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Stochastic Last Mile Distribution
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1 Brown University, Providence RI 02912, USA
2 Los Alamos National Laboratory, Los Alamos NM 87545, USA

Abstract. This paper considers the single commodity allocation prob-
lem (SCAP) for disaster recovery, a fundamental problem faced by all
populated areas. SCAPs are complex stochastic optimization problems
that combine resource allocation, warehouse routing, and parallel fleet
routing. Moreover, these problems must be solved under tight runtime
constraints to be practical in real-world disaster situations. This paper
formalizes the specification of SCAPs and introduces a novel multi-stage
hybrid-optimization algorithm that utilizes the strengths of mixed in-
teger programming, constraint programming, and large neighborhood
search. The algorithm was validated on hurricane disaster scenarios gen-
erated by Los Alamos National Laboratory using state-of-the-art disaster
simulation tools and is deployed to aid federal organizations in the US.

1 Background & Motivation

Every year seasonal hurricanes threaten coastal areas. The severity of hurricane
damage varies from year to year, but considerable human and monetary resources
are always spent to prepare for and recover from these disasters. It is policy
makers who make the critical decisions relating to how money and resources are
allocated for preparation and recovery. At this time, preparation and recovery
plans developed by policy makers are often ad hoc and rely on available subject
matter expertise. Furthermore, the National Hurricane Center (NHC) of the
National Weather Service in the United States (among others) is highly skilled
at generating ensembles of possible hurricane tracks but current preparation
methods often ignore this information.

This paper aims at solving this problem more rigorously by combining opti-
mization techniques and disaster-specific information given by NHC predictions.
The problem is not only hard from a combinatorial optimization standpoint,
but it is also inherently stochastic because the exact outcome of the disaster
is unknown. Although humans have difficulty reasoning over uncertain data,
recent work in the optimization community [13, 5] has shown that stochastic op-
timization techniques can find robust solutions in problems with uncertainty to
overcome this difficulty.

The paper considers the following abstract disaster recovery problem: How to
store a single commodity throughout a populated area to minimize its delivery
time after a disaster has occurred. It makes the following technical contributions:



1. It formalizes the single commodity allocation problem (SCAP).
2. It proposes a multi-stage hybrid-optimization decomposition for SCAPs,

combining a MIP model for stochastic commodity storage, a hybrid CP/MIP
model for multi-trip vehicle routing, and a large neighborhood search model
for minimizing the latest delivery time in multiple vehicle routing.

3. It validates the approach on the delivery of potable water for hurricane
recovery.

Section 2 of this paper reviews similar work on disaster preparation and recovery
problems. Section 3 presents a mathematical formulation of the disaster recovery
problem and sets up the notations for the rest of paper. Section 4 presents the
overall approach using (hopefully) intuitive models. Section 5 presents a number
of modeling and algorithmic improvements that refines each of the initial models;
it also presents the final version of the optimization algorithm for SCAPs. Section
6 reports experimental results of our complete algorithm on some benchmark
instances to validate the approach and Section 7 concludes the paper.

2 Previous Work

The operations research community has been investigating the field of human-
itarian logistics since the 1990s but recent disasters have brought increased at-
tention to these kinds of logistical problems [18, 4, 10, 9]. Humanitarian logistics
is filled with a wide variety of optimization problems that combine aspects from
classic problems in inventory routing, supply chain management, warehouse lo-
cation, and vehicle routing. The problems posed by humanitarian logistics add
significant complexity to their classical variants. The operations research com-
munity recognizes that novel research in this area is required to solve these kinds
of problems [18, 4]. Some of the key features that characterize these problems
are as follows:

1. Multi-Objective Functions - High-stake disaster situations often have to
balance conflicting objective goals (e.g. operational costs, speed of service,
and unserved customers) [3, 8, 2, 12].

2. Non-Standard Objective Functions - A makespan time objective in
VRPs [3, 6] or equitability objectives [2].

3. Arbitrary Side Constraints - Limited resources, a fixed vehicle fleet [2],
fixed latest delivery time [3, 2], or a insufficient preparation budget [8, 11].

