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Expansion of natural gas networks is a critical process involving substantial capital expenditures with

complex decision-support requirements. Given the non-convex nature of gas transmission constraints, global

optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately,

state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study,

we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under

steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency.

In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the

original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The

convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact

McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the

traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the

accuracy and computational speed of the relaxation and its ability to produce high-quality solutions.

1. Introduction

In recent years, the construction of natural gas pipelines has witnessed a tremen-

dous growth on a world-wide level. In the U.S., for instance, a $3 billion expansion

project of the gas pipeline system in New England is planned for late 2016. In

Europe, the European Investment Bank is supporting a e98 million project for
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the expansion of gas pipelines in western Poland, to be completed by 2017. These

expansion projects aim at increasing gas flow capacity on existing pipeline systems

and/or bringing new gas wells into production and commercialization. In addi-

tion, the expansion or reinforcement of a pipeline network can also be considered

as a risk-awareness strategy to fulfill short or long-term operational management

requirements when unforeseen events occur such as component failures or exces-

sive stress and congestion due to extreme weather conditions. These events were

observed in New England during the polar vortex experienced in January 2014,

when major gas-fired power plants in the northeast of the U.S. were forced to shut

down due to mechanical problems and shortages of gas fuel supplies, which drove

wholesale power prices up

According to the U.S. Energy Information Administration (EIA), a project

for the development and expansion of a Gas Transmission Network (GTN)

takes an average of three years from its first announcement until its comple-

tion (U.S. Energy Information Administration 2008). The project starts by deter-

mining the market needs within an open season exercise where nonbinding agree-

ments of capacity rights are offered to potential customers. The second step con-

sists in developing the expansion design with initial financial commitments from

the potential customers. Note that expansions of the gas system may include the

installation of parallel pipelines along existing ones (also referred to as looping),

the addition of compressor stations, the conversion of oil pipelines to natural gas

pipelines, or the reinforcement of specific pipeline sections (e.g., replacement of

larger diameter pipelines).

In this paper, we address the Gas Transmission Network Expansion Planning

(GTNEP) problem where the goal is to fulfill projected future gas contracts and

to increase the reliability of a gas system under steady-state conditions. A Mixed-

Integer Non-Linear Programming (MINLP) formulation is proposed to model the
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design requirements and minimize expansion costs. Given the non-convex nature

of the problem, a convex mixed-integer second-order cone relaxation is introduced.

The proposed convex relaxation is based on four key ideas: (1) the introduction

of variables for modeling the flux directions; (2) exact McCormick relaxations; (3)

on/off constraints; and (4) valid integer cuts. Experimental results on the Belgian

gas network and a test bed of large-scale synthetic instances demonstrate three key

findings:

1. The convex relaxation produces tight lower bounds with high computational

efficiency;

2. The solution to the convex relaxation can almost always be used to derive high-

quality solutions to the original problem, leading to provably tight optimality

gaps and, in some cases, global optimal solutions.

3. The proposed approach scales to large-scale instances.

The rest of this paper is organized as follows. Section 2 presents the literature

review. Section 3 introduces the problem formulation. Section 4 specifies the convex

relaxation. Section 5 presents the computational results and Section 6 concludes

the paper.

2. Literature review

The last four decades have seen an interest in natural gas planning problems such

as optimal design, optimal reinforcement, and optimal expansion of gas pipeline

systems. Algorithms for these problems can be classified in a number of different

ways such as exact approaches (Andre et al. 2009, Bonnans et al. 2011, Edgar

et al. 1978, 2001b, Wolf 2004) and heuristics (André 2010, Boyd et al. 1994,

Humpola et al. 2015, Andre et al. 2009, Humpola and Fügenschuh 2014a). Exact

methods include cutting planes (Atamturk 2002, Humpola and Fügenschuh 2014b,

Humpola et al. 2015a, Poss 2011) and branch-and-bound (André 2010, Elshiekh

et al. 2013, Humpola and Fügenschuh 2015) and they use a variety of commercial
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(Bakhouya and De Wolf 2008, Elshiekh et al. 2013, Soliman and Murtagh 1982)

and open-source (Pfetsch et al. 2012, Uster and Dilaveroglu 2014) solvers. Similar

to our work, much of the literature relies on approximations and relaxations to

improve the tractability of the underlying planning problems. Examples include

continuous relaxations of the discrete design variables (De Wolf and Smeers 1996,

Hansen et al. 1991, Soliman and Murtagh 1982) and approximation or relaxations

of constraints (Babonneau et al. 2012, Bakhouya and De Wolf 2008, Humpola and

Fügenschuh 2015, Poss 2011). Common approaches for implementing these approx-

imations/relaxations include successive linear programming (De Wolf et al. 1991,

Hansen et al. 1991, O’Neill et al. 1979, Wilson et al. 1988) and piecewise lineariza-

tions (Correa-Posada and Sánchez-Mart́ın 2014, Markowitz and Manne 1957, Vajda

1964, Zheng et al. 2010).

The contribution of this paper is a novel Second-Order Cone (SOC) relaxation

that efficiently addresses the design of large-scale cyclic networks for which flow

directions are unknown. The model captures physical, operational, contractual, and

on/off constraints and includes models of regular pipelines, valves, short pipes,

control valves, compressor stations, and regulators. Its dual solutions can almost

always be converted to high-quality or optimal primal solutions. To the best of our

knowledge, the combination of all these features has not appeared in the literature.

Our paper focuses on the cost of building the network but can be generalized to

include operational costs as well.

We provide next an in-depth review of the most relevant works in the area of

natural gas expansion planning problems.

One of the earliest papers that addresses natural gas design problems is (Edgar

et al. 1978). This paper focuses on the optimal design of gunbarrel and tree-shaped

networks while minimizing the yearly cumulative operational and investment costs.

The optimization variables include the number and location of compressor stations,
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pipeline diameters, and the inlet and outlet pressures at each compressor station.

More recently, Edgar et al. (2001b) solve a simplified version of this problem in

GAMS (GAMS Development Corporation 2008) for a small instance (Edgar et al.

2001a).

Hansen et al. (1991) and Soliman and Murtagh (1982) propose a continuous

relaxation for the network design problem. While Hansen et al. (1991) apply a suc-

cessive linear programming method where a linear subproblem is solved to adjust

the discrete choice of diameters, Soliman and Murtagh (1982) apply the commercial

NLP solver MINOS (Murtagh and Saunders 1998) to handle the relaxed subprob-

lem. O’Neill et al. (1979) and Wilson et al. (1988) focus on a problem where integer

variables are used for the operational state of compressor stations and they also

implement a method based on successive linear programming to solve the problem.

