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Abstract—This work introduces a statistical classifier that
quickly locates line outages in a power system utilizing only time
series phasor measurement data sampled during the system’s
transient response to the outage. The presented classifier is a
linear multinomial regression model that is trained by solving
a maximum likelihood optimization problem using synthetic
data. The synthetic data is produced through dynamic simu-
lations which are initialized by random samples of a forecast
load/generation distribution. Real time computation of the pro-
posed classifier is minimal and therefore the classifier is capable
of locating a line outage before steady state is reached, allowing
for quick corrective action in response to an outage. In addition,
the output of the classifier fits into a statistical framework that
is easily accessible. Specific line outages are identified as being
difficult to localize and future improvements to the classifier are
proposed.

Index Terms—Estimation, transient response, power system
faults, uncertainty

I. INTRODUCTION

A recent increase in power load and the rapid integration
of renewable energy into the power grid necessitates an
improvement in situational awareness. State estimation has
been targeted as one of the causes of most of the major
blackouts in North America [1], as the system operator makes
crucial decisions based on the possibly incorrect estimate
of the state. This manuscript addresses state estimation by
providing a line outage localization procedure that utilizes time
series data provided from phasor measurement units (PMUs)
during the system’s transient response to the outage. The
proposed classifier requires minimal real time computation and
accurately quantifies uncertainty by providing a probability
distribution over all potential line outages.

The state estimation process begins with the Network Topol-
ogy Processor which estimates the static parameters of the
system model including line statuses [2]. This static model of
the system is then assumed to be accurate while it is utilized
to compute the analog state estimate via methods such as
Weighted Least Squares (WLS) [2]. For this reason, an incor-
rect estimate of the network topology will cascade through the
state estimation process, making topology estimation a crucial
part of generalized state estimation. The classical method of
determining the network topology involves estimating the ana-
log state for every possible network topology and then labeling
the topology that corresponds to the smallest measurement
residual as the true topology of the system. However, more
computationally tractable approaches for topology estimation
have been proposed in literature [3], [4].

Some recent work improves topology estimation by pro-
viding procedures that detect and localize line outages in the
system using PMU data [5]–[8]. The cited work addresses

the issue of both change point detection and localization of
line outages. Although the change point detection methods
do utilize time series PMU data sampled during the transient
response of the system, the localization methods do not.
Instead the localization procedures utilize only measurement
data sampled at a steady state and rely heavily on the DC
approximations [9]. In fact, most line outage classification
techniques utilize steady state assumptions and inherit two
fundamental drawbacks:

1) Information Provided by Transients: Steady state based
outage localization procedures do not utilize the infor-
mation provided by PMU measurement data during the
transient response of the system. This information may
be used to improve the performance of a localization
procedure.

2) Slow Acting Classification: Severe line outages may
cause instability in the system and as a result a steady
state may not be reached until equipment failures have
occurred. Classification techniques that are based on
steady state assumptions cannot begin their execution
until a steady state is reached and thus cannot provide
information used for corrective action in the presence of
an unstable outage.

This manuscript provides a localization procedure that cor-
rects these two fundamental drawbacks. However, the proce-
dure presented assumes knowledge of more information about
the system than do standard steady state based classification
methods. In addition to using PMU data, system topology data,
and transmission line and transformer parameter data, dynamic
generator and motor data are required. These additional data
are necessary to perform the simulations that provide us with
synthetic observations to train the classifier. In addition, we
assume that a forecast distribution of system load and system
generation is available as well as a list of all possible line
outages.

To effectively utilize time series data that is sampled during
the transient response of the system, two estimation prob-
lems must be addressed. First, change point detection must
accurately identify the time at which a disturbance occurs in
the system. Second, a classification method must accurately
identify the disturbance that occurred. This manuscript does
not address change point detection, which has been studied in
other works [5], [10]. Instead we assume that change point
detection is capable of providing accurate results, and we
develop a classification method that localizes line outages in
the system.

Plenty of recent work has focused on developing state
estimation procedures in statistical frameworks, providing
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probability distributions that are easily accessible. By placing
our localization procedure in a clear statistical framework, the
presented classifier can be merged with existing estimation
procedures that rely on steady state assumptions effectively
improving steady state-based classifiers [8], [11].