4. Stochastic Aspects - Disasters are inherently unpredictable. Preparations
and recovery plans must be robust with respect to many scenarios [8, 12].

Humanitarian logistics also studies these problems at a variety of scales in both
space and time. Some problems consider a global scale with time measured in
days and weeks [8], while others focus on the minute-by-minute details of deliv-
ering supplies from local warehouses directly to the survivors [3, 2]. This paper
considers a scale which is often called the “last mile” of distribution. This in-
volves warehouse selection and customer delivery at the city and state scale.



The operations research community has mainly formulated these problems
using MIP models. Many of the humanitarian logistics problems are complex
and MIP formulations do not always scale to real world instances [2, 3]. Ad-
ditionally, it was shown that MIP solvers can have difficulty with some of the
unique features of these kinds of problems even when problem sizes are small
(e.g., with minimizing the latest delivery time in VRPs [6]). Local search tech-
niques are often used to scale the problems to real world instances [3, 6]. This
paper demonstrates how hybrid optimization methods and recent advances in
the optimization community can yield high-quality solutions to such challenges.
To the best of our knowledge, SCAPs are the first humanitarian logistic prob-
lem to investigate the “last mile” vehicle routing problem and stochastic disaster
information simultaneously.

3 The Single Commodity Allocation Problem (SCAP)

In formalizing SCAPs, a populated area is represented as a graph G = 〈V,E〉
where V represents those sites of interest to the allocation problem, i.e., sites
requiring the commodity after the disaster (e.g., hospitals, shelters, and public
buildings) and vehicle storage depots. The required commodity can be stored at
any node of the graph subject to some side constraints. For simplicity, we assume
the graph is complete and the edges have weights representing travel times. The
weights on the edges form a metric space but it is not Euclidean due to the
transportation infrastructure. Moreover, the travel times can vary in different
disaster scenarios due to road damage. The primary outputs of a SCAP are (1)
the amount of commodity to be stored at each node; (2) for each scenario and
each vehicle, the best plan to deliver the commodities. Figure 1 summarizes the
entire problem, which we now describe in detail.

Objectives The objective function aims at minimizing three factors: (1) The
amount of unsatisfied demands; (2) the time it takes to meet those demands; (3)
the cost of storing the commodity. Since these values are not expressed in the
same units, it is not always clear how to combine them into a single objective
function. Furthermore, their relative importance is typically decided by policy
makers on a case-by-case basis. For these reasons, this paper uses weights Wx,
Wy, and Wz to balance the objectives and to give control to policy makers.

Side Constraints The first set of side constraints concerns the nodes of the graph
which represent the repositories in the populated area. Each repository Ri∈1..n

has a maximum capacity RCi to store the commodity. It also has a one-time
initial cost RIi (the investment cost) and an incremental cost RMi for each
unit of commodity to be stored. As policy makers often work within budget
constraints, the sum of all costs in the system must be less than a budget B.

The second set of side constraints concerns the deliveries. We are given a
fleet of m vehicles Vi∈1..m which are homogeneous in terms of their capacity
V C. Each vehicle has a unique starting depot D+

i and ending depot D−i . Unlike



Given:
Repositories: Ri∈1..n

Capacity: RCi

Investment Cost: RIi

Maintenance Cost: RMi

Vehicles: Vi∈1..m

Capacity: V C
Start Depot: D+

i

End Depot: D−i
Scenario Data: Si∈1..a

Scenario Probability: Pi

Available Sites: ARi ⊂ {1..n}
Site Demand: Ci,1..n

Travel Time Matrix: Ti,1..l,1..l

Weights: Wx,Wy,Wz

Budget: B

Output:
The amount stored at each warehouse
Delivery schedules for each vehicle

Minimize:
Wx ∗Unserved Demands +

Wy ∗MAXi
1..mTour Timei+

Wz ∗ Investment Cost +
Wz ∗Maintenance Cost

Subject To:
Vehicle and site capacities
Vehicles start and end locations
Costs ≤ B

Notes:
Every warehouse that stores a unit
must be visited at least once

Fig. 1. Single Commodity Allocation Problem Specification

classic vehicle routing problems [17], customer demands in SCAPs often exceed
the vehicle capacity and hence multiple deliveries are often required to serve a
single customer.