De Wolf and Smeers (1996) address the optimal dimensioning of a known pipe

network topology with an objective that combines the cost of purchasing gas and

the capital expenditures for expansion. The authors formulate the problem as a

continuous NLP that selects pipeline diameters and solves the problem by means

of a local optimizer. Based on this problem, Wolf (2004) derives conditions under

which this problem is convex. Through the use of variational inequality theory, the

author shows convexity of the nonlinear gas flow system under the assumption that

the gas net inlet (pressure) is fixed at all supply and demand nodes. Bakhouya

and De Wolf (2008) also present a case study on the same problem with separable

transportation and gas objectives that leads to a two-stage problem formulation.

In addition to design variables for the optimal pipe diameters, the authors add

investment variables representing the maximal power of compressor stations to bal-

ance the pipeline construction costs and capital expenditures for increasing power

in the compressor units. The authors find an initial solution by solving a convex

problem where all pressure constraints are relaxed. Then, the complete problem
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is locally solved by means of the GAMS/CONOPT (Drud 1994) solver. In these

works, numerical experiments are primarily focused on the Belgian gas transmission

network.

Andre et al. (2009) present a MINLP model to solve the investment cost mini-

mization problem for an existing gas system that includes pipelines and regulators

and omits compressor stations. The goal is to identify a set of pipeline sections to

reinforce and to select an optimal diameter size for these sections based on a discrete

set of diameters. Under the assumption that the network is radial (the head loss

equations are convex when flows are fixed), the authors propose a continuous relax-

ation of the pipe diameters (continuous intervals). A branch-and-bound approach

for a unique maximal demand scenario is applied to a segment of the French high-

pressure natural gas transmission system. A complete review and extensions of

these findings are provided in (André 2010).

Babonneau et al. (2009, 2012) focus on the design and operation of a natural gas

transmission system while minimizing investment, purchase, and transportation

costs. The authors propose an approach based on a minimum energy principle

that transforms the non-linear non-convex optimization problem into a convex

problem. The underlying convex, bi-objective formulation is an approximation of

the investment cost function and the cost of energy to transport the gas. Their

continuous formulation is applied to non-divisible constraints such as a limited

number of available commercial pipe dimensions.

Bonnans et al. (2011) presents several problems that include the minimization

of compressor ratios and the sum of operations and investment costs. The authors

propose a global optimization technique that is based on the combination of interval

analysis with constraint propagation.

Zheng et al. (2010) discusses different optimization models in the natural gas

industry, including the compressor station allocation problem, the least gas pur-



Borraz-Sánchez et al.: Convex Relaxations for Gas Expansion Planning
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2015-06-OA-108 7

chase problem and optimal dimensioning of gas pipelines. The authors review solu-

tion techniques to solve the underlying models which include a piecewise linear

programming algorithm and a branch-and-bound algorithm.

Elshiekh et al. (2013) presents a model to optimize the design and operation

of the Egyptian gas system, where continuous design variables for the length

and diameter of pipelines are considered along with a modified Panhandle equa-

tion (Coelho and Pinho 2007). The complete model is directly solved by means of

the computer-aided optimization software LINGO (LINDO Systems 1997).

Uster and Dilaveroglu (2014) address the cost minimization problem of designing

a new natural gas transmission system and expanding an existing gas system.

The authors propose a mathematical formulation to tackle the design/expansion

network problem for a given multi-period planning horizon. The underlying MINLP

model is formulated in AMPL and solved approximately with Bonmin (Bonami

and Lee 2013).

Humpola and Fügenschuh (2014b) and Humpola et al. (2015a) present valid

inequalities for a MINLP model of a design problem in gas transmission systems.

Different relaxations are applied to the subproblems created after branching on the

additive and design variables for the active and passive components. The resulting

passive transmission subproblems, which are referred to as leaf problems, admit

slack variables to independently relax the pressure domains and the flow conser-

vation constraints. The proposed cutting planes aim at reducing the CPU time of

a branch-and-cut-based outer approximation applied to the full model where con-

struction costs are defined by a global constant. Atamturk (2002) and Poss (2011)

also propose valid inequalities to reinforce the relaxation approach to the network

design structure.

Humpola and Fügenschuh (2015) examines different (convex) relaxations for

subproblems created while applying a branch-and-bound technique to a nonlinear
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network design problem. Cutting planes on the nonlinear potential loss constraints

are used to strengthen the relaxed subproblems.

Pfetsch et al. (2012) focuses on the validation of nomination problem while con-

sidering regular pipes and valves, control valves, compressors and regulators. The

authors describe a two-stage approach to solve the resulting MINLP problem and

propose several modeling techniques and approaches to account for, e.g., pressure

losses. They also developed several large test cases (GasLib 2014). These problems

form the basis for many of the problems we consider in this paper.

3. Problem Formulation

This section derives the problem formulation in stepwise refinements. It starts by

deriving a disjunctive program that is then refined by introducing flux variables.

3.1. Technical bases

Gas dynamics along a pipe is described by a set of partial differential equation

(PDE) with both spatial and temporal dimensions (Osiadacz 1987, Thorley and

Tiley 1987, Sardanashvili 2005):

∂tρ+ ∂x(ρv) = 0, (1)

∂t(ρv) + ∂x(ρv2) + ∂xp=− f

2D
ρv|v| − g sinαρ, (2)

p=ZRT ρ. (3)

Gas velocity v, pressure p, and density ρ are defined for every point x along the

pipe and evolve over time t. Z represents the gas compressibility factor, T the

temperature, and R the gas constant.

Equation (1) enforces mass conservation, Equation (2) describes momentum bal-

ance, and Equation (3) defines the ideal gas thermodynamic relation. In Equation

(2), the first term on the right-hand side represents the friction losses in a pipe
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of diameter D with friction factor f . The second term accounts for the gain or

loss of momentum due to gravity g if the pipe is tilted by an angle α. In practice,

frictional losses dominate the gravitational term which is dropped. One can also

safely assume that the temperature does not fluctuate significantly along a pipe.

If temperature gradients are significant, a spatial decomposition, splitting the pipe

into temperature stable segments, can be adopted.

Taking into account these assumptions, Equations (1),(2), and (3) are rewritten

in terms of pressure p and mass flux φ= ρv:

∂tp=−ZRT ∂xφ, (4)

∂xp
2 =−fZRT

2D
φ|φ|, (5)

Gas flow equation In this work, we assume that the system has reached a steady

state after its first commissioning and hence all time derivatives are set to zero.

Given this assumption, a Gas Transmission Network (GTN) is represented by a

graph G = (N ,A) where N denotes the set of nodes representing connection points

and A denotes the set of arcs. An arc is a triplet (a, i, j) consisting of a unique

identifier a linking nodes i and j. For convenience, such a triplet (a, i, j) will be

denoted by aij in the following. Observe that parallel arcs can link the same pair

of nodes, e.g., we have arcs aij and a∗ij in a GTN where a and a∗ are the unique

identifiers of these arcs.

