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Optimal compression in natural gas networks: a
geometric programming approach

Sidhant Misra, Michael W. Fisher, Scott Backhaus, Russell Bent, Michael Chertkov, Feng Pan

Abstract—Natural gas transmission pipelines are complex sys-
tems whose flow characteristics are governed by challenging non-
linear physical behavior. These pipelines extend over hundreds
and even thousands of miles. Gas is typically injected into
the system at a constant rate, and a series of compressors
are distributed along the pipeline to boost the gas pressure to
maintain system pressure and throughput. These compressors
consume a portion of the gas, and one goal of the operator is to
control the compressor operation to minimize this consumption
while satisfying pressure constraints at the gas load points. The
optimization of these operations is computationally challenging.
Many pipelines simply rely on the intuition and prior experience
of operators to make these decisions. Here, we present a new
geometric programming approach for optimizing compressor op-
eration in natural gas pipelines. Using models of real natural gas
pipelines, we show that the geometric programming algorithm
consistently outperforms approaches that mimic existing state of
practice.

Index Terms—Natural Gas Network, Optimal Compression,
Geometric Programming, Dynamic Programming

I. INTRODUCTION: HISTORY & MOTIVATION

IN recent years, worldwide natural gas reserves have ex-
panded at a rapid pace. The invention and application

of hydraulic fracturing in the US has enabled the economic
capture of many sources of unconventional natural gas [1]
while improved exploration techniques and increased offshore
activity has led to increased conventional reserves in several
countries. The increased availability and lower cost of gas
in these regions are making it more attractive economically.
In the US, the economic advantage of gas is pushing out
coal (and to a lesser extent fuel oil) as a primary source
of energy. In addition, the lower CO2 emissions from gas
mitigate much of the uncertainty related to the future economic
cost of carbon emissions. These properties make gas a very
attractive bridge fuel to a low carbon economy, and this shift
is already occurring in several regions of the US electric sector
[2]. The high cost and long economic lifetime of the electrical
generation assets acts to lock in this shift to a large degree.

The cost of the fuel is not the only advantage of natural
gas over coal and fuel oil. From the planning and construction
point of view, the physical footprint and total emissions of gas
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turbines is smaller than coal or fuel oil-based generation easing
the difficulty of siting and permitting. From an operational
perspective, gas turbines can quickly change their generation
output in response to changes in intermittent renewable gen-
eration such as wind. This ability to move quickly is also
manifest in the ability to quickly start up a gas turbine from
a cold condition (especially single-cycle gas turbines). The
combination of these benefits is driving the higher penetration
of gas turbines into the electrical grid. The Independent System
Operator of New England (ISO-NE) is a prime example. Over
the two decades, the level of gas generation in ISO-NE has
increased from 5% to 50% of total generation capacity [3].
However, the benefits of natural gas are not without some risk.
As the level of natural gas-based generation increases, larger
and perhaps more variable,1 natural gas loads will effect the
operations of the large natural gas transmission pipelines that
bring the gas from the sources to the generator and other gas
loads. The impact is not just one-way. The finite capacity of
these gas transmission pipelines will limit the availability of
gas which will directly affect ability of natural gas generators
to respond to grid operator control commands.

The majority of the distance between gas sources and gas
generators and other loads is covered by large, high-pressure
transmission pipelines. High pressure and density enable high
throughput with the pressure drop driving the gas through
the pipeline. As the pressure falls, the flow velocity increases
(under constant mass flux) and the pressure then falls even
faster. Gas compressors are used to maintain the throughput
of pipeline and maintain the required pressure at the customer
load points. Often these gas compressors are driven by gas
engines that burn natural gas from the pipeline itself. Typical
designs of transmission pipelines places compressors every
∼50-100 miles. In large transmission pipelines that span 600
miles or more, compressors consume (burn) ∼ 2− 5% of the
transmitted gas. This burn is a cost of transporting the gas,
and who bears that cost affects the goals of the operational
optimizations (discussed below). Complicating the domain, the
bearer of this cost differs from country to country.

The difficulty and expense of building new or expanding
large-scale infrastructure coupled with the increasing (and the
potentially more time-variable) gas loads calls for improved
optimization of pipeline operations. However, the goals of
these optimizations must be aware of and developed within the
regulatory, market and ownership frameworks of the pipelines.
Here, we briefly review two existing frameworks that are

1Natural gas generation is often used to smooth the variability in renewable
energy sources.
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at opposite ends of this regulatory/ownership spectrum. Nor-
way presents a relatively simple framework. In Norway, gas
sources, gas pipelines, and the sale of gas inside and outside
the country is controlled by the government. Norway produces
more gas than can be domestically consumed and has strong
economic motivations to sell this excess to the rest of Europe.
The demand for the gas (and the available Norwegian gas
resource) is typically higher than the ability of Norway’s
pipeline network to transport the gas to markets at its border.
To increase sales and revenues, the pipeline operator’s primary
objective is to increase the pipeline throughput, and the gas lost
to compression offsets improvements in throughput making
the optimal compression problem important in this context.
The throughput on the Norwegian is complicated by the
differing gas compositions required by the buyers of the gas
and the differing compositions of the gas sources. See [4] for
a discussion of this problem.