Stochasticity SCAPs are specified by a set of a different disaster scenarios Si∈1..a,
each with an associated probability Pi. After a disaster, some sites are damaged
and each scenario has a set ARi of available sites where the stored commodities
remain intact. Moreover, each scenario specifies, for each site Ri, the demand
Ci. Note that a site may have a demand even if a site is not available. Finally,
site-to-site travel times Ti,1..l,1..l (where l = |V |) are given for each scenario and
capture infrastructure damages.

Unique Features Although different aspects of this problem were studied before
in the context of vehicle routing, location routing, inventory management, and
humanitarian logistics, SCAPs present unique features. Earlier work in location-
routing problems (LRP) assumes that (1) customers and warehouses (storage
locations) are disjoint sets; (2) the number of warehouses is ≈ 3..10; (3) customer
demands are less than the vehicle capacity; (4) customer demands are atomic

None of these assumptions hold in the SCAP context. In a SCAP, it may not
only be necessary to serve a customer with multiple trips but, due to the storage
capacity constraints, those trips may need to come from different warehouses.
The key features of SCAP are: (1) each site can be a warehouse and/or customer;
(2) one warehouse may have to make many trips to a single customer; (3) one
customer may be served by many warehouses; (4) the number of available vehicles
is fixed; (5) vehicles may start and end in different depots; (6) the objective is to
minimize the time of the last delivery. Minimizing the time of the last delivery
is one of the most difficult aspects of this problem as in demonstrated in [6].



4 The Basic Approach

This section presents the basic approach to the SCAP problem for simplifying
the reading of the paper. Modeling and algorithmic improvements are presented
in Section 5. Previous work on location routing [7, 1, 15] has shown that rea-
soning over both the storage problem and the routing problem simultaneously is
extremely hard computationally. To address this difficulty, we present a three-
stage algorithm that decomposes the storage, customer allocation, and routing
decisions. The three stages and the key decisions of each stage are as follows:

1. Storage & Customer Allocation: Which repositories store the commod-
ity and how is the commodity allocated to each customer?

2. Repository Routing: For each repository, what is the best customer dis-
tribution plan?

3. Fleet Routing: How to visit the repositories to minimize the time of the
last delivery?

The decisions of each stage are independent and can use the optimization tech-
nique most appropriate to their nature. The first stage is formulated as a MIP,
the second stage is solved optimally using constraint programming, and the third
stage uses large neighborhood search (LNS).

Storage & Customer Allocation The first stage captures the cost and demand
objectives precisely but approximates the routing aspects. In particular, the
model only considers the time to move the commodity from the repository to
a customer, not the maximum delivery times. Let D be a set of delivery triples
of the form 〈source, destination, quantity〉. The delivery-time component of the
objective is replaced by

Wy ∗
∑

〈s,d,q〉∈D

Ts,d ∗ q/V C

Figure 2 presents the stochastic MIP model, which scales well with the number
of disaster scenarios because the number of integer variables only depends on
the number of sites n. The meaning of the decision variables is explained in the
figure. Once the storage and customer allocation are computed, the uncertainty
is revealed and the second stage reduces to a deterministic multi-depot, multiple-
vehicle capacitated routing problem whose objective consists in minimizing the
latest delivery. To our knowledge, this problem has not been studied before.
One of its difficulties in this setting is that the customer demand is typically
much larger than the vehicle capacity. As a result, we tackle it in two steps. We
first consider each repository independently and determine a number of vehicle
trips to serve the repository customers (Repository Routing). A trip is a tour
that starts at the depot, visits customers, returns to the depot, and satisfies the
vehicle capacity constraints. We then determine how to route the vehicles to
perform all the trips and minimize the latest delivery time (Fleet Routing).