The classification procedure presented in this paper is
perhaps most similar to the work done by [11]. Both tech-
niques quantify uncertainty in the system topology and utilize
forecast load/generation distributions which are assumed to be
available apriori. However, localization procedures provided
by [11] utilize steady state assumptions.

It is important to note that our methods can easily be
extended to the classification of any type of disturbance in the
system. However, the presented classifier may only consider
a finite number of disturbances and cannot account for every
disturbance in the system. This work considers only single-
line outages, allowing our results to be compared to existing
line outage localization methods. Future work will consider
multiple types of disturbances.

II. CLASSIFICATION METHODS: MULTINOMIAL
REGRESSION

Consider a transmission level power system with m trans-
mission lines and n buses, b of which are equipped with
PMUs. Each PMU produces time series data that are mea-
surements of the voltage angle for their corresponding bus
with respect to a nominal rotating reference frame (ie. 60
Hz). The system is initially in steady state and is perturbed
by some disturbance. We assume that change point detection
has successfully determined that a disturbance has occurred
in the system and has produced the exact time at which
the disturbance has occurred, t0. The measurement data is
collected from each PMU until the time at which the classifier
computation begins, t0+T . Utilizing the data available at time
t0 + T , the classifier will quickly localize the line outage.

This section defines the available PMU measurement data
and describes in detail a probabilistic classifier. The classifier
utilizes the time series measurement data to predict the line
outage that produced it. To learn how to do this, an analysis
is performed on PMU measurement data traces for which the
true line outage is known. Such data is not available from a
true power system in large quantity. Thus our work utilizes a
large number of synthetic data traces that are produced using
forecast load/generation distribution and dynamic simulation.
Specifically, the synthetic data traces are collected from dy-
namic simulations whose pre-fault state is determined from a
random sample of the forecast load/generation distribution. A
classifier is then trained using the synthetic data produced from
the simulated events. In this work, the classifier of choice is a
linear multinomial regression model and the predictors include
the post fault frequency domain PMU data obtained through
discrete Fourier transforms.

Vectors are denoted with bold font (ie. v) and subscripts
denote the element index of a vector (ie vi). The vector of
ones and the identity matrix are denoted 1̄ and I respectively
and are of appropriate dimension. The set of real and complex
numbers are denoted R and C respectively. The exponential

TABLE I: Table of Observations and Predictors.
FFT

(
a(k0:kTf )
1

)
represents the complex Fourier transform

frequency domain data of the signal a(k0:kTf )
1 .

Slack Bus PMU All Other PMUs
Observations

a(k−∞:kTf )

1
d(k−∞:kTf )

jj ∈ [2, . . . , b]

Predictors FFT
(

a(k0:kTf )

1

)
FFT

(
d(k0:kTf )

j

)
j ∈ [2, . . . , b] a(k0)

1 − a(k−1)
1 d(k0)

j − d(k−1)

j

and natural logarithm functions are written exp {·} and ln(·)
respectively.

A. PMU data

The set of PMU indices is denoted by P = [1, . . . , b]. We
assume that the measurement sample times are identical across
each PMU. Each measurement sample occurs at a time t(k) =
k/f where f is the sampling frequency and k is the integer
time step. The time at which the disturbance has occurred is
denoted by t0 = k0/f . The time over which data is collected
after the fault, T , is chosen based on the desired performance
of the classifier and is chosen such that T = k/f for some
integer k. The available measurement time samples are written
as [k−∞, . . . , kTf ].

Let θ(k) ∈ Rb denote the vector of voltage angles at each
PMU bus for the kth step in the time series with respect
to a nominal rotating reference frame. θ(ka:kb) represents the
sequence of vectors for the time steps ka, ka+1, . . . , kb. The
PMU measurement vector is modeled as

a(k) = θ(k) + n(k) (1)

where the random noise vector is denoted n(k) ∼ N (0,Ω).
The bus equipped with PMU 1 is arbitrarily chosen as the slack
bus. The relative voltage angles are defined as the difference
between a(k)1 and the angle measurements on each of the other
PMU buses. This vector of angle differences is written as

d(k) = a(k) − 1̄a(k)1 (2)

A simulation-based example of the observation a(k−10:k30)
1

is shown in Figure 1a. The black curve shows the true signal
trajectory which exhibits a typical response to a transmission
line outage as an instantaneous jump occurs at the time of the
outage, k0, followed by some sinusoidal oscillations. The gray
dots show synthetic measurement samples with co-variance
matrix Ω = 4.84 × 10−4 ∗ 10−4I in units of degrees. Table I
illustrates the observations available from PMUs.

