctuations and
higher likelihood of the pressure violating an engineering or
contractual limit. By analogy with related physical processes,
the coefficients D are similar to a diffusion coefficient, and we
refer them this way in the remainder of the manuscript. The
origins of D are primarily twofold. Once the gas consumptions
and injections are fixed, the spatial dependence of D arises
from the particular stationary solution of pressures, flows, and
compression ratios through the Zi j(x). The magnitude of D is
also related to the average global strength of the consumption
fluctuations 〈(∑n∈V ξn(t ′))

2〉.
We apply the results described above to the Transco pipeline
shown schematically in Fig. 1. We use data for the total con-
sumption at each node over a 24-hour period from December
29, 2012 to fix the forecasted consumption for the stationary
GF solution. These data represent relatively stressed operations
for the Transco pipeline. The Transco pipeline has a small
number of loops, which we partition to create a tree topology
[7] that is very nearly linear but with a few small branches.
We resolve these branches in the solution of the GF (or OGF)
problem, however, when analyzing the pressure fluctuations,
we aggregate these short branches to nodal consumptions and
only analyze the fluctuations as a function of distance along
the mainline.
The Transco operational data does not include information
on the deviations of the gas flows from their average or
scheduled values. Instead, we estimate the global mean-square
consumption fluctuations as〈(

∑
n∈V

ξn(t ′)

)2〉
≈
(

φ0

3

)2

∗N. (43)

Here, φ0 ≈ 20 kg/s is a typical average consumption for a
node in the Transco pipeline, and N ≈ 70 is the number
of consumption nodes, e.g. city-gates or power plants. This

estimate of the gas consumption fluctuations assumes that
the fluctuations at neighboring nodes are uncorrelated. If
these neighboring nodes are gas-fired turbine generators that
are both being used to balance renewable fluctuations, the
assumption of independence may lead to an underestimation
in Eq. (43).
For presentation purposes, it is convenient to find a suitable
normalization for D. Motivated by Eqs.(41,43), we normalize
D by

D0 ≈
( p0

3

)2
/t0

where p0 = 800 psi ≈ 5.5 ∗ 106 Pa is the upper bound on
allowed pressure in the pipes and t0 = 15 min ≈ 103s is a
representative time period where we expect the developed
theory to work well.
We consider the base case of December 29th, 2012 and
several modifications of this base case to investigate the
effects of changing operations. Fig. 3 displays D as a function
of location along the mainline for two different stationary
solutions for the base case—the OGF solution described in
Section IV and the greedy algorithm from [7]. For a charac-
teristic time of 15 min ≈ 103s, D/Do = 1 corresponds to a
variance in pressure fluctuations of (266 psi)2. Pressures in
the Transco Pipeline range between 500 psi and 800 psi, so
the pressure fluctuation standard deviation is 33−53% of the
pressures in the pipeline for D/Do = 1. The same characteristic
time and D/Do = 0.1 yields a variance of (84 psi)2 which
gives pressure fluctuation standard deviations of 10−16% of
pipeline pressures. Since the pressure variance grows linearly
in time, often over several 15 min intervals, these fluctuations
can quickly grow to exceed pressure bounds without proper
intervention. As the plots show, most pressure fluctuations are
above D/Do = 0.1 throughout the pipeline, and therefore the
fluctuations are of concern in any regions of pipeline where the
pressure is near its upper or lower bound. The two solutions
display similarities. Both show a build up of D from milepost
800 nearer to the Gulf of Mexico, a peak at milepost 1771 near
New York and New Jersey, and a decay to a smaller value at
milepost 2000 near the injection point for the Marcellus Shale
in Pennsylvania.
The spatial variation of D is due to Zi j(x), and the general
shape of D can be understood by revisiting Eq. 32. The
form of this equation suggest exponential growth or decay
of Zi j(x) depending on the orientation of φi j. The flow from
the Gulf to the New York/New Jersey area is unidirectional
creating the growth of D observed in Fig. 3. However, the
large loads in the New York/New Jersey area combined with
the offsetting injections from from the Marcellus Shale creates
a flow reversal and an exponential decay of Zi j (and therefore
of D). The peak in D is connected to the point of flow reversal.
The solution in Fig. 3 displays more structure than simple
exponential growth and decay for several reasons. First, the
mass flow rates φi j depend on location. However, perhaps
more important are the discontinuities in D. These occur at
compressor stations and are due to the discontinuities in p(st)