Variables:
Storedi∈1..n ∈ [0, RCi] - Units stored
Openi∈1..n ∈ {0, 1} - More than zero units stored flag

StoredSaveds∈1..a,i∈1..n ∈ [0, Cs,i] - Units used at the storage location
StoredSents∈1..a,i∈1..n ∈ [0, RCi] - Total units shipped to other locations
Incomings∈1..a,i∈1..n ∈ [0, Cs,i] - Total units coming from other locations
Unsatisfieds∈1..a,i∈1..n ∈ [0, Cs,i] - Demand not satisfied
Sents∈1..a,i∈1..n,j∈1..n ∈ [0, RCi/V C] - Trips needed from i to j

Minimize:

Wx ∗
X

s∈1..a

Ps ∗
X

i∈1..n

Unsatisfieds,i+

Wy ∗
X

s∈1..a

Ps ∗
X

i∈1..n

X
j∈1..n

Ts,i,j ∗ Sents,i,j+

Wz ∗
X

i∈1..n

(RIi ∗Openi +RMi ∗ Storedi)

Subject To:X
i∈1..n

(RIi ∗Openi +RMi ∗ Storedi) ≤ B

RCi ∗Openi ≥ Storedi ∀i
StoredSaveds,i + Incomings,i + Unsatisfieds,i = Cs,i ∀s, i
StoredSaveds,i + StoredSents,i ≤ Storedi ∀s, iX
j∈1..n

V C ∗ Sents,i,j = StoredSents,i ∀s, iX
j∈1..n

V C ∗ Sents,j,i = Incomings,i ∀s, i

StoredSaveds,i + StoredSents,i = 0 ∀s, i where i not in ARs

Fig. 2. Storage & Customer Selection: The MIP Model.

Repository Routing Figure 3 shows how to create the inputs for repository rout-
ing from the outputs of the MIP model. For a given scenario s, the idea is to
compute the customers of each repository w, the number of full-capacity trips
FullTripss,w,c and the remaining demand Demands,w,c needed to serve each
such customer c. The full trips are only considered in the fleet routing since they
must be performed by a round-trip. The minimum number of trips required to
serve the remaining customers is also computed using a bin-packing algorithm.
The repository routing then finds a set of trips serving these customers with
minimal travel time. The repository routing is solved using a simple CP model
depicted in Figure 4. The model uses two depots for each possible trip (a starting
and an ending depot localized at the repository) and considers nodes consist-
ing of the depots and the customers. Its decision variables are the successor
variables specifying which node to visit next and the trip variables associating
a trip with each customer. The circuit constraint expresses that the successor
variables constitute a circuit, the vehicle capacity constraint is enforced with a
multi-knapsack constraint, and the remaining constraints associate a trip num-
ber with every node. This model is then solved to optimality.



Given scenario s and for each repository w ∈ 1..n
Customerss,w = {i ∈ 1..n : Sents,w,i > 0}
For c ∈ Customerss,w

FullTripss,w,c = bSents,w,cc
Demands,w,c = V C ∗ (Sents,w,c − bSents,w,cc)

MinTripss,w = MinBinPacking({Demands,w,c : c ∈ Customerss,w}, V C)

Fig. 3. The Inputs for the Repository Routing.

Let:
Depots+s,w = {d+

1 , d
+
2 , ..., d

+
MinTripss,w

}
Depots−s,w = {d−1 , d

−
2 , ..., d

−
MinTripss,w

}
Nodess,w = Depots+s,w ∪Depots−s,w ∪ Customerss,w

Tripss,w = {1, 2, ...,MinTripss,w}

Variables:
Successor[Nodess,w] ∈ Nodess,w - Node traversal order
Trip[Nodess,w] ∈ Tripss,w - Node trip assignment

Minimize:X
n∈Nodess,w

Ts,n,Successor[n]

Subject To:
circuit(Successor)
multiknapsack(Trip, {Demands,w,c : c ∈ Customerss,w}, V C)
for w+

i ∈ Depots
+
s,w: Trip[w+

i ] = i
for w−i ∈ Depots

−
s,w: Trip[w−i ] = i

for n ∈ Customerss,w ∪Depots+s,w: Trip[n] = Trip[Successor[n]]

Fig. 4. The CP Model for Repository Routing.