By setting the time derivatives to zero, the total gas mass flux along a pipe aij

becomes constant, i.e., φi = φj = φa. Hence Equations (4) and (5) simplify to

p2i − p2j =waφa|φa|. (6)

where wa is the flow resistance parameter defined by the physical properties of the

pipeline and the volumetric characteristics of the gas and given by (De Wolf and

Smeers 2000):

wa = c

(
D5

a

Laρa

)
,
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whereDa and La correspond to the diameter and length of the pipeline, respectively,

c = 96.074830×10−15

zTSg
is a constant defined by the compressibility gas factor z, the

average gas flowing temperature T and the gas specific gravity Sg, which are all

assumed constant in this isothermal flow study. In addition, ρa is computed as:

ρa = 1

/[
2 log

(
3.7Da

ε

)]2
,

with ε as the absolute rugosity of the pipeline.

Gas System Components The problem formulation considers pipes, compres-

sors, short pipes, resistors, and valves. Compressors, short pipes, and valves are

modelled as lossless pipelines, i.e., wa = 0. A compressor installed on arc aij can

increase/decrease the pressure ratio αa = pj/pi, within the bounds αl
a and αu

a,

where αl
a = 1 and αu

a ≥ 1 are typical bounds for most compressors. These compres-

sors are modelled as bi-directional compressors to perform compression based on

the flux direction, i.e., they are able to invert the ratio to αa = pi/pj if the flux is

going from j to i.

A standard valve features a binary on/off switch and a control valve has a con-

tinuous switching mechanism to adjust pressure. Thus a valve installed on arc aij

can increase/decrease the pressure ratio αa = pj/pi, within the bounds αl
a and αu

a,

where αl
a > 0 and αu

a ≤ 1 are typical bounds for most control valves and αl
a =αu

a = 1

for all valves. Finally, a resistor is modelled as a pipeline with a particular (small)

loss coefficient (w).

Expansion Variables The set of arcs A = Ae ∪An includes existing arcs Ae =

Pe ∪ Ve ∪ Ce, as well as new arcs An = Pn ∪ Cn. In this notation, Pe denotes

the set of installed pipelines, resistors, and short pipes. Ve and Ce denote the set

of existing (control and regular) valves and compressors, respectively. Pn and Cn
denote the set of new pipelines and new compressors, respectively. A binary variable
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Figure 1 The Gas Flow Equation f(x, y) = y−wx|x|.

zpa is assigned for each new pipe aij in Pn to model the expansion decision, i.e.,

zpa = 1 if pipeline aij is installed and zpa = 0 otherwise. Variables zca,∀a ∈ Cn, have

an equivalent interpretation for new compressors. A binary variable va is used to

control the switching actions of valves.

3.2. The Disjunctive Formulation

We start by observing that the pressure variables only appear in a square form when

introducing Equation (6) into the model. Thus, by performing a simple substitution

of βi = p2i ,∀i ∈N , we overcome the non-linearities due to the presence of pressure

values. Hence, Equation (6) can be written as

βi−βj =waφa|φa| (aij ∈Pe) (7)

Figure 1 illustrates the curve of the function f(x, y) = y −wx|x| defined by the

pressure drop equation (7).
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Since bi-directional compressor constraints depend on the flux direction, they

can only be modelled using on/off or disjunctive constraints (Edgar et al. 2001b,

Hijazi et al. 2012). i.e.,

βiα
l
a ≤ βj ≤ βiαu

a, if φa ≥ 0

βjα
l
a ≤ βi ≤ βjαu

a, if φa ≤ 0.
(8)

Given a set of injection (resp. demand) nodes I (resp. D)⊆N with mass flux

injection/demand qi, the problem consists in finding an assignment of the expan-

sion variables zpa,∀aij ∈ Pn, node pressures pi,∀i ∈N , and edge flows φa,∀aij ∈A,

satisfying the Weymouth equations (7), the compressor constraints (8), and the

following node conservation constraints:

∑
a=aij∈A

φa =
∑

a=aji∈A

φa + qi,∀i∈N ,

where qi = 0 for all i ∈ N \ (I ∪ D). Note that, in the steady-state flow model,

injections are balanced, i.e.,
∑

i∈N qi = 0. The objective is to minimize the cost of

expansion:

min
∑
a∈Pn

cpaz
p
a +

∑
a∈Cn

ccaz
c
a,

where cpa and cca represent the costs of installing a new pipeline and a new compres-

sor, respectively. The disjunctive formulation of the problem incorporating these

ideas is presented in Model 1, where βl
i = (αl

i)
2 and βu

i = (αu
i )2.
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Model 1 The Disjunctive Formulation of the GTNEP.

variables:

βi ∈ [βl
i,β

u
i ],∀i∈N - squared nodal pressure variables

φa ∈R, ∀aij ∈A - mass flux on pipe (i,j)

zpa ∈ {0,1}, ∀a∈Pn - binary expansion variables for pipes

zca ∈ {0,1}, ∀a∈ Cn - binary expansion variables for compressors

va ∈ {0,1}, ∀a∈ CV e ∪Ve - binary switch variables for valves

objective:

min
∑
a∈Pn

cpaz
p
a +

∑
a∈Cn

ccaz
c
a (9a)

subject to: ∑
a=aij∈A

φa =
∑

a=aji∈A

φa + qi, ∀i∈N , (9b)

βi−βj =waφa|φa|, ∀aij ∈Pe, (9c)

zpa(βi−βj) =waφa|φa|, ∀aij ∈Pn, (9d)

βiα
l
a ≤ βj ≤ βiαu

a, if φa ≥ 0, ∀aij ∈ Ce, (9e)

βjα
l
a ≤ βi ≤ βjαu

a, if φa ≤ 0, ∀aij ∈ Ce, (9f)

βiα
l
a ≤ βj ≤ βiαu

a, if φa ≥ 0 and zca = 1, ∀aij ∈ Cn, (9g)

βjα
l
a ≤ βi ≤ βjαu

a, if φa ≤ 0 and zca = 1, ∀aij ∈ Cn, (9h)

φa = 0 if zca = 0, ∀aij ∈ Cn, (9i)

βiα
l
a ≤ βj ≤ βiαu

a, if φa ≥ 0 and vca = 1, ∀aij ∈ Ve, (9j)

βjα
l
a ≤ βi ≤ βjαu

a, if φa ≤ 0 and vca = 1, ∀aij ∈ Ve, (9k)

φa = 0 if vca = 0, ∀aij ∈ Ce. (9l)
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3.3. The Formulation Based on Flux Direction Variables

This section presents a second formulation using flux direction variables to account

for the disjunctive nature of the constraints. For every arc aij ∈ A, we introduce

two binary variables y+a and y−a ∈ {0,1} with the following semantics: y+a = 1 (resp.

y−a = 1) if the flux moves from i to j (resp. from j to i) and 0 otherwise. The mass

flux direction is captured by the following system of constraints:

(1− y+a )
∑
k∈I
qk ≤ φa ≤ (1− y−a )

∑
k∈I
qk,

(1− y+a )βl
i ≤ βi−βj ≤ (1− y−a )βu

i ,

y+a + y−a = 1.