B. Producing Synthetic PMU Measurement Data

Utilizing the knowledge of a forecast load distribution a set
of simulations is performed to produce likely time trajectories
of the PMU data. Define the random vector Z ∈ R2n to be
the real and reactive loads at each bus in the system. Load
forecast error is taken into account by assuming Z follows a
known forecast distribution. The required forecast distribution
has no restrictions and may be difficult to identify. If sampled
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Fig. 1: Example of PMU data and frequency domain ob-
servations. a) Noiseless signal and measurements samples
a(k−10:k30)
1 . b) Single sided power spectral density plot for

the frequency domain predictors FFT
(

a(k0:k30)
1

)
with and

without noise.

properly, non-normal forecast distributions should not effect
the classifier performance; however, in this work we use a
Gaussian forecast distribution with some known mean ν and
co-variance matrix Λ.

Z ∼ N (ν,Λ) (3)

This forecast distribution of loads is used to simulate a set of
likely PMU observations for a given line outage. The first step
in executing a simulation is to initialize the static state of the
system by solving the AC power flow equations for a given set
of randomly sampled loads to determine the complex voltages
at each bus. To provide the standard input to the power
flow solver, the real power generation at each bus is scaled
accordingly to match the random increase or decrease in the
total system load. Using these complex voltages the dynamic
state of the system (ie. generator and motor states) is initialized
by way of a newton raphson algorithm [12]. A disturbance (ie
line outage) can be simulated using any integration method
which computes time traces of the system states including the
voltage angles. Artificial noise is added to the voltage angle
trajectories to obtain synthetic time series PMU data. This
PMU data and the known line outages constitute the synthetic
training data used to train the regression model.

TABLE II: Steps Required to Construct the Training Data

For i ∈ L
For j ∈ [1, . . . , s]

2 Sample z(i,j) from forecast distribution (3)
3 Using z(i,j) injections, solve power flow

and initialize system state
4 Simulate outage on line i
5 Collect PMU data and add artificial noise, Equation (1)
6 Construct vector of predictors, x(i,j), as in Section II-C
7 Construct response variable y(i,j) = i

end
end

C. Classifier Model

In machine learning, the multinomial regression classifica-
tion method is used when the response variable is categorical.
In this case the discrete outcomes to be predicted include only
potential single-line outages indexed by the set of integers
L = [1, . . . , L]. As each outage corresponds to a transmission
line, this set will have L ≤ m elements. The response variable
Y realizes an integer y ∈ L that represents an index indicating
the outed line.

The predictors are constructed from the angle data produced
from the PMU at the slack bus and the angle difference data
produced from each additional PMU on the time interval
[k−1, . . . , kTf ]. The predictors directly include the instanta-
neous jump experienced by this time series observation data
in response to the outage and indirectly include the post-outage
time series data on the time interval [k0, . . . , kTf ]. Rather
than utilizing the post-outage time series data directly, our
predictors include the complex parts of the discrete Fourier
transform frequency domain data of the signal. A typical single
sided power spectral density plot of the voltage angle data is
shown in Figure 1b. The predictors are concatenated into a
vector denoted by x ∈ R(Tf+2)b and are stated explicitly in
Table I. (Note: frequency domain data comprises of the same
number of elements, Tf + 1, as the time domain data)

Under the assumption that change point detection has been
triggered by a line outage represented in L, the multinomial
regression model approximates the probability distribution
of the categorical random variable Y conditioned on the
predictors x. This distribution is a function of the predictors
x. Using short hand notation we have

Pr(Y = y|x) = py(x) ∀y ∈ L

where py(x) ≥ 0 is the yth element of the vector valued
function p(x) and 1̄T p(x) = 1. The standard generalized linear
model is used as the response function for the multinomial
response variable.

py(x) =
exp

{
γy + βT

y x
}

ΣL
`=1exp

{
γ` + βT

` x
} ∀y ∈ L (4)

where γ ∈ RL is a vector of parameters and βj ∈
R(Tf+2)b is the jth column vector of a matrix of parameters
β ∈ R(Tf+2)b×L. These model parameters will be found via
multinomial regression. The probability density function is
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f(Y = y|x) =
L

Π
k=1

(pk(x))
[y=k] (5)

where [y = k] evaluates to 1 if y = k and 0 otherwise. The log-
linearity of the probability density function greatly simplifies
the training procedure.