Fleet Routing It then remains to decide how to schedule the trips for the fleet to
perform and to minimize the latest delivery time. The capacity constraints can
be ignored now since each trip satisfies them. Each trip is abstracted into a task
at the warehouse location and a service time capturing the time to perform the
trip. The fleet routing problem then consists of using the vehicles to perform all
these tasks while minimizing the latest delivery.

Figure 5 depicts how to compute the inputs for fleet routing given the re-
sults of the earlier steps, which consists of computing the proper service times
TripT imet for each trip t. The model for the fleet routing is depicted in Fig-
ure 6 and is a standard CP formulation for multiple vehicle routing adapted to
minimize the latest delivery time. For each node, the decision variables are its
successor, its vehicle, and its delivery time. The objective minimizes the maxi-
mum delivery time and the rest of the model expresses the subtour elimination
constraints, the vehicle constraints, and the delivery time computation.

The fleet routing problem is solved using LNS [16] to obtain high-quality so-
lutions quickly given the significant number of nodes arising in large instances.
At each optimization step, the LNS algorithm selects 15% of the trips to re-



Given scenario s and for each repository w ∈ 1..n
RoundTripss,w = {FullTripss,w,c : c ∈ Customerss,w}
Taskss,w = {t1, t2, ..., tTripss,w} ∪RoundTripss,w

For each t ∈ RoundTripss,w

TripT imet = 2 Ts,w,c

For t ∈ Taskss,w \RoundTripss,w

TaskNodest = {n ∈ Nodess,w \Depots−s,w : Trip[n] = t}
TripT imet =

X
n∈TaskNodest

Ts,n,Successor[n]

Fig. 5. The Inputs for the Fleet Routing.

lax, keeping the rest of the routing fixed. The neighborhood is explored using
constraint programming allowing up to (0.15|Nodess|)3 backtracks.

5 Modeling and Algorithmic Enhancements

We now turn to some modeling and algorithmic improvements to the basic ap-
proach which bring significant benefits on real-life applications.

Customer Allocation The assignment of customers to repositories is a very im-
portant step in this algorithm because it directly determines the quality of the
trips computed by the repository routing and there is no opportunity for correc-
tion. Recall that Section 4 uses

i=(s,d,q)∑
i∈D

Ts,d ∗ q/V C

as an approximation of travel distance. Our experimental results indicate that
this approximation yields poor customer-to-warehouse allocation when there is
an abundance of commodities. To resolve this limitation, we try to solve a slightly
stronger relaxation, i.e.,

i=(s,d,q)∑
i∈D

Ts,d ∗ dq/V Ce

but this ceiling function is too difficult for the stochastic MIP model. Instead, we
decompose the problem further and separate the storage and allocation decisions.
The stochastic MIP now decides which repository to open and how much of the
commodity to store at each of them. Once these decisions are taken and once
the uncertainty is revealed (i.e., the scenario s becomes known), we solve a
customer allocation problem, modeled as a MIP (see Figure 7). This problem
must be solved quickly since it is now considered after the uncertainty is revealed.
Unfortunately, even this simplified problem can be time consuming to solve
optimally. However, a time limit of between 30 and 90 seconds results in solutions
within 1% (on average) of the best solution found in one hour. Our results
indicate that even suboptimal solutions to this problem yield better customer
allocation than those produced by the stochastic MIP.