at these locations.
The global behavior of the OGF solution and the greedy
algorithm Fig. 3 is similar because the differences in the
compression ratios in the stationary solution does not affect the
mass flow rates. However, it does affect the spatial dependence
of pressure which can lead to the substantial local differences
observed in Fig. 3. For example, between mileposts 1400 and
1700, D is much lower for the greedy algorithm compared
to the OGF. However, the deployment of a compressor near
milepost 1700 in the greedy algorithm leads to a large jump
in D, a larger peak in pressure fluctuations, and a greater
chance for violation of an engineering or contractual pressure
limit. For this one example, this difference would seem to
suggest that the OGF solution is less susceptible to pressure
fluctuations. However, we note that the expected magnitude of
the pressure fluctuations is not taken into account in either the
greedy algorithm or the OGF.
What these results do suggest is that the deployment of
compressors in the stationary solution can have a significant
impact on the expected pressure fluctuations, and that it is
possible to formulate a a compressor dispatch optimization
that balances the risk of such fluctuations against other desired
operational properties, e.g. cost. The simple algebraic form of
the probability of such large fluctuations in Eqs. (41,42) are
convenient for incorporation into such formulations.
To determine the effect of overall consumption and injection
on D, we uniformly scaled the base case consumptions and
injections by a constant factor—a scaling that preserves the
balance of consumptions and injections required for the exis-
tence of a stationary solution. Figure 4 displays the results for
D computed using the OGF stationary solutions. The stationary
solutions show small local differences in D caused by the
deployment of compression. However, the major impact stems
from the increase (or decrease) in mass flows. The uniform
scaling does not affect the location of the flow reversal, so
the peak in D appears at the same place. However, the larger
(smaller) flows lead to faster (slower) growth rates for Zi j (see
Eq. 32) and an overall higher (lower) peak in D.
In recent years the Marcellus Shale has become a large
supplier of gas, and its injection capability is expected to
increase [17]. To model the effect of this expansion we scaled
all injections from the Marcellus Shale by a constant factor and
removed a corresponding amount of gas from the injections
at the Gulf to preserve the global balance of consumption
and injection. Fig. 5 displays the results for D along the
Transco pipeline for the OGF solution. Although the injection
from the Marcellus is increased, the major gas load centers
in New York and New Jersey keep the flow reversal point,
and therefore the peak in D, pinned at more or less the same
location. Larger Marcellus injections show slightly lower peak
amplitudes of D indicating that, as gas injections are shifted
from the Gulf to the Marcellus Shale, the reliability of pipeline
operations is improved. We conjecture that this change is due
to moving the source of gas injections closer to the major load
centers. However, we again note that the OGF methods used
to find the stationary solution do not account for the expected
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Fig. 3. Diffusion coefficient as a function of distance along the Transco
mainline with stationary solutions given by OGF and the greedy algorithm.
Both show a peak at milepost 1771, but the magnitude of this peak is much
higher for the greedy algorithm than the OGF, indicating larger pressure
fluctuations for the greedy algorithm.

pressure fluctuations and their inclusion will likely lead to a
modification of these results.
Although scaling overall consumption and Marcellus supply
are directly relevant to operators and planners, they do not
exhibit a shift in the location of the peak in D or the appearance
of multiple local maxima. To study these possibilities, we
next imposed some less realistic changes. In particular, the
loads in New York are shifted to points closer to the Gulf and
Marcellus Shale, but the New Jersey loads were left unaffected.
Fig. 6 displays the impact of this shift on D computed using
stationary solutions from the OGF and the greedy algorithm.
Since the large load in New Jersey remains, milepost 1771 is
still a position of flow reversal and a, now minor, maximum
of D. However, the redistribution of load leads to a new
global maximum near milepost 1319—a large load in North
Carolina. Although the location of maximum fluctuations has
been relocated, the maximum of D is much reduced by moving
the loads closer to the gas injections.
The previous example showed the appearance of a new global
maximum, as well as several small local maxima, but the orig-
inal local maximum remained. To remove it, we shifted New
Jersey’s load to points closer to the Gulf and the Marcellus
Shale, as shown in Fig. 7. This successfully removes the local
maximum at milepost 1771 while leaving the global maximum
at milepost 1319. In this case the jitter (diffusion coefficient)
of the greedy algorithm and OGF are comparable, with OGF
jitter greater before milepost 1319 and greedy greater after
milepost 1319.

VII. CONCLUSIONS AND FUTURE WORK

We have focused the analysis on the coupling between natural
gas networks and electric networks at the time scale of intra-
day natural gas markets. The coupling at this time scale is
expected to become tighter because of several factors: the
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Fig. 4. Diffusion coefficient as a function of distance along the Transco
mainline with stationary solutions given by the OGF with global consumption
and injection scaled by a uniform factor. All show a peak at milepost 1771,
but higher scaling factors have higher magnitudes at their peaks, indicating
larger pressure fluctuations for larger system loads.
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Fig. 5. Diffusion coefficient as a function of distance along the Transco
mainline with stationary solutions given by the OGF with Marcellus Shale
injections scaled by a factor and the corresponding amount of injections
removed from the Gulf. All show a peak at milepost 1771, but higher scaling
factors have slightly lower magnitude at the peak, indicating smaller pressure
fluctations. Higher scaling factors also have much lower magnitudes in the
Marcellus Shale, indicating smaller pressure fluctuations when injections are
shifted from the Gulf to the Marcellus Shale.