In the US, gas markets have been deregulated for many
years [2]. The implication is that pipeline operators do not
own sources of gas nor are they involved in sourcing and
selling gas to consumers (gas distribution companies, in-
dustrial consumers, or gas turbine generators). Instead, the
pipeline operators are responsible for transporting the gas
and maintaining and expanding the pipelines. Gas is sold
in organized markets via bi-lateral arrangements between gas
suppliers and consumers. In addition to securing the gas itself,
the consumers (buyers) must have also purchased the right to
move the gas though the pipeline from the gas sources to the
gas load locations. It is the sale of these rights where pipeline
owner/operators make their revenue, and reliably increasing
the throughput of the pipeline can enable the owner/operator
to secure additional revenue. Therefore, as with the case of
Norway, the US pipeline operators have an interest in increas-
ing the pipeline throughput. Gas lost to compression offsets
improvements in throughput making the optimal compression
problem important in this context.

Within these disparate pipeline ownership/operational
frameworks, minimizing the cost of compression is an impor-
tant problem whose solution will enable additional pipeline
throughput. Throughput could also be improved through the
optimal placement of new compressors, however, here we
focus on the optimal operation of existing compressors. The
early compression cost minimization model was solved by
Dynamic Programming (DP) and can be traced back to [5].
An excellent review of the literature on compression cost
minimization can be found in [4]. The key contribution of this
paper is the development of a Geometric Programming (GP)
based approach for optimizing the transport of natural gas.
It offers optimality properties similar to existing algorithms
reviewed in [4], however it is a convex optimization approach
which offers desirable convergence properties without the need
for discretization. We focus on developing GP for steady-state
gas flow models on tree networks. Given existing engineering
practices and network design, these are natural assumptions.
However, it is important to note that GP potentially has
several advantages when considering extensions to the problem
that are expected to be needed in the future. These features
include stochastic gas draws, loops, distributed control, risk

mitigation, transient dynamics, and interdependencies with
power systems. In these cases, the GP formulation has natural
mechanisms for incorporating these features that are unavail-
able to DP. These extensions will be addressed in future
work. In this manuscript, we establish that GP matches the
performance of existing algorithms in order to motivate its
use in more complex settings where existing algorithms are
not easily adapted.

The remainder of this manuscript is organized as follows.
Section II reviews the pipeline gas flow equations and the
Optimal Gas Flow (OGF) problem. Section III describes our
GP formulation for tree-like gas pipelines. For comparison, we
also formulate a Dynamic Programming (DP) approach to the
same problems. Section IV describes the implementation of
the GP and DP algorithms as well as a greedy algorithm that
is intended to represent how many US pipelines are operated
today. This section also compares the results of applying these
approaches to a model of the Belgian natural gas network and
the Transco pipeline network in the US [6]. Finally, Section V
provides some conclusions and a discussion of potential future
research for both the steady-state gas flow problem and the
time variable flow (line-packing) problem.

II. TECHNICAL INTRODUCTION

In this section, we review the gas flow equations and
simplifying approximations used by practitioners. We start
from a model of a single pipe, generalize the equations to
a network of pipes, and close by embedding the equations in
an optimization problem.

A. Gas Flow Equations: Individual Pipe

To introduce notation and the fundamental physics of gas
systems, we first consider the flow of a compressible gas in
a single section of pipe. Transmission pipelines are typically
16-48 inches in diameter and operate at high pressures and
mass flows, e.g. 200 to 1500 pounds per square inch (psi)
and move millions of cubic feet of gas per day [7], [8]. Under
these highly turbulent conditions, the pressure drop and energy
loss due to shear is represented by a phenomenological friction
factor, and the resulting gas flow model is a partial differential
equation (PDE) with one spatial dimension x (along the pipe
axis) and one time dimension [9]–[11]:

∂tρ+ ∂x(uρ) = 0, p = ρZRT (1)

∂t(ρu) + ∂x(ρu
2) + ∂xp = −ρu|u|

2D
f − ρg sinα, (2)

Here, u, p, ρ are velocity, pressure, and density at the position,
x; Z is the gas compressibility factor; T is the temperature;
R is the gas constant; D is the diameter of the pipe and α is
its tilt angle; f is the friction factor and; g is the acceleration
due to gravity.

Eqs. (1,2) represent mass conservation, the ideal gas ther-
modynamic relation and momentum balance, respectively. The
first term on the rhs of Eq. (2) represents the friction losses
created in a pipe of diameter D with friction factor f . The
second term on the rhs of Eq. (2) accounts for the gain or loss
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of momentum due to gravity g if the pipe is tilted by angle
α. The frictional losses typically dominate the gravitational
term, which is typically dropped. Similarly, the gas inertia
term, ∂t(ρu), and the advection term, ∂x(ρu2), are typically
small compared to the frictional losses and are dropped. For
simplicity of presentation, we have also assumed that the
temperature does not change significantly along the pipe. In
case of long pipes, where temperature gradients do appear, this
problem can be resolved by representing the pipe as a series
of shorter pipes, each with negligible temperature gradients
along their lengths.