Let:
V ehicless = {1, 2, ...,m}
StartNodess = {D+

1 , . . . , D
+
m}

EndNodess = {D−1 , . . . , D−m}
Nodess = StartNodess ∪ EndNodess ∪

[
w∈1..n

Taskss,w

Variables:
Successor[Nodess] ∈ Nodess - Node traversal order
V ehicle[Nodess] ∈ V ehicless - Node vehicle assignment
DelT ime[Nodess] ∈ {0, . . . ,∞} - Delivery time

Minimize:
MAX n∈NodessDelT ime(n)

Subject To:
circuit(Successor)
for n ∈ StartNodess such that n = D+

i

V ehicle[n] = i
DelT ime[n] = T imes,n

DelT ime[Successor[n]] = DelT ime[n] + TripT imen + Ts,n,Successor[n]

for each n ∈ EndNodess such that n = D−i
V ehicle[n] = i

for n ∈ Nodess \ StartNodess \ EndNodes

V ehicle[n] = V ehicle[Successor[n]]
DelT ime[Successor[n]] = DelT ime[n] + TripT imen + Ts,n,Successor[n]

Fig. 6. The CP Model for Fleet Routing.

Path-Based Routing The delivery plans produced by the basic approach exhibit
an obvious limitation. By definition of a trip, the vehicle returns to the reposi-
tory at the end of trip. In the case where the vehicle moves to another repository
next, it is more efficient to go directly from its last delivery to the next repos-
itory (assuming a metric space which is the case in practice). To illustrate this
point, consider Figure 8 which depicts a situation where a customer (white node)
receives deliveries from multiple repositories (shaded nodes). The figure shows
the savings when moving from a tour-based (middle picture) to a path-based
solution (right picture). It is not difficult to adapt the algorithm from a tour-
based to a path-based routing. In the repository routing, it suffices to ignore the
last edge of a trip and to remember where the path ends. In the fleet routing,
only the time matrix needs to be modified to account for the location of the last
delivery.

Set-Based Repository Routing The SCAP problems generated by hurricane sim-
ulators have some unique properties that are not common in traditional VRPs.
One of these features appears during repository routing: The first stage solution
generates customer demands that are distributed roughly uniformly through
the range 0..V C. This property allows for a repository-routing formulation that
scales much better than the pure CP formulation described earlier. Indeed, if
the customer demands d1, . . . , dc, are uniformly distributed in the range 0..V C,



Variables:
Senti∈1..n,j∈1..n ∈ [0, Storedi] - Units moved from i to j
V ehicleTripsi∈1..n,j∈1..n ∈ [0..dStoredi/V Ce] - Trips needed from i to j

Minimize:

Wx ∗
X

i∈1..n

(Cs,i −
X

j∈1..n

Sentj,i)+

Wy ∗
X

i∈1..n

X
j∈1..n

Ts,i,j ∗ V ehicleTripsi,j

Subject To:X
j∈1..n

Senti,j ≤ Storedi ∀iX
j∈1..n

Sentj,i ≤ Cs,i ∀i

Senti,j = 0 ∀i, j where i not in ARs

V ehicleTripsi,j ≥ Senti,j/V C ∀i, j

Fig. 7. The MIP Model for Customer Allocation.

Fig. 8. Illustrating the Improvement of Path-Based Routing.

the number of sets satisfying the vehicle capacity is smaller than c3 when c is
not too large (e.g., c ≤ 50). This observation inspires the following formulation:

1. Use CP to enumerate all customer sets satisfying the capacity constraint.
2. Use CP to compute an optimal trip for those customer sets.
3. Use MIP to find a partition of customers with minimal delivery time.

This hybrid model is more complex but each subproblem is small and it scales
much better than the pure CP model.

Aggregate Fleet Routing The most computationally intense phase is the fleet
routing and we now investigate how to initialize the LNS search with a high-
quality solution. Recall that the fleet routing problem associates a node with
every trip. Given a scenario s, a lower bound for the number of trips is,∑

i∈1..n

StoredSents,i/V C

Clearly, the size and complexity of this problem grows with the amount of com-
modities moved. To find high-quality solutions to the fleet routing subtask, the



Multi-Stage-SCAP(G)
1 D ← StochasticStorageMIP (G)
2 for s ∈ 1..a
3 do C ← CustomerAllocationProblem(Gs,Ds)
4 for w ∈ 1..n
5 do T ← RepositoryPathRoutingProblem(Gs, Cw)
6 I ← AggregateF leetRouting(Gs, T )
7 Ss ← TripBasedFeetRouting(Gs, T , I)
8 return S