The first constraint ensures that y+a = 1 (resp. y−a = 1) if and only if φa ≥ 0 (resp.

φa ≤ 0). Note that
∑
k∈I
qk is an upper bound to the mass flux in a pipe. The second

constraint enforces a similar condition for the pressure difference. Using the vari-

ables and constraints described above, the pressure drop equation (7) can now be

written without absolute value as(
y+a − y−a

)
(βi−βj) =waφ

2
a,

and the bi-directional compressor constraints are written as

βiα
l
a− (1− y+a )(βu

i α
l
a−βl

j)≤ βj ≤ βiα
u
a + (1− y+a )(βu

j −βl
iα

u
a),∀aij ∈ Ce, (10)

βjα
l
a− (1− y−a )(βu

j α
l
a−βl

i)≤ βi ≤ βjα
u
a + (1− y−a )(βu

i −βl
jα

u
a),∀aij ∈ Ce, (11)

βiα
l
a− (2− y+a − zca)(βu

i α
l
a−βl

j)≤ βj ≤ βiα
u
a + (2− y+a − zca)(βu

j −βl
iα

u
a), ∀aij ∈ Cn, (12)

βjα
l
a− (2− y−a − zca)(βu

j α
l
a−βl

i)≤ βi ≤ βjα
u
a + (2− y−a − zca)(βu

i −βl
jα

u
a), ∀aij ∈ Cn, (13)

− zca
∑
k∈I

qk ≤ φa ≤ zca
∑
k∈I

qk,∀aij ∈ Cn. (14)

The bi-directional valve constraints are written as

βiα
l
a− (2− y+a − va)(βu

i α
l
a−βl

j)≤ βj ≤ βiα
u
a + (2− y+a − va)(βu

j −βl
iα

u
a), ∀aij ∈ Ve, (15)

βjα
l
a− (2− y−a − va)(βu

j α
l
a−βl

i)≤ βi ≤ βjα
u
a + (2− y−a − va)(βu

i −βl
jα

u
a), ∀aij ∈ Ve, (16)

− va
∑
k∈I

qk ≤ φa ≤ va
∑
k∈I

qk, ∀aij ∈ Ve. (17)
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Model 2 The MINLP Formulation of the GTNEP.

variables:

βi ∈ [βl
i,β

u
i ], ∀i∈N - squared pressure level variables

φa ∈R, ∀aij ∈A - mass flux on pipe (i,j)

zpa ∈ {0,1}, ∀aij ∈Pn - binary expansion variables for pipes

y+a , y
−
a ∈ {0,1}, ∀aij ∈A - binary flux direction variables

zca ∈ {0,1}, ∀aij ∈ Cn - binary expansion variables for compressors

va ∈ {0,1}, ∀aij ∈ CV e ∪Ve - binary switch variables for valves

objective:

min
∑
a∈Pn

cpaz
p
a +

∑
a∈Cn

ccaz
c
a (18a)

subject to: ∑
aij∈A

φa =
∑
aji∈A

φa + qi, ∀i∈N , (18b)

(
y+a − y−a

)
(βi−βj) =waφ

2
a, ∀aij ∈Pe, (18c)

zpa
(
y+a − y−a

)
(βi−βj) =waφ

2
a, ∀aij ∈Pn, (18d)(

1− y+a
)∑

k∈I

qk ≤ φa ≤
(
1− y−a

)∑
k∈I

qk, ∀aij ∈A, (18e)

(
1− y+a

)
βl
i ≤ βi−βj ≤

(
1− y−a

)
βu
i , ∀aij ∈P, (18f)

(10)− (17) (18g)

y+a + y−a = 1, ∀aij ∈A. (18h)

The complete Mixed-Integer NonLinear Programming (MINLP) formulation based

on flux direction variables is summarized in Model 2. Model 2 is non-convex due

to Constraints (18c)-(18d).
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4. A Convex Relaxation of the GTNEP

This section introduces a new mixed-integer second-order cone relaxation for

Model 2.

4.1. The Variables

For every pipe aij ∈ P, the relaxation introduces the auxiliary variable γa repre-

senting the product in Equations (18c)-(18d), i.e.,

γa =
(
y+a − y−a

)
(βi−βj), ∀aij ∈P. (19)

This product is then linearized by a standard relaxation introduced by McCormick

(1976) for bilinear functions, i.e.,

γa ≥ βj −βi +
(
βl
i−βu

j

)
(y+a − y−a + 1) (20)

γa ≥ βi−βj +
(
βu
i −βl

j

)
(y+a − y−a − 1) (21)

γa ≤ βj −βi +
(
βu
i −βl

j

)
(y+a − y−a + 1) (22)

γa ≤ βi−βj +
(
βl
i−βu

j

)
(y+a − y−a − 1) (23)

This linearization is exact, since (y+a − y−a ) take only discrete values McCormick

(1976).

4.2. The Constraints

After substituting γa for (y+a − y−a ) (βi − βj), the non-convex, quadratic, equality

constraints (18c) can now be relaxed into

γa ≥waφ
2
a, ∀aij ∈Pe. (24)

The on/off constraints (18d) represent another challenge for convexifying Model

2. These constraints can be written as

γa =waφ
2
a if zpa = 1, ∀aij ∈Pn, (25)
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with a disjunctive second-order cone relaxation defined as

γa ≥waφ
2
a, if zpa = 1 (aij ∈Pn). (26)

Perspective formulations introduced by Hijazi et al. (2012) can be used to formulate

the convex hull of such on/off constraints, giving the following rotated second-order

cone constraint:

zpaγa ≥waφ
2
a, ∀aij ∈Pn. (27)

The complete Mixed-Integer Second-Order Cone Programming (MISOCP) relax-

ation is presented in Model 3.

4.3. The Integer Cuts

The MINLP and MISOCP formulations presented in Models 2 and 3 can be

strengthened by introducing the following valid integer cuts:

∑
aij∈A

y+a +
∑
aji∈A

y−a ≥ 1, ∀i∈ I (29)

∑
aji∈A

y+a +
∑
aij∈A

y−a ≥ 1, ∀i∈D (30)

Constraints (29) are generated for each injection node i ∈ I: They state that at

least one connected arc has an outgoing flow, taking the orientation of the arc into

account to select the proper variables (y+a for arcs leaving i and y−a for arcs coming

to i). Constraints (30) follow the same reasoning for demand nodes i∈D.