Taking into account these assumptions Eqs. (1,2) are rewrit-
ten in terms of the pressure p and the mass flux ϕ = uρ:

∂tp = −ZRT∂xϕ, (3)

∂xp
2 = −fZRT

D
ϕ|ϕ|. (4)

If the flow into and out of the pipe at the two ends balance
such that the total mass of gas in the pipe does not change,
the flow is steady and Eqs. (3,4) can be solved (by setting the
time derivatives to zero):

ϕ = const, p2in − p(x)2 = a
x

L
ϕ|ϕ|, a ≡ fZRTL

D
. (5)

Here , 0 ≤ x ≤ L, and L is the length of the pipe. The constant
a characterizes the pressure drop due to flow in the pipe and
is the only important pipe parameter in the steady-state model.

B. Steady Gas Flow over Network

The solution in Eq. (5) is now used to derive a node-edge
network model for the case of steady flow. To continue the
discussion, we first consider a Gas Flow (GF) network without
compressors which is represented by a directed graph G =
(V,E) with edges E and vertexes V. A solution of the steady
gas flow problem consists of finding a set of node pressures
p = (pi ≥ 0|i ∈ V) and edge flows ϕ = (ϕij |(i, j) ∈ E)
corresponding to a given set of gas injections q = (qi|i ∈ V),
i.e.:

∀(i, j) ∈ E : p2i − p2j = aijϕij |ϕij |, (6)

∀i ∈ V : qi =
∑

j:(i,j)∈E

ϕij . (7)

We note here that finding a solution to the GF problem in
Eqs. (6, 7) can be restated as solving a convex optimization
[12], [13].

In the steady-state model, the injections are balanced, i.e.,∑
i∈V qi = 0. There is one more node than there are edge

equations in (6), therefore, the pressure must be fixed at one
of the nodes. Depending on the structure of the GF network
and the gas injections, there may be no physical solution to the
GF problem, i.e., the set of feasible solutions to Eqs. (6, 7) is
an empty set, unless we allow complex values for pi (p2i < 0).
In this case, the GF network cannot support the imposed gas
injections and resulting edge flows ϕij without boosting the
pressure with gas compressors.

To account for this situation, the GF problem is formu-
lated with compressors placed along edges (i, j) at a relative
location rij ∈ (0, 1) (see Fig. 1). Let pi and pj be the

Fig. 1. Nodes (blue circles), edges (grey line) and compressor (red square)
for the gas flow equations in (8). The compressor is at relative location r
along the edge. The expressions below the edge are the drops in the square
pressures before and after the compressor with compression ratio αij .

pressures at nodes i and j, respectively. Assuming positive
flow from i to j, the compressor inlet square pressure is
p2i − rijaijϕij |ϕij |, and the compressor outlet square pressure
is p2j + (1 − rij)aijϕij |ϕij |. Incorporating flow directions,
equation (6) generalizes to, ∀(i, j) ∈ E :

αij =

(
p2j + (1− rij)aijϕij |ϕij |

p2i − rijaijϕij |ϕij |

)sgn(ϕij)

, (8)

where αij is the ratio of the compressor outlet and inlet square
pressures along edge (i, j), i.e., the compression ratio (see
Fig. 1). αij is the main control input to the GF network.
For edges without compressors, αij = 1, and Eq. (8) reduces
to Eq. (6). Although a compressor has been added, the flow
balance in Eq. (7) remains the same.

C. Optimization Problem: Optimum Gas Flow (OGF)

In the GF model above, the only operational cost is the
energy required to run the compressors at compression ratio
αij and mass flux ϕij . We adopt an expression for the cost of
compression from [5], i.e.

C =
∑

(i,j)∈E

cij |ϕij |
ηij

(
max{αm

ij , 1} − 1
)
, (9)

where cij is a constant which may depend on the compressor,
γ is the gas heat capacity ratio, and 0 < m = (γ − 1)/γ < 1.
ηij is the efficiency factor measuring the ratio of the useful
power transferred to the gas flow to the shaft power required
to run the compressor. The model in (9) applies to a single
compressor or to the aggregate behavior of several identical
parallel compressors operating together on a single pipeline
that equally divide the mass flow rate ϕij over this pipeline
[14]. In (9), we have made a typical assumption that ηij is
constant. For the configuration of compressors we consider,
the most significant deviation from (9) is the dependence of ηij
on the ratio of the compressor motor speed to the speed of the
flow; however, these deviations are relatively small (typically
∼ ±5%) [14]. Here, we continue to treat ηij as a constant.

Using the cost in (9), the Optimal Gas Flow (OGF) problem
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is formulated as

min
α,p,ϕ

C =
∑

(i,j)∈E

cij |ϕij |
ηij

(
max{αm

ij , 1} − 1
)

(10)

s.t. ∀i ∈ V : qi =
∑

j:(i,j)∈E

ϕij , (11)

∀(i, j) ∈ E : αij =

(
p2j + (1− rij)aijϕij |ϕij |

p2i − rijaijϕij |ϕij |

)sgn(ϕij)

,

(12)
∀i ∈ V : 0 ≤ p

i
≤ pi ≤ pi, (13)

∀(i, j) ∈ E : αij ≤ αij ≤ αij . (14)

Constraints (13) come from two different sources. The upper
bound on pressure is an engineering limit defined by the
pipeline itself. The lower bound on pressure is defined by
contractual requirements on natural gas delivery pressure. The
upper bound in constraints (14) is another engineering limit on
the maximum compression ratio in segment (ij). The lower
bound in constraints (14) is discussed in further detail below.