D. Training the Regression Model

Table II provides the steps required to build the set of
synthetic training data. Each of the L potential line outages
will be simulated s times. The response variable, the vector
of predictors, and the vector of power injections correspond-
ing to a simulation are realized as y(i,j), x(i,j), and z(i,j)
respectively, where i ∈ [1, . . . , L] indexes the line being outed
and j ∈ [1, . . . , s] indexes the randomly sampled initial load.
Since each of the sL observations are independent, their joint
probability function can be written

g(Y (1,1) = y(1,1), ..., Y (L,s) = y(L,s)|x(1,1), ..., x(L,s)) =

=
s

Π
j=1

L

Π
i=1

Pr(Y (i,j) = y(i,j)|x(i,j))

=
s

Π
j=1

L

Π
i=1

L

Π
k=1

(
pk(x(i,j))

)[y(i,j)=k]

The joint log-likelihood function, written as a function of the
model parameters, can be derived to be

ln (L(γ,β)) =
s

Σ
j=1

L

Σ
i=1

(
L

Σ
k=1

[y(i,j) = k](γk + βT
k x(i,j))

−ln(ΣL
`=1exp(γ` + βT

` x(i,j))))

The maximum likelihood problem is written as

min
γ,β

− ln (L(γ,β)) (6)

In this paper problem (6) is solved using elastic net reg-
ularization paths from [13]. This algorithm is a homotopic
algorithm that solves a sequence of grouped elastic net op-
timization problems that converge to the maximum likeli-
hood problem (6). Warm start initial guesses are utilized to
solve successive optimization problems via coordinate descent
method.

Under the assumption that the number of iterations of
the coordinate descent algorithm and the number of grouped
elastic net optimization problems required to be solved does
not scale with the size of the problem, the computation
required to solve problem (6) scales linearly with the number
of predictors, the number of events, and the number of
classification outcomes, and O((Tf + 2)bsL2) operations are
required.
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Fig. 2: 37 bus system

III. EMPIRICAL RESULTS

Our methodology is demonstrated on two power system
models. Using the 37 bus test case from [5], empirical results
are provided to illustrate the ability of our methodology
in classifying outages quickly enough to provide stabilizing
action. Specific outages in the 37 bus system are identified
as being difficult to localize and both topological and op-
erating point classification difficulties are discussed. Second,
a 150 bus test case is constructed to analyze the scalability
and computational tractability of our classification technique.
Using this system, PMU placement is briefly investigated and
PMU configuration classification difficulties are discussed.

A. 37 Bus Test Case

Our methodology is first demonstrated on the 37 bus test
case analyzed in [5], utilizing PMUs on the same three buses.
The one line diagram is shown in Figure 2. In this figure
each line is numbered so we are able to correctly identify
outed lines. The bus equipped with PMU 1 is designated
the slack bus from which we attain observations a(k−∞:kTf )

1 .
The measurement co-variance is set to the standard value of
Ω = 4.84 × 10−4I and has units of degrees [14]. The PMUs
sample at a frequency of f = 30 Hz and the nominal voltage
frequency is 60 Hz. The mean of the prior load distribution,
ν, is set to the standard load provided by test case and the
co-variance is defined to be Λ = diag(.2ν).

There are 9 generators and 25 loads in the system illustrated
by circles and arrows respectively. The system includes two
generator models, four excitation system models, and four
turbine governor models. The most complex dynamic gener-
ator model is that of the generator placed on the bus that is
equipped with PMU 1. This model is completely described
by 16 dynamic state variables. Loads are modeled as being
constant. Additionally, there exist multiple shunt capacitors
and transformers in the system.