For a node i with degree two and no injection/demand (qi = 0), the following

integer cut is valid 

y+a = y+a∗ if aji, a
∗
ik ∈A

y+a = y−a∗ if aji, a
∗
ki ∈A

y−a = y+a∗ if aij, a
∗
ik ∈A

y−a = y−a∗ if aij, a
∗
ki ∈A

(31)
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Model 3 The MISOCP Relaxation for the GPNEP.

variables:

βi ∈ [βl
i,β

u
i ], ∀i∈N - squared pressure level variables

φa ∈R, ∀aij ∈A - mass flux on pipe (i,j)

zpa ∈ {0,1}, ∀aij ∈Pn - binary expansion variables for pipes

y+a , y
−
a ∈ {0,1}, ∀aij ∈A - binary flux direction variables

γa ∈R+, ∀aij ∈P - auxiliary variables for bilinear terms

zca ∈ {0,1}, ∀aij ∈ Cn - binary expansion variables for compressors

va ∈ {0,1}, ∀aij ∈ CV e ∪Ve - binary switch variables for valves

objective:

min
∑
a∈Pn

cpaz
p
a +

∑
a∈Cn

ccaz
c
a (28a)

subject to:

(20)− (23), (28b)∑
aij∈A

φa =
∑
aji∈A

φa + qi, ∀i∈N , (28c)

γa ≥waφ
2
a, ∀aij ∈Pe, (28d)

zpaγa ≥waφ
2
a, ∀aij ∈Pn, (28e)

−
(
1− y+a

)∑
k∈I

qk ≤ φa ≤
(
1− y−a

)∑
k∈I

qk, ∀aij ∈A, (28f)

(
1− y+a

)
βl
i ≤ βi−βj ≤

(
1− y−a

)
βu
i , ∀aij ∈P, (28g)

(10)− (17), (28h)

y+a + y−a = 1, ∀aij ∈A. (28i)
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It can be easily derived using the flux conservation constraints (28c) stating that,

for a node with degree two and zero injection/demand, the flux direction of the

incoming arc determines the flux direction of the outgoing arc.

Finally, we can derive integer cuts for parallel pipelines:

y+a∗ = y+a , ∀aij, a∗ij ∈A. (32)

Equations (32) state that parallel pipelines share the same flow direction. The

validity of this cut follows from the pressure drop equations (18c) and the fact that

parallel pipelines share the same pair of pressure variables.

4.4. Converting the Convex Relaxation into a Feasible Solution to the
GTNEP

The solution to the relaxed Model 3 is not always feasible for Model 2. To obtain

a feasible solution, we fix all the binary variables and use a nonlinear optimization

solver to find a (locally) optimal solution to the resulting problem. In this case,

since Model 3 is a relaxation and all variables associated with optimality are fixed,

any feasible solution obtained by Model 2 is globally optimal. Note, when the local

solver does not converge to a feasible solution, it is possible to use other primal

solutions obtained when solving Model 3 and repeat the process to obtain a feasible,

locally optimal solution.

5. Computational Experiments

This section studies the performance of the proposed MINLP and MISOCP models

and compares them with a model using a piecewise linear approximation. Section

5.1 describes the benchmarks and Section 5.2 the experimental setting and the

various algorithms used. Section 5.3 and 5.4 report the computational results on

the Belgian network and larger networks respectively, while Section 5.5 reports on

the importance of the integer cuts.
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5.1. The Benchmarks

5.1.1. The Belgian Network Table 1 shows the list of test instances based on

the Belgian network depicted in Figure 2. The table shows, for each benchmark,

the number of nodes, sources, terminals, base pipelines, and compressor stations,

as well as the number of new components (pipelines and compressors) that can

potentially be added to the network topology. Note that benchmark A in Table 1

is the real Belgium gas transmission network and Table 3 shows the node charac-

teristics for this 20-node, 24-pipeline, 3-compressor network. The reader is referred

to the appendix of (De Wolf and Smeers 2000) for further details on this network.

Instances A1−A3 captures various possible expansions to this base network. Figure

3 and Tables 5 and 6 depict the location of the potential expansion plans and their

associated data. The network expansion plans were designed for the Belgian gas

network in order to capture events such as increase of the number of nominations

and forecasting demand at the city gates, as well as excessive stress of the available

supplies at the sources.

Instances B1 − B4 are based on the “optimization from scratch” benchmarks

from (De Wolf and Smeers 2000) and (Babonneau et al. 2012), where an increasing

weighting factor α= {1,1.6,5, and 6}, respectively, was used on the investment cost

function. In these papers, the authors use the Belgian gas network for a variation

of the GTNEP problem that minimizes a combination of operating and expansion

costs (the combinations are weighted by α). These benchmarks specify minimum

and maximum production levels (see Table 4). Since the GTNEP assumes known

gas nomination and production profiles, we computed load and compression profiles

based on optimal pressures provided in (Babonneau et al. 2012). Our instances

also employ the same cost function as in (Babonneau et al. 2012) to compute the

associated costs for building new pipelines, i.e.,

Lij

(
1.04081−6D2.5

ij + 11.2155
)
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Figure 2 The Belgian Gas Network Base Configuration (case A).

where Dij and Lij are the diameter and length of pipeline (i, j), respectively.

(Babonneau et al. 2012) assumed continuous diameter choices. However, we used

discrete diameter values corresponding to the solution of (De Wolf and Smeers

2000) and Table 4 of (Babonneau et al. 2012). For completeness, the diameter

choices are described in Table 2. Note that the exclusive-set constraint is slightly

different for these cases due to the existence of pre-defined parallel pipes. Within in

each row of Table 2, the solution must contain one and only diameter choice, and

each set of parallel pipes must choose diameters from the same column of Table 2.

5.1.2. Larger Networks Table 7 describes the main data points for the larger

benchmarks. Instance D is a real-life network case whose data is restricted for

confidentiality reasons and we are not allowed to disclose its map or load profile.

Instances E,F and G are part of a German network whose data, including the
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Network configuration

Base New

Ref |N | |I| |D| |Pe| |Ce| |Pn| |Cn|

A 20 6 9 24 3 0 0

A1 22 6 9 24 3 4 2

A2 25 6 9 24 3 7 4

A3 29 6 9 24 3 12 5

B1 20 6 9 0 0 135 12

B2 20 6 9 0 0 135 12

B3 20 6 9 0 0 135 12

B4 20 6 9 0 0 135 12

Table 1 Test Instances Based on the Belgian Network.

Figure 3 The Belgian Gas Network Expansion Plans (Instances A1–A3).

network configuration, maps, and load profiles, can be found in (Pfetsch et al.

2012).

5.2. The Algorithms and the Experimental Setting

This section reports computational results for three approaches:

1. The MINLP formulation of the GTNEP as shown in Model 2;
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2. The MISOCP relaxation of the GTNEP as shown in Model 3 followed by the

conversion presented in Section 4.4;

3. A MIP formulation based on a Piecewise Linear Approximation (PLA-MIP)

of the quadratic functions. The PLA-MIP formulation is based on the PLA-

incremental (δ) model derived by Markowitz and Manne (1957), which was

shown in (Correa-Posada and Sánchez-Mart́ın 2014) to have computational

advantages over its counterpart formulations because of its numerical stabil-

ity (Keha et al. 2004). We use 60 linear segments based on preliminary com-

putational experiments.