This OGF formulation differs slightly from previous formu-
lations [5]. In (14), if αij < 1, we allow both compression and
decompression. Setting αij = 1, eliminates decompression.
Decompression can be implemented by simple procedures
(such as a throttling valve) and is usually not associated
with any significant cost as it does not require any energy
expenditure. In fact, it may be possible to reduce global cost of
compression by allowing cost-free decompression at suitable
locations. For the sake of completeness, we also address the
case when the lower bound in (14) is non-trivial. However,
this creates some technical difficulties. Specifically, the GP
that results is non-convex. In Section III-B, we will relax this
lower bound and formulate the OGF as a convex geometric
program. In Section III-C, we will reintroduce this non-convex
lower bound (i.e. αij = 1) and address it using a Signomial
Programming (SP) approach—an approach where the non-
convex constraints are linearized and creating an iterative
sequence of convex geometric programs. Results from these
two different approaches are discussed in Section IV.

III. OPTIMAL GAS FLOW ALGORITHMS

A. Tree Network Unique Flow Determination

The tree-like topology of pipeline networks guarantees a
unique flow solution in the steady-state. In general, a steady-
state solution can only exist if net injections are globally
balanced, i.e.

∑
i∈V qi = 0. Since the network is a tree,

removing any edge (i, j) partitions the network into two
disjoint subgraphs: Gi and Gj . Then, the global balance
implies that

∑
i∈Gi

qi = −
∑

j∈Gj
qj , so we must have that

ϕij =
∑

i∈Gi
qi = −

∑
j∈Gj

qj . In this manner, the flow
on every edge of the pipeline tree network can be uniquely
specified. Thus, for the remainder of this manuscript we treat
flow directions and magnitudes as constants. This results in
the following optimization problem, where ϕ is no longer an

optimization variable and βi = p2i :

min
α,β

C =
∑

(i,j)∈E

cij |ϕij |
ηij

(
max{αm

ij , 1} − 1
)

(15)

s.t. ∀(i, j) ∈ E : αij =

(
βj + (1− rij)aijϕij |ϕij |

βi − rijaijϕij |ϕij |

)sgn(ϕij)

,

(16)

∀i ∈ V : 0 ≤ β
i
≤ βi ≤ βi, (17)

∀(i, j) ∈ E : αij ≤ αij ≤ αij . (18)

B. Geometric Programming (GP)

Next, we consider the solution of the OGF problem in (15)-
(18) on a gas network without cycles. The approach is based on
Geometric Programming (GP). See [15] for a comprehensive
discussion of Generalized Geometric Programs (GGPs).

Since flow directions have been determined after solving
uniquely for ϕ, for simplicity of presentation assume that
positive flow is from i to j along every line. The following
derivation applies equally well to the case when flow is
from j to i using Eq. (16) for α. Let dij = cijϕij/ηij ,
δ0ij = rijaijϕ

2
ij , and δ1ij = (1 − rij)aijϕ

2
ij , which are all

constant after solving for ϕij . Note that δ0ij represents the
drop in square pressure from node i to the compressor position
while δ1ij represents the drop in square pressure from just after
the compressor to node j, as shown in Fig. 2. The OGF is then
stated as the following optimization problem:

min
α,β

∑
(i,j)∈E

dij(max{αm
ij , 1} − 1) (19)

s.t. ∀i ∈ V : β
i
≤ βi ≤ β̄i, (20)

∀(i, j) ∈ E : αij ≤ ᾱij , (21)

∀(i, j) ∈ E : αij =
βj + δ1ij
βi − δ0ij

. (22)

Note that the lower bound constraint on compression αij

is relaxed (21). As discussed later, the primary reason for
this relaxation is to preserve convexity. As noted in the
previous section, there is a natural justification and operational
procedure that corresponds to this relaxation, and we will
continue with this relaxation in the rest of Section III-B. To
be consistent with the majority of actual operating practices,
we will restore this constraint in Section III-C and show one
way to overcome the technical difficulties it creates.

Next we introduce extra variables tij and rewrite the OGF

min
t,β

∑
(i,j)∈E

dijt
m
ij (23)

s.t. ∀i ∈ V : β
i
≤ βi ≤ β̄i, (24)

∀(i, j) ∈ E : αij ≤ ᾱij , (25)

∀(i, j) ∈ E : αij =
βj + δ1ij
βi − δ0ij

, (26)

∀(i, j) ∈ E : max{αij , 1} ≤ tij . (27)



MISRA et al.: OPTIMAL COMPRESSION IN NATURAL GAS NETWORKS 5

Fig. 2. Pipeline segment configuration for the GP formulation. The color
coding of the components is the same as in Fig. 1. δ0ij and δ1ij are the drop
in the squared pressure β from node i to the compressor inlet and from the
compressor outlet to node j, respectively. The compression ratio is tij .