Fig. 9. The Final Hybrid Stochastic Optimization Algorithms for SCAPs.

idea is to aggregate the trips to remove this dependence on the amount of com-
modities delivered. More precisely, we define an aggregate fleet routing model in
which all trips at a repository are replaced by an aggregate trip whose service
time is the sum of all the trip service times. The number of nodes in the aggre-
gate problem is now proportional to the number of repositories. Finding a good
initial solution is not important for smaller problems (e.g., n ≈ 25, m ≈ 4), but it
becomes critical for larger instances (e.g., n ≈ 100, m ≈ 20). Since the aggregate
problem is much simpler, it often reaches high-quality solution quickly.

The Final Algorithm The final algorithm for solving a SCAP instance G is
presented in Figure 9.

6 Benchmarks & Results

Benchmarks The benchmarks were produced by Los Alamos National Labo-
ratory and are based on the infrastructure of the United States. The disaster
scenarios were generated by state-of-the-art hurricane simulation tools similar
to those used by the National Hurricane Center. Their sizes are presented in
Table 1 (The table also depicts the time limit used for fleet routing). Benchmark
3 features one scenario where the hurricane misses the region; this results in
the minimum demand being zero. This is important since any algorithm must
be robust with respect to empty disaster scenarios which arise in practice when
hurricanes turn away from shore or weaken prior to landfall. All of the experi-
mental results have fixed values of Wx, Wy, and Wz satisfying the field constraint
Wx > Wy > Wz and we vary the value of the budget B to evaluate the algorithm.
The results are consistent across multiple weight configurations, although there
are variations in the problem difficulties. It is also important to emphasize that,
on these benchmarks, the number of trips is in average between 2 and 5 times the
number of repositories and thus produces routing problems of significant sizes.

The Algorithm Implementation and the Baseline Algorithm The final algorithm
was implemented in the Comet system [14] and the experiments were run on
Intel Xeon CPU 2.80GHz machines running 64-bit Linux Debian. To validate
our results, we compare our delivery schedules with those of an agent-based al-
gorithm. The agent-based algorithm uses the storage model but builds a routing



Benchmark n m a Min Demand Max Demand Timeout

BM1 25 4 3 550 2700 30

BM2 25 5 3 6000 8384 60

BM3 25 5 3 0 11000 60

BM4 30 5 3 3500 11000 90

BM5 100 20 3 8200 22000 600

Table 1. SCAP Benchmark Statistics

Benchmark µ(T1) σ(T1) µ(T∞) σ(T∞) µ(STO) σ(STO) µ(CA) µ(RR) µ(AFR) µ(FR)

BM1 196.3 18.40 78.82 9.829 0.9895 0.5023 11.78 0.2328 23.07 30.00

BM2 316.9 59.00 120.2 20.97 0.5780 0.2725 16.83 0.2343 28.33 60.00

BM3 178.4 15.89 102.1 15.02 0.3419 0.1714 7.192 0.1317 11.98 40.00

BM4 439.8 48.16 169.0 22.60 0.9093 0.4262 22.71 0.2480 33.28 90.00

BM5 3179 234.8 1271 114.5 46.71 25.05 91.06 1.0328 351.7 600.0

Table 2. SCAP Benchmark Runtime Statistics (Seconds)

solution without any optimization. Each vehicle works independently to deliver
as much commodity as possible using the following heuristic:

Greedy-Truck-Agent()
1 while ∃ commodity to be picked up ∧ demands to be met
2 do if I have some commodity
3 then drop it off at the nearest demand location
4 else pick up some water from the nearest warehouse
5 goto final destination

This agent-based algorithm roughly approximates current relief delivery proce-
dures and is thus a good baseline for comparison.