retirement of coal and fuel oil-fired generation in favor of
natural gas-fired generation because of environmental concerns
and the increased availability and low cost of natural gas and
the ability of gas-fired generation to respond quickly to the
variability of renewable generation. Although gas pipelines
have the ability store gas in the form of increased pressure
in the piepline, i.e. linepack, this storage is limited. In the
future, linepack will be increasingly exercised as more gas-
fired generation is used to balance increasing amounts of wind
generation. Larger swings in gas pipeline pressure (linepack)
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Fig. 6. Diffusion coefficient as a function of distance along the Transco
mainline with load redistributed from the large load in New York to the Gulf
and Marcellus Shale, leaving the large load in New Jersey unaltered. This
causes the appearance of a new global maximum at milepost 1319 which is
the location of a large load in North Carolina. Since the New Jersey load was
not redistributed, a local maximum remains at milepost 1771.
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Fig. 7. Diffusion coefficient as a function of distance along the Transco
mainline with load redistributed from the large loads in New York and New
Jersey closer to the Gulf and Marcellus Shale. The global maximum at
milepost 1319 remains, but the local maximum at milepost 1771 dissappears
since the large load has been removed from this area.

affect the ability of the pipeline to deliver gas to the generators,
creating reliability implications that cascaded across these two
infrastructures.
In this initial work, we have assessed the impact of fluctuating
consumption by gas-generators on pipeline pressure. We start
by splitting the gas flow equations for pipelines into two parts.
The first is a stationary part that is time-independent and
reflects the gas flows scheduled by the gas markets and gas
compressor deployment determined by the pipeline operator.
The second is a representation of the fluctuations around the
scheduled flows created by linearizing the gas flow equations
about the scheduled flows and compressor operations. From
this linearized model, we can predict the probability that a
set of stochastic gas loads will cause the pipeline pressure to
violate an engineering or contractual pressure limit and create



a reliability concern for the pipeline operator or the electrical
grid operator. By making assumptions about the nature of the
gas consumption fluctuations, this probability can be expressed
in an algebraic form that is convenient for integration into
a gas flow/gas compressor optimization problem where the
probability can be a constraint or part of the objective to limit
the likelihood of a pipeline reliability issue.
We applied the theoretic results to a realistic model based on
the Transco pipeline. Our computational experiments with the
Transco model revealed the following interesting observations.
First, the probability of large pressure fluctuations is highest
at locations in the pipeline where the gas flow experiences a
reversal (in and around the New York/New Jersey area for the
Transco pipeline). Second, increasing the stress on the pipeline
by increasing gas flow rates leads to higher probabilities of
large pressure fluctuations. Third, rearranging pipeline flows,
e.g. by increasing purchases from the Marcellus Shale at the
expense of gas from the Gulf, can decrease the probability of
large pressure fluctuations by moving the gas sources closer
to the gas loads.
The results of this paper suggest a number of interesting
directions for future research.
• The linearization and asymptotic assumptions described

here need to be validated against direct dynamic (tran-
sient) simulations of gas flows in variety of situations.
Most existing work on such validations [18], [12], [19],
[20], [21], [22] uses single pipe models. The challenge
is to develop fast computational algorithms for transient
problems with mixed (initial and boundary) conditions
over large and loopy gas networks.

• Our dynamic method applies to gas networks with loops,
back flows, bi-directional compression and other compli-
cations. We will extend the experimental study to other
current and planned networks in the U.S. and Europe.

• Extending the probabilistic risk framework to the compli-
cations mentioned above requires extending the methods
of [7] to create efficient optimization algorithms for gas
networks with loops.

• Compressor positions are assumed fixed by the OGF
and greedy solution methods presented here. However,
compressor position has a significant effect on pressure
fluctuations in its vicinity. A future direction will be
to formulate a compressor dispatch scheme and use it
to analyze the effect of varying compressor position on
pressure fluctuations near the compressors.

• Incorporation of the probabilistic risk measures into OGF
formulations to directly account for this risk. A promising
direction is the chance constrained methodology devel-
oped in [23].

• This work suggests a new mathematical, statistical and
computational foundations necessary to address the com-
prehensive strategic problems of re-organizing the exist-
ing system of energy trading (in the U.S. and elsewhere).
Such a reorganization is required to reduce inefficiencies
in how power and gas markets interact [1], [2], [24].

• It is not realistic to expect (at least not in US) that

gas and power markets will merge in the near future.
However, it is important to account for effects of mutual
dependencies. In particular, incorporating effects of gas
pressure fluctuations and uncertainty into planning and
operations of power systems with significant penetrations
of renewables and with gas turbines involved in balancing
the renewable fluctuations is a very promising future
direction for research. On the other hand it is as important
to account for the effect of ramps in gas consumptions at
generators on the gas flow optimization.
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