Note that the constant term
∑

(i,j)∈E −dij has been dropped
from the cost function. Since the cost function is monotoni-
cally increasing in tij for all (i, j) ∈ E, at optimum we have
that, t⋆ij = α⋆

ij , unless t⋆ij = 1, in which case the current for-
mulation allows decompression (α < 1). Substituting Eq. (26)
for α and rearranging gives

min
t,β

∑
(i,j)∈E

dijt
m
ij (28)

s.t. ∀i ∈ V : β
i
≤ βi ≤ β̄i, (29)

∀(i, j) ∈ E : 1 ≤ tij ≤ αij , (30)

∀(i, j) ∈ E :
βj + δ1ij
βi − δ0ij

≤ tij . (31)

The OGF above is equivalent to the following program:

min
t,β

∑
(i,j)∈E

dijt
m
ij (32)

s.t. ∀i ∈ V : β
i
≤ βi ≤ β̄i, (33)

∀(i, j) ∈ E : 1 ≤ tij ≤ ᾱij , (34)

∀(i, j) ∈ E : βjβ
−1
i t−1

ij + δ1ijβ
−1
i t−1

ij + δ0ijβ
−1
i ≤ 1.

(35)

This can be reduced to a convex optimization in the form of
a geometric program (GP) by introducing variables which are
the logarithm of the original variables. Letting t̂ij = log tij
and β̂i = log βi, we arrive at the convex OGF formulation:

min
t̂,β̂

log

 ∑
(i,j)∈E

dije
mt̂ij

 , ∀i ∈ V (36)

s.t. ∀i ∈ V : log(β
i
) ≤ β̂i ≤ log(β̄i) (37)

∀(i, j) ∈ E : 0 ≤ t̂ij ≤ log(ᾱij), (38)
∀(i, j) ∈ E : (39)

log
(
eβ̂j−β̂i−t̂ij + δ1ije

−β̂i−t̂ij + δ0ije
−β̂i

)
≤ 0.

C. Signomial Programming

In current normal practices, pipeline operators do not
routinely use decompression as a pressure control. To be
consistent with current operations, the OGF formulation in
Eqs. (19,20,21) is modified by restoring the constraints 1 =
αij ≤ αij for all edges. Note that adding a lower bound
of 1 on the compression ratios is the same as 1 ≤ αij =

(βj+δ1ij)/(βi−δ0ij) which after rearranging the terms becomes
βi − βj ≤ δ0ij + δ1ij . Following the exact same steps as in the
derivation of the GP OGF yields the following optimization:

min
t̂,β̂

log

 ∑
(i,j)∈E

dije
mt̂ij

 (40)

s.t. log(β
i
) ≤ β̂i ≤ log(β̄i), ∀i ∈ V (41)

0 ≤ t̂ij ≤ log(ᾱij), (42)

log
(
eβ̂j−β̂i−t̂ij + δ1ije

−β̂i−t̂ij + δ0ije
−β̂i

)
≤ 0, (43)

β̂i ≤ log(eβ̂j + δij), ∀(i, j) ∈ E (44)

where δij = δ0ij + δ1ij .
The formulation in (40-44) is almost a GP, however, the

constraints in Eq. (44) are non-convex. We propose to ap-
proximately solve (40-44) with a signomial programming
approach—an iterative descent method, where, in each itera-
tion, the non-convex constraints are linearized and the resulting
GP is solved to perform one descent step. The iterations of
the algorithm are described below.

Signomial Programming iteration
1. The constraints Eq. (44) are linearized, i.e. ∀(i, j) ∈ E :

β̂i ≤ log
(
eβ̂

(t)
j + δij

)
+

eβ̂
(t)
j

eβ̂
(t)
j + δij

(β̂j − β̂
(t)
j ) + ϵ, (45)

where a small tolerance parameter ϵ > 0 is added to act as
a trade-off between speed of convergence and accuracy.

2. Solve the Geometric Program that results from Eqs. (40)-
(43) and Eq. (45) to obtain the new iterates at iteration
number t+ 1.

3. Repeat steps 1 and 2 until the difference in the norms of
the solution vectors from one iteration to the next is less
than a specified tolerance δ > 0.

The tolerance parameter ϵ has been introduced to prevent
some of the variables from getting frozen at their current
value. In particular, for an edge (i, j) ∈ E where there is
no compressor (i.e., ᾱij = 1), we can see that the constraint
Eq. (43) reduces to the convex constraint β̂i ≥ log(eβ̂j + δij).
In addition, when no decompression is allowed, the above con-
straint combined with the linearized constraint Eq. (45) of the
signomial program results in exactly one feasible value for β̂i

and β̂j . As a result, these variables remain frozen at their initial
iterate and this prevents progress in the signomial program.
The tolerance parameter ϵ addresses this issue by allowing a
slight violation of the lower bound on the compression ratio,
while expanding the feasible region to a neighborhood around
the current iterate instead of just one point.