All the experiments were conducted on a computer with two Intel Xeon CPU X5670

processors (2.93GHz) with 6 cores each. The computer has 64 GB DIMM 1333MHz

RAM and runs the Ubuntu 14.04 LTS operating system. The MINLP formulation

is solved using SCIP 3.1.1 (Achterberg 2009) compiled with Ipopt 3.12.3 and Cplex

12.6. The PLA-MIP formulation is solved using CPLEX 12.6 (ILOG CPLEX Opti-

mization Studio 2013). The MISCOP formulation is solved with CPLEX 12.6 and

the conversion is performed by IPOPT 3.12.3 (Wchter and Biegler 2006).

5.3. Results on the Belgian Network

Table 8 shows the sizes of the underlying models in terms of the number of binary

and continuous variables and the number of linear and quadratic constraints for

each instance. Table 9 presents the computational results and reports the CPU time

in seconds and the upgrade cost in $× 103 for each approach. The computational

results show that the MISOCP approach outperforms both the MINLP and the

PLA-MIP and that the solution to the MISOCP always converts to a feasible and

optimal solution. The PLA-MIP approach has both computational and accuracy

issues, as it significantly underestimates the optimal objective value and is rather

slow.

The results for problems B1–B4 are interesting as the expansion costs are con-

siderably lower than reported by Babonneau et al. (2012) for the same operating
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conditions. In Table 4 of their paper, Babonneau et al. (2012) report expansion

costs of 15669, 14252, 11610, and 11274 for B1–B4. Their solutions are feasible

and have the same operating cost as our model. Of course, it is important to note

than their solutions were obtained through a model that minimizes operating and

expansion costs, which could make it harder to determine the best design for par-

ticular operating conditions. Still, this comparison highlights the strengths of the

formulation proposed in this paper.

5.4. Scalability Results

We now study whether the results on the Belgian networks continue to hold on

larger instances. To assess scalability and robustness, we stress the networks by

gradually increasing the production and consumption levels from 5% up to 300%

while considering solely the addition of a parallel pipe for each existing pipeline in

the base configuration of the gas systems (i.e., |Cn|= 0). Table 8 presents the sizes

of the mathematical models. In all of these results, we denote whether or not the

MISOCP and MINLP solutions are exact, lower bounds, or upper bounds on the

MINLP solutions. Lower bounds for the MINLP are also derived by subtracting

the optimality gap from any primal feasible solution.

Table 11 presents the computational results on instance D which is based on

proprietary natural gas network in the United States. Observe that the PLA-MIP

model systematically underestimates the objective function and returns infeasible

solutions. As we will see, this is systematic on all larger benchmarks. The MISOCP

approach returns optimal solutions for all but one case. Both the MINLP and

MISOCP prove infeasibility of the most stressed network.

Table 12 presents the computational results on instance E which is based on

gaslib-40 (GasLib 2014). The MISOCP approach returns optimal solutions, or

proves infeasibilities in all cases. The MISOCP model is one order of magnitude

faster than the MINLP model.
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Table 13 presents the computational results on instance F, which is based on

gaslib-135 (GasLib 2014) and is particularly challenging. The MINLP approach

finds optimal solutions up to the 25% case and spends considerable time doing so.

It finds an upper bound to the 50% case but does not return any information on the

75% and 100% cases. In contrast, the MISOCP approach finds optimal solutions

to the 0%, 5%, 25%, and 50% cases, all below 10 seconds, It finds lower bounds on

the 75% and 100% cases reasonably fast. Both the MINLP and the MISOCP prove

infeasibility of the three most stressed instances.

Table 14 presents very interesting results for instance G, which is based on gaslib-

582 (GasLib 2014). The MINLP approach cannot find feasible solutions on any

of the cases but the 300% case which is shown infeasible. Both the MINLP and

PLA-MIP approaches have numerical issues with these problems. The MISOCP

approach finds optimal solutions up to the 50% case and for the 150% case and

proves infeasibilities for the 200% and 300% cases. For the 75%–125% cases, the

MISCOP times out but returns upper bounds to the optimal solution with duality

gaps ranging from 7.65% to 51.3%.

Overall, these results demonstrate the benefits of the MISOCP approach. The

MISOCP approach almost always finds optimal solutions much faster than the

MINLP when both return optimal solutions. It also finds optimal solutions or proves

infeasibility in many case for the larger benchmarks, while the MINLP approach

does not return feasible solutions.

5.5. The Importance of Integer Cuts

Table 15 describes the performance of the MISCOP on instances E, F, and G when

the integer cuts are not used. As can be seen, the integer cuts, which were used both

in the MINLP and MISOCP models, are critical to obtain an efficient MISOCP

implementation.
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6. Concluding Remarks

This paper considered the expansion of natural gas networks, a critical process

involving substantial capital expenditures with complex decision-support require-

ments. It proposed a convex mixed-integer second-order cone relaxation for the gas

expansion planning problem under steady-state conditions in order to address the

fact that state-of-the-art global optimisation solvers are unable to scale up to real-

world size instances. The resulting MISOCP model offers tight lower bounds with

high computational efficiency. In addition, the optimal solution of the relaxation

can often be used to derive high-quality solutions to the original problem, leading

to provably tight optimality gaps and, in some cases, global optimal solutions. The

convex relaxation is based on a few key ideas, including the introduction of flux

direction variables, exact McCormick relaxations, on/off constraints, and integer

cuts. Numerical experiments are conducted on the traditional Belgian gas network,

as well as other real larger networks. The computational results demonstrate that

the MISOCP model is faster than the originating MINLP model by one or two

orders of magnitude on the Belgian network instances. They also show that the

MISOCP model scales well to large and stressed instances.
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Pipe D1 D2 D3 D4 D5

(1,2) A 890.0 650.3 610.8 524.7 512.1

(1,2) B 890.0 650.3 610.8 524.7 512.1

(2,3) A 890.0 834.7 784.0 673.5 657.3

(2,3) B 890.0 834.7 784.0 673.5 657.3

(3,4) 890.0 998.9 938.3 806.0 786.7

(5,6) 590.1 604.3 567.6 487.6 475.9

(6,7) 590.1 0 X X X

(7,4) 590.1 671.7 630.9 542.0 529.0

(4,14) 890.0 829.9 779.5 669.7 653.6

(8,9) A 890.0 902.8 848.0 728.4 711.0

(8,9) B 395.5 902.8 848.0 728.4 711.0

(9,10) A 890.0 902.8 848.0 728.4 710.9

(9,10) B 395.5 902.8 848.0 728.4 711.0

(10.11) A 890.0 787.6 739.8 635.5 620.1

(10.11) B 395.5 787.6 739.8 635.5 620.4

(11,12) 890.0 979.8 920.3 790.6 771.6

(12,13) 890.0 915.1 859.6 738.4 720.7

(13,14) 890.0 952.6 894.7 768.6 750.1

(14,15) 890.0 1201.0 1128.0 969.0 945.8

(15,16) 890.0 1038.4 975.3 837.9 817.7

(11,17) 395.5 469.0 440.5 378.4 369.3

(17,18) 315.5 469.0 440.5 378.4 369.3

(18,19) 315.5 469.0 440.5 378.4 369.3

(19,20) 315.5 448.9 421.7 362.2 353.5

Table 2 Pipe diameter choices from Table 4 of (Babonneau et al. 2012)
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(Loads) (Pressure)