Efficiency Results Table 2 depicts the runtime results. In particular, the table
reports, on average, the total time in seconds for all scenarios (T1), the total
time when the scenarios are run in parallel (T∞), the time for the storage model
(STO), the client-allocation model (CA), the repository routing (RR), the ag-
gregate fleet routing (AFR), and fleet routing (FR). The first three fields(T1,
T∞, STO) are averaged over ten identical runs on each of the budget param-
eters. The last four fields (CA, RR, AFR, FR) are averaged over ten identical
runs on each of the budget parameters and each scenario. Since these are aver-
ages, the times of the individual components do not sum to the total time. The
results show that the approach scales well with the size of the problems and is
a practical approach for solving SCAPs.

Quality of the Results Table 3 depicts the improvement of our SCAP algorithm
over the baseline algorithm. Observe the significant and uniform benefits of our
approach which systematically delivers about a 50% reduction in delivery time.

Table 4 describes the correlations between the distances in the customer allo-
cation and fleet routing models. The results show strong correlations, indicating



Benchmark BM1 BM2 BM3 BM4 BM5

Improvement(%) 57.7 40.6 68.8 51.7 50.6

Table 3. Improvements over the Baseline Algorithm.

Benchmark BM1 BM2 BM3 BM4 BM5

Correlation 0.9410 0.9996 0.9968 0.9977 0.9499

Table 4. Correlations for the Distances in Customer Allocation and Fleet Routing.

that the distances in the customer allocation model are a good approximation
of the actual distances in the fleet routing model. Table 5 also reports results
on the absolute and relative differences between vehicles in the solutions. They
indicate that the load is nicely balanced between the vehicles. More precisely,
the maximum delivery times are often within 10% of each other on average, giv-
ing strong evidence of the quality of our solutions. Benchmark 5 is an exception
because it models emergency response at a state level, not at a city level. In that
benchmark, some vehicles have a significantly reduced load because they would
have to travel to the other side of the state to acquire more load, which would
take too much time to reduce the maximum delivery objective.

Behavioral Analysis Figure 10 presents the experimental results on benchmark
5 (other benchmarks are consistent, but omitted for space reasons). The graph
on the left shows how the satisfied demand increases with the budget while the
graph on the right shows how the last delivery time changes. Given the weight
selection, it is expected that the demand and routing time will increase steadily
as the budget increases until the total demand is met. At that point, the demand
should stay constant and the routing time should decrease. The results confirm
this expectation. The experimental results also indicate the significant benefits
provided by our approach compared to the baseline algorithm.

Fleet Routing Figure 11 presents experimental results comparing aggregate
(AFR), tour-based (TFR), and path-based (PFR) fleet routing (Only BM1 is
presented but other results are consistent). The key insight from these results
is to show the benefits of allowing the trips of a repository to be performed by
multiple vehicles. Note also the significant improvements obtained by considering
paths instead of tours.

Customer Allocation As mentioned earlier, the benefits of separating customer
allocation from storage decisions are negligible when the budget is small. How-
ever, they become significant when the budget increases and can produce a
reduction by up to 16% of the expected maximum delivery time.

7 Conclusion

This paper studied a novel problem in the field of humanitarian logistics, the
Single Commodity Allocation Problem (SCAP). The SCAP models the strate-
gic planning process for disaster recovery with stochastic last mile distribution.



Benchmark BM1 BM2 BM3 BM4 BM5

Absolute Difference 6.7 59.4 39.5 49.1 749
Relative Difference(%) 10.7 12.8 6.7 8.7 46.2

Table 5. The Difference in Delivery Times Between Vehicles.
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Fig. 10. Varying the Budget on Benchmark 5

The paper proposed a multi-stage stochastic hybrid optimization algorithm that
yields high quality solutions to real-world benchmarks provided by Los Alamos
National Laboratory. The algorithm uses a variety of technologies, including
MIP, constraint programming, and large neighborhood search, to exploit the
structure of each individual optimization subproblem. The experimental results
on water allocation benchmarks indicate that the algorithm is practical from a
computational standpoint and produce significant improvements over existing
relief delivery procedures. This work is currently deployed at LANL as part of
its mission to aid federal organizations in planning and responding to disasters.
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