We note that since the constraint Eq. (44) is concave, the
signomial program outlined above is a special case of the
“concave-convex procedure” [16]. It is known that a trust
region is not needed to maintain approximate feasibility in the
concave-convex procedure. From the above discussion, we see
that the tolerance parameter ϵ is indeed different from a trust
region radius. Smaller tolerance parameters ϵ and δ lead to
higher accuracy but longer runtimes. If the network consists
of a mixture of edges where decompression can be performed
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and edges where decompression cannot be performed, then
the signomial program only needs to linearize the Eq. (44)
constraints for edges that do not allow decompression. Steps
1 and 2 are repeated until a stopping criterion (3) in the
signomial program is reached.

D. Dynamic Programming (DP)

For comparison of both the formulation and the numer-
ics, we describe a Dynamic Programming (DP) approach to
solving the OGF. The DP approach to OGF is not new. It
was pioneered by [5] and has a long history, see e.g. [4]
for an extended bibliography. The DP approach exploits the
separability of the cost function in Eq. (19) over the edges as
well as the tree structure of the underlying graph by calculating
the “cost-to-go” functions recursively from the leaves upwards.

Specifically, choose a root node (denoted by r) for the tree
where the pressure is fixed. At each node i, we have a cost-to-
go function Ji(βi) which is a function of the squared pressure
at that node. The DP algorithm proceeds as:

(1) Initialization. Set S = V, i.e., the set of all nodes. For
each node i that is a leaf of the tree G set

Ji(βi) =

{
0, β

i
≤ βi ≤ β̄i

∞, otherwise

Remove all the leaves from S.
(2) Repeat the following steps while S is non-empty:

(a) Pick a node i ∈ S such that all its children have been
removed from S.
(b) Let v1, . . . , vk denote the children of i. Determine the value
of the cost-to-go function Ji(βi) for each β

i
≤ βi ≤ β̄i as

follows.
• For each choice of compression ratios α1, . . . , αk on the
edges (i, v1), . . . , (i, vk) respectively, compute the quantity

L(α1, . . . , αk) =
k∑

j=1

divjα
m
j + Jvj (βvj ),

where βvj is the implied squared pressure at vj for the choice
of αj above, i.e.,

βvj =

{
(βi − δ0ivj )αj − δ1ivj

if ϕivj > 0,

(βi + δ1vji)/αj + δ0vji
, otherwise.

(46)

• Set

Ji(βi) =

{
min

α1,...,αk

L(α1, . . . , αk) if β
i
≤ βi ≤ β̄i

∞ otherwise
(47)

• Remove i from S.

(3) Traceback. Fix the root squared pressure βr = β0 where
β0 is the given squared pressure at the root. Set S = V to be
the set of all nodes. Remove the root r from S. Repeat the
following while S is non-empty.
(a) Pick i ∈ S such that its parent has been removed from S.
(b) Find the implied pressure βi at i by using the optimal
choice of α’s in the optimization Eq. (47) and using Eq. (46).
(c) Remove i from S. The squared pressures βi obtained in

Step 3 are optimal. The optimal value is given by the root
cost-to-go function Jr(βr). In practice for implementation, one
needs to discretize the space β

i
≤ βi ≤ β̄i for each i ∈ V and

the space 1 ≤ αij ≤ ᾱij for each edge (i, j) ∈ E which has a
compressor.

IV. EXPERIMENTS

A. Implementation

The first step for all the algorithms is computing the flow
on each edge of the tree networks using explicit expressions
for ϕ via q. Next, we solve and compare the results from
several versions of the OGF: the GP OGF (with relaxed
constraints) that allows decompression, the SP OGF that
approximates these relaxed constraints, the DP OGF, and a
“greedy compression” scheme that emulates the actions of
trained pipeline operators.

Some implementation details:
1) Geometric Programming: The GP OGF is implemented

in python using CVXOPT [17].
2) Signomial Programming: The GP iterations of the SP

OGF are solved using CVXOPT using the solution of the GP
OGF from above as the starting point.

3) Dynamic Programming: The DP OGF was solved using
our own code developed in C++ according to the algorithm
in Section III-D. The number of bins for the α’s and β’s
are specified as inputs. Finer discretization leads to higher
accuracy and longer runtime. DP OGF run times increase ex-
ponentially with the number of compressors, while signomial
programming run times do not.

4) Greedy Compression: A fourth “greedy compression”
algorithm was implemented for comparison with the GP, SP
and DP OGFs. Although exact representation of operator
behavior is beyond the scope of this manuscript, we believe
this greedy compression algorithm to be a reasonable rep-
resentation of the day-to-day practice of operators of many
natural gas transmission pipelines [18]. Greedy compression
is a simple scheme which uses local observations to decide
when to compress using the basic rule: whenever the pres-
sure falls below the lower bound, use the nearest upstream
compressor to boost the compressor outlet pressure to the
maximum value allowed by the local pressure and compression
ratio constraints. However, this simple rule does not always
eliminate the violation of pressure constraints. In this case, a
slightly more complicated method is used to select an upstream
configuration of compression ratios, however, the decision is
still made solely on consideration of local constraint violations.
We omit the details of this selection method for brevity.