Node (Loc.) Type(∗) L L L P P

1 (Zeebrugge) I 8.87 11.594 10.911288 0 77

2 (Dudzele) I 0 8.4 8.4 0 77

3 (Brugge) D −∞ -3.918 -3.918 30 80

4 (Zomergem) 0 0 0 0 80

5 (Loenhout) I 0 4.8 2.814712 0 77

6 (Antwerp) D -∞ -4.034 -4.034 30 80

7 (Ghent) D -∞ -5.256 -5.256 30 80

8 (Voeren) I 20.34 22.01 22.012 50 66.2

9 (Berneau) 0 0 0 0 66.2†

10 (Liège) D -∞ -6.365 -6.365 30 66.2

11 (Warnand) 0 0 0 0 66.2

12 (Namur) D -∞ -2.12 -2.12 0 66.2

13 (Anderlues) I 0 1.2 1.2 0 66.2

14 (Péronnes) I 0 0.96 0.96 0 66.2

15 (Mons) D -∞ -6.848 -6.848 0 66.2

16 (Blaregnies) D -∞ -15.616 -15.616 50 66.2

17 (Wanze) 0 0 0 0 66.2

18 (Sinsin) 0 0 0 0 63

19 (Arlon) D -∞ -0.222 -0.222 0 66.2

20 (Pétange) D -∞ -1.919 -1.919 25 66.2

Table 3 The Belgian Gas Network Data from (De Wolf and Smeers 2000). This data is used for the

A Problems. †- On Problems A1, A2, and A3,the pressure bounds are [0,59.851968], [0,59], and [0,59.85]

respectively.
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Load (L) profiles (MMscf)

Node B1 B2 B3 B4

1 9.5883 9.8225 9.8218 9.7205

2 8.1833 8.3447 8.1340 8.3628

3 -3.9180 -3.9180 -3.9180 -3.9180

4 0.0000 0.0000 0.0000 0.0000

5 4.0315 4.0432 4.0383 4.0364

6 -4.0315 -4.0432 -4.0383 -4.0364

7 -5.2413 -5.2644 -5.2562 -5.2644

8 22.012 22.0120 22.0120 22.0120

9 0.0000 0.0000 0.0000 0.0000

10 -6.4744 -6.4951 -6.3970 -6.3816

11 0.0000 0.0000 0.0000 0.0000

12 -2.1929 -2.1191 -2.1162 -2.0984

13 1.2162 1.3225 1.0802 1.1591

14 0.9840 0.6164 1.0776 1.0235

15 -6.4056 -6.5885 -6.8366 -6.8857

16 -15.6119 -15.5904 -15.4616 -15.5899

17 0.0000 0.0000 0.0000 0.0000

18 0.0000 0.0000 0.0000 0.0000

19 -0.2059 -0.2312 -0.2269 -0.2164

20 -1.9337 -1.9112 -1.9131 -1.9236

Table 4 The Load Profiles Computed from Optimal Pressures Provided in (Babonneau et al. 2012).

All compression ratios were derived as 1.0.
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Node Town Lat. Long. P (∗) P
(∗)

Instance A1

21 Bois 50.400676 5.855991 14 66
22 Koninklijke 50.806672 4.481877 14 66

Instance A2

21 Heist 51.095651 4.744616 20 70
22 Zoutleeuw 50.858734 5.115404 20 70
23 Beaufays 50.552195 5.670182 20 70
24 Gouvy 50.231757 5.966813 20 70
25 Ettelbruck 49.861370 6.073930 20 70

Instance A3

21 Jabbeke 51.204699 3.086440 14 66
22 Torhout 51.072867 3.118026 14 66
23 Kortrijk 50.790711 3.230636 14 66
24 Bois-de-Barry 50.580151 3.521773 14 66
25 Lobbes 50.353208 4.263261 20 70
26 Senzeille 50.124840 4.433550 20 70
27 Gedinne 49.980230 4.851030 20 70
28 Chiny 49.806832 5.274004 20 70
29 Pigneule 49.735878 5.471758 20 70

Table 5 Locations of Nodes of the Expansion Plans for the Belgian Gas Network. These nodes do not

have injections.
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Node Node w c

Instance A1

9 21 0.929 67.19
21 18 0.808 77.26
6 22 0.785 79.50
22 14 0.766 81.44

Instance A2

5 21 1.052 59.29
21 21∗ Compressor 1500.0
22 11 0.967 64.52
8 23 1.933 32.28
23 24 0.876 71.18
24 24∗ Compressor 1500.0
25 19 1.339 46.59
21∗ 22 0.980 63.65
24∗ 25 0.866 72.08

Instance A3

1 21 2.257 27.65
2 21 4.546 13.73
21 21∗ Compressor 1500.0
22 23 1.121 55.66
23 23∗ Compressor 1500.0
24 15 1.073 58.14
15 25 1.483 42.09
25 26 1.289 48.40
26 26∗ Compressor 1500.0
27 28 1.010 61.79
28 29 2.232 27.96
29 19 1.423 42.09
21∗ 22 2.448 25.50
23∗ 24 1.165 53.56
26∗ 27 1.071 58.28

Table 6 Locations of Pipes of the Expansion Plans for the Belgian Gas Network. * denotes

introduced dummy node for 0 length compressor arcs.
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Network configuration

Base New

Ref. |N | |I| |D| |Pe| |Ce| |Pn|

D 60 2 24 55 4 55

E 40 3 29 39 6 39

F 135 6 99 141 29 141

G 582 31 129 609 5 278

Table 7 Larger Instances of Gas Networks.

MINLP PLA-MIP MISOCP

Bench. BV CV LC QC BV CV LC QC BV CV LC QC

A 54 49 254 96 1494 1837 3931 0 54 73 398 24

A1 70 59 320 112 1750 2151 4605 0 66 91 488 28

A2 85 69 389 124 1945 2391 5120 0 78 107 575 31

A3 103 80 463 144 2263 2776 5954 0 91 128 679 36

B1,2,3,4 354 1154 464 357 7314 8737 19067 0 238 373 1850 116

Table 8 The Sizes of the Mathematical models for Belgian Network Instances. (BV: Binary variables,

CV: Continuous variables, LC: Linear constraints, QC: Quadratic constraints).
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MINLP PLA-MIP MISOCP
Bench. CPU Obj CPU Obj CPU Obj
A 0.02 0.0 0.6 0.0 0.03 0.0
A1 0.06 144 0.7 144 0.05 144
A2 0.06 1687 1.4 187 0.1 1687
A3 0.06 1780 1.9 280 0.06 1780
B1 1.89 11181 1089 10353 0.3 11181
B2 3.17 11181 1781 10361 0.6 11181
B3 3.53 11181 1538 10352 0.6 11181
B4 3.82 11181 1570 10352 0.3 11181

Table 9 Computational Results on the Belgian Network Instances: The Objective Value is in $ and

the CPU Time in Seconds.