B. Models

We consider two natural gas pipeline networks to test our
algorithms–the Belgian gas network [13] and the Transco gas
network [6] in the Eastern US. Both networks are nearly
tree like. The minor amount of looping in each network was
reduced to a tree topology by breaking the loops locations
where the flow is expected to be relatively low. For both test
cases, a root node is selected and the square pressure at the
root is set to β.
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Fig. 3. Schematic representation of the Belgian gas transmission network.

1) Belgian Gas Network: Before comparing the algorithms
discussed above on large pipeline networks, we tested the
accuracy on a small test case of the Belgian gas network
(see Fig. 3) and compare our results to those in [13]. The
Belgian network contains 20 nodes and 2 compressors. Both
SP and DP are used to solve for the optimum steady-state
compression. For DP, 1000 pressure bins and 1000 α bins
are used. For SP, ϵ was set to 10−3 and the tolerance δ
was set to 10−6. Using the same pressure and compression
limits as in [13], the fractional difference between our optimal
compression costs and those in [13] is ∼ 5 × 10−4. Our
pressure profiles at optimal compression ratio also agreed with
the results in [13].

To test for the effect of allowing decompression, we com-
pare SP without decompression and pure GP (which does
allow decompression). The fractional difference in optimal
costs is ∼ 10−2 with the geometric programming cost less
than for signomial programming. For this small test case, the
additional freedom of decompression slightly decreases the
total cost of compression. In the geometric program solution,
decompression of more than 10% was present on 3 out of 19
edges in the network.

2) Williams Transco Pipeline: The second and much larger
test case is the Willams Transcontinental (Transco) pipeline
(see Fig. 4 and [6]). The Transco pipeline extends northeast
from gas sources in and around the Gulf of Mexico to load
centers in New York and New Jersey. The structure of the
pipeline near to the sources is tree like, however, the details
of the gas injections and withdrawls is quite complicated.
Therefore, we choose to test our algorithms on the northern
half of the pipeline extending from South Carolina up to the
load centers in New Jersey and New York and additional
sources in Pennsylvania. We partition a few small loops near
the end of the pipeline to achieve a tree-like structure. In spite
of reducing the scale of the Transco model, it still consists of
98 nodes and 31 compressors.

The GP, SP and DP algorithms only constrain the pressure at
the nodes. To maintain allowable pressures along the entirety
of the pipeline, each compressor segment model has very short

Fig. 4. Schematic representation of the Transco gas transmission network.
Small loops in the load centers near the northern end of the pipeline were
partitioned to create a tree structure. For this work, the northern half of the
pipeline was modeled, starting from the southern border of South Carolina.

runs of inlet and outlet pipeline attached to nodes with zero
gas injections. These short runs of inlet and outlet pipes keep
the compressor outlet square pressures from violating β or β.
The minimum and maximum pressures are set to 500 psi and
800 psi, respectively, as suggested by plots of operational data
over this section of pipeline [19].

We compare results for signomial programming, dynamic
programming, and greedy compression using inflow and in-
jection data from December 29, 2012 [20]—near peak load
conditions on the Transco pipeline. For the dynamic program-
ming, 1000 pressure bins and 400 α bins were used. For the
signomial programming, ϵ is set to 10−2 and the tolerance δ is
set to 10−3. The fractional difference in optimal costs between
signomial programming and DP is ∼ 3 × 10−5. The greedy
compression optimal cost is 5.4% higher than the two other
methods demonstrating the benefits of a global optimization
approach. The fractional difference between the optimal costs
for signomial programming without decompression and pure
geometric programming (which does allow decompression) is
negligible (∼ 10−7, which is well below tolerance paramters).

Although the GP and SP achieve the same optimal cost, the
GP solution involves a significant amount of decompression. In
particular, 11 out of 161 edges show decompression of greater
than 10%. Since the cost of decompression is 0, there are often
multiple optimal solutions, some of which may contain no
decompression. This is the case here. Inspecting the locations
where decompression occurred, we find that most of the
decompression occurred at nodes which are along paths that
lead to a terminal node when going downstream. The pressure
bounds at these nodes are well within the upper and lower
limits. This happens because the GP solver seems to prefer
assigning the minimum pressure at the terminal node, and
decompressing (without cost) at edges upstream to achieve this
pressure. The SP on the other hand, sets the same compression
ratios to one and finds an optimal solution that respects these
bounds.

We note here that in this special case where solutions to
the GP and SP have the same optimal cost, the SP does not
play a significant role. There can be other procedures that
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Fig. 5. Run time versus pressure and compression ratio discretization
for the DP solution for the Transco Pipeline. The run time colorbar scales
logarithmically in seconds. Run time for the GP solution does not depend
on discretization and is about 5.1 seconds.

can eliminate decompression without changing cost. When
the pressure upper and lower bounds are uniform like in our
example, some of the optimization variables associated with
edges where decompression occurred can in fact be eliminated
without consequence. On the other hand, SP will be necessary
in networks where there is a difference between the optimal
cost between solutions with and without decompression.