MINLP PLA-MIP MISOCP)

Ref. BV CV LC QC BV CV LC QC BV CV LC QC

D 283 174 1093 440 6883 8330 18018 0 228 339 1753 110

E 207 124 792 312 4887 5920 12796 0 168 241 1260 78

F 763 446 2886 1128 17683 21430 46304 0 622 869 4578 282

G 2101 1469 8058 2256 35941 44433 92848 0 1823 2311 11442 564

Table 10 Size of the Mathematical Models: BV: Binary variables, CV: Continuous variables, LC:

Linear constraints, QC: Quadratic constraints.

Stresss MINLP PLA-MIP MISOCP
level CPU Obj CPU Obj CPU Obj

0% 0.1 0.00F 3.0 0.00 0.1 0.00F

5% 0.5 3.50F 1.8 0.00 0.6 3.50F

10% 1.6 23.83F 12.2 23.22 0.5 23.83F

25% 2.1 92.24F 14.0 83.99 0.6 92.24F

50% 1.5 145.58F 14.8 136.2 0.5 145.58F

75% 0.6 191.80F 11.0 184.0 0.6 191.8F

100% 3.0 287.00F 12.5 209.03 0.7 281.994
125% 0.2 † 1.6 † 0.2 †

Table 11 Computational Results on Instance D. Obj: $× 106, CPU time: in seconds, Solution status:

F = Proven optimal; 4 = Lower bound; 5 = Upper bound; † = Infeasible; ‡ = Unknown.
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Stress MINLP PLA-MIP MISOCP
level CPU Obj Gap CPU Obj Gap CPU Obj Gap

0% 1.6 0.00F 0.0 10.2 0.00 0.0 0.2 0.00F 0.0
5% 6.3 11.92F 0.0 23.5 0.00 0.0 0.7 11.92F 0.0

10% 6.8 32.83F 0.0 20.6 0.00 0.0 0.4 32.83F 0.0
25% 5.6 41.08F 0.0 30.9 32.8 0.0 0.6 41.08F 0.0
50% 8.1 156.06F 0.0 11.5 32.8 0.0 0.9 156.06F 0.0
75% 12.0 333.01F 0.0 21.8 121.1 0.0 0.7 333.00F 0.0

100% 12.1 551.64F 0.0 17.5 122.37 0.0 0.8 551.64F 0.0
125% 2.2 † – 33.0 256.22 0.0 0.4 † –
150% 0.8 † – 27.6 † – 0.3 † –

Table 12 Computational Results on Instance E. Obj: $× 106, CPU time: in seconds, Solution status:

F = Proven optimal; 4 = Lower bound; 5 = Upper bound; † = Infeasible; ‡ = Unknown.

Stress MINLP PLA-MIP MISOCP
level CPU Obj Gap CPU Obj Gap CPU Obj Gap

0% 0.85 0.0F 0.0 136.3 0.0 0.0 1.3 0.0F 0.0
5% 101.8 0.0F 0.0 120.0 0.0 0.0 1.0 0.0F 0.0

10% 36707.3 15.04F 0.0 125.8 0.0 0.0 2.4 0.04 0.0
25% 457.9 60.4F 0.0 124.4 0.0 0.0 4.4 60.4F 0.0
50% 86962.9 182.75 91.7 166.7 60.4 0.0 7.6 95.3F 0.0
75% 86933.9 ‡ – 119.8 60.4 0.0 40.5 451.54 0.0

100% 87334.2 ‡ – 119.5 149.6 0.0 104.6 1234.24 0.0
125% 6.8 † – 125.7 149.6 0.0 1.8 † 0.0
150% 3.4 † – 206.7 486.0 0.0 1.1 † 0.0
200% 0.4 † – 11.6 † – 0.4 † 0.0

Table 13 Computational Results on Instance F. Obj: $× 106, CPU time: in seconds, Solution status:

F = Proven optimal; 4 = Lower bound; 5 = Upper bound; † = Infeasible; ‡ = Unknown.
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Stress MINLP PLA-MIP MISOCP
level CPU Obj Gap CPU Obj Gap CPU Obj Gap

0% 86400.0 ‡ – 62012.9 6.87 0.0 2.7 0.00F 0.0
5% 86400.0 ‡ – 29655.1 2.78 0.0 4.4 0.00F 0.0

10% 86400.0 ‡ – 86400.0 4.65 40.22 21.1 0.00F 0.0
25% 86400.0 ‡ – 2153.2 8.65 0.0 40.9 0.00F 0.0
50% 86400.0 ‡ – 3670.2 † – 164.0 14.93F 0.0
75% 86400.0 ‡ – 0.21 † – 86402.1 111.995 51.3

100% 86400.0 ‡ – 5.31 † – 86401.6 332.535 7.65
125% 86400.0 ‡ – 5.31 † – 86402.4 524.825 11.74
150% 86400.0 ‡ – 5.29 † – 53321.3 590.84F 0.0
200% 86400.0 ‡ – 5.02 † – 16.7 † –
300% 4.4 † – 0.12 † – 0.9 † –

Table 14 Computational Results on Instance G. Obj: $× 106, CPU time: in seconds, Solution status:

F = Proven optimal; 4 = Lower bound; 5 = Upper bound; † = Infeasible; ‡ = Unknown.

Stress Instance E Instance F Instance G
level CPU Obj Gap CPU Obj Gap CPU Obj Gap

0% 0.9 0.00F 0.0 3310.9 0.00F 0.0 242.2 0.00F 0.0
5% 1.8 11.92F 0.0 83.5 0.00F 0.0 14.2 0.00F 0.0

10% 2.7 32.83F 0.0 120.7 0.004 0.0 301.5 0.00F 0.0
25% 3.2 41.08F 0.0 86419.5 60.445 75.1 86400.3 ‡ –
50% 8.5 156.06F 0.0 17693.1 95.32F 0.0 8271.05 14.93F 0.0
75% 6.7 333.01F 0.0 86409.9 451.59 59.2 86404.4 111.995 79.4

100% 3.8 551.64F 0.0 86404.5 1234.23 44.2 87193.1 332.325 87.9
125% 1.8 † – 90.9 † – 86401.8 524.825 16.1
150% 1.0 † – 7.5 † – 86408.9 245.804 58.5
200% 0.7 † – 2.0 † – 13318.6 † –
300% 0.0 † – 0.0 † – 3.0 † –

Table 15 Computational Results on Instances E, F, and G without the Integer Cuts. Obj: $× 106,

CPU time: in seconds, Solution status: F = Proven optimal; 4 = Lower bound; 5 = Upper bound; † =

Infeasible; ‡ = Unknown