As mentioned earlier, a major advantage of the GP approach
is that there is no need for discretization and hence its accuracy
is only dependent on the tolerance parameters. On the other
hand, bin size and number of bins affect the run time and
accuracy of DP significantly. Figures 5 and 6 show plots of
the run times and accuracy for the DP OGF for the Transco
pipeline, as functions of the number of pressure and compres-
sion ratio bins. For a fixed number of pressure bins, the run
time scales exponentially with the number of compressor ratio
bins. Similarly, for a fixed number of compressor ratio bins,
the run time scales exponentially with the number of pressure
bins. For a fixed number of compressor ratio bins, the accuracy
tends to scale exponentially with the number of pressure bins.
However, for a fixed number of pressure bins, the accuracy
does not improve as the number of compressor bins increases
once it has reached some minimum threshold. The GP
solution does not depend on discretization and achieves the
correct optimal cost at an average runtime of 5.1 seconds.

Fig. 7 shows plots of the pressure as a function of distance
along the pipeline for greedy compression, the SP OGF, and
the DP OGF, respectively. The SP and DP show negligible
differences while the greedy compression algorithm has a very
different pressure profile. It is interesting to note that, although
the greedy algorithm runs nine compressors in comparison
to the nineteen run by the SP OGF or DP OGF, the cost
of compression is higher for the greedy algorithm. A likely
cause for this difference is the lower average gas density, and
therefore higher gas velocities and larger pressure drops, in
the greedy compression case.
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V. PATH FORWARD

The main contributions of this manuscript are the formu-
lation of the steady-state Optimal Gas Flow (OGF) problem
(also called Fuel Cost Minimization Problem in the literature
[4], [14]) with a GP approach [15]—a new approach for this
application. If the lower bound on the compression ratio is
relaxed, the OGF on a loop-free gas pipeline network becomes
GP that allowing for exact and efficient (polynomial time)
solution. The lower bound on the compression ratio is non-
convex, and we show how this constraint can be included using
an approximate SP approach. A significant advantage of the
GP and SP methods over the traditional DP approach [5], [21]
derives from not having to discretize the node pressure and
compression ratio variables. The GP approach also scales well,
even in networks with a high degree of branching whereas the
complexity of DP grows exponentially with the degree.

In this manuscript, we made several assumptions based
on practical and technical considerations: 1) steady-state gas
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flow (balanced injections), 2) uniform temperature distribution
along the pipe, and 3) the reduction of network cycles to tree-
like structures. However, the majority of these assumptions
can be relaxed, which form natural extensions to the current
work:

• Many modern gas networks contain no or very few cycles.
Combining and extending currently separated (tree-like)
systems into one larger and thus more reliable system will
lead to the emergence of significantly meshed systems
containing multiple cycles. The extension of the GP
approach to the general case of networks with cycles
constitutes an interesting challenge. Indeed, finding the
flows and finding optimal compression rates — the two
problems which became separable in the tree-network
case – are now mutually dependent. However, this com-
plication can be overcome. One promising approach
consists in solving the OGF through multiple repetitions
of the following two alternating steps – (1) finding
compression ratios given the flows (where the GP applies
directly), and (2) finding flows given compression ratios.
Another approach is to apply the log-change of variables
(leading to the convex optimization in the tree case)
followed by relaxation of the new non-convex, cycle-
related constraints.

• Eq. (5) describes the case of balanced flows, i.e.,∑
i∈V qi = 0. However, this strict balance does not need

to hold on the scale of minutes or even hours. When
the system is not balanced, the gas pressure changes
leverage the natural storage capacity of pipelines, i.e.,
linepack. Exactly accounting for this effect within the
basic model described by Eqs. (3,4) requires solving a
system of coupled PDEs over all pipes of the network
[10] [22], a problem which does not scale well. To
achieve a computationally tractable approach, we plan to
approximate Eqs. (3,4) with a linearized version. When
temporal evolution of sources and sinks is sufficiently
slow (so that one can ignore sound-wave-like transients),
the (linearized) diffusive approximation will allow ex-
plicit solution for the spatiotemporal and flow dependence
of the pressure, i.e., an approximate solution for the time-
dependent line pack and a generalization of Eq. (5). The
result is a generalized OGF that extends what used to be
instantaneous optimization into multi-stage optimization
that accounts for the evolution of the gas injections over
time. We believe the GP approach can be extended to
include this temporal evolution.

The GP approach has advantages over DP not only because
it scales well, but also because GP allows a fully distributed
implementation based on local measurements of pressure and
flows at the compressors and local communications between
nearest-neighbor compressors. We plan to explore this dis-
tributed cyber-physical control [23], [24] to gas networks in
future work.

Finally, this study is motivated by our interest in coupled
energy infrastructures, in particular gas and power system
networks. Future increases in stochasticity in one network is
expected to have impacts across the other coupled networks.

For example, one mitigation strategy for addressing intermit-
tency of renewable generation, e.g. wind and solar, uses con-
trols on gas turbines to “smooth” the intermittency. However,
these gas turbines are loads on the gas network (often burning
comparable amount of gas as all other consumers combined).
Therefore, the uncertainty of electric generation translates into
temporally fast but spatially long-correlated uncertainty of gas
consumption. Future work will quantify these and other effects
of such coupling with a focus on analyzing the stochasticity
and correlations across coupled infrastructure networks and
using this understanding to develop improved optimization and
control of combined systems.
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