1) Probability Evolution in Time: We begin by analyzing
the line outage of transmission line 46 in Figure 2, the
same line outage studied in [5]. To study the behavior of
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Fig. 3: Only those trajectories corresponding to the top five
probabilities are shown. (a) Probability evolution in time for
an outage on line 46. (b) Probability evolution in time for an
outage on line 13.
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Fig. 4: Analyzing model performance: The y-axis represents
the simulated fault and the x-axis represents the predicted
fault. The green square outlines multiple lines. The blue square
outlines trail lines. The magenta square represents all other
outages and are ordered in terms of their line flow at the mean
load ν. The final outage represents the null outage. Each row
of the matrix represents the average probability vector over
each of the 100 samples, p(·). Each row sums to 1.

our classifier as a function of time horizon, T , 20 different
classifiers are built using horizons ranging from .033 seconds
to 1 second. Each of the classifiers were built using s = 100
events for L = 57 possible line outages. Included in the set
L is the set of m = 56 outages on lines and the null outage
which simulates no disturbance to the system.

Figure 3a shows an example of how the probability vector
evolves in time using an initial load sample that was not
used in the training data. The plot contains trajectories rep-
resenting elements of the vector of probabilities, p(·). Only
those trajectories corresponding to the top five probabilities
at a one second horizon are shown. The sum of probabilities
across all possible outages equals 1 at every time instant. The
probabilities across all outages are 1/57 at the instant the
fault occurs; however, 0.033 second after the fault occurs it
becomes apparent that the outage on line 46 is significantly
more likely to have occurred than all others. With minimal
real-time computation, the outage in this example is correctly
classified in less than 0.04 seconds. It is important to note

that the quasi-steady state classifier presented in [5] cannot
begin execution until a steady state is reached which does not
happen in this example until after 4 seconds have passed.

Our results are compared with Tables I and II from [5].
Like those results, we correctly identified the outed line.
Aside from this line, our next four most probable lines do
not overlap with the next four highest ranked lines from [5].
It is difficult to determine if this difference in ranking is a
result of the transient information used by our classifier or of
the classification method itself. Additionally, our probabilistic
results have a more straightforward interpretation than the
NAD quantity presented in [5].

Figure 3b shows an example of how the probabilities evolve
in response to an outage on line 13. Only the five outages with
the largest probabilities at a one second horizon are shown.
These five outages have very similar probabilities throughout
the 1 second horizon, making it difficult to accurately choose
the one specific line that has been outed. A deterministic
localization procedure may choose line 12 as the estimated
outage because it has the largest probability one second
after the fault occurrence. However, corrective action should
consider the possibility of an outage on lines 9-13.

2) Classification Difficulties: As illustrated in the section
III-A1, some outages are easier to localize than others. Clas-
sifying an outage on line 46 is relatively easy as compared
to an outage on line 13. In this section we begin to identify
reasons that a line outage may be difficult to localize. For
demonstration purposes, a relatively long time horizon of
T = 1 second is used to identify line outages that are
difficult to localize. Once again, the classifier was built using
s = 100 events for each of the L = 57 possible line
outages. Using validation data that was constructed from a
seperate set of random load samples, the probability vector,
p(·), was calculated 100 times for each outage ` ∈ L. The
average probability vector for each of the 57 outages were
concatenated vertically to attain a matrix that is depicted by
the image plot in Figure 4. In this plot the rows correspond to
the simulated outage and columns correspond to the predicted
outage. The value of each element in the matrix represents a
probability and each row sums to 1. If the diagonal elements
were all 1, then our classifier would perform perfectly. We will
analyze this figure with one concept in mind: it is difficult for
the classifier to distinguish between two outages that result
in similar steady state post-fault power flows throughout the
system.

Two different topological difficulties are illustrated by the
squares along the diagonal of the image plot in Figure 4.
As seen in section III-A1, the classifier has difficulties dis-
tinguishing between lines that connect the same pair of buses.
Let’s refer to these groups of lines as multiple lines. The
groups of multiple lines in the system include lines (1,2), (3,4),
(5,6), (7,8), (9,10,11), (12,13), and (14,15). The green square
highlights the groups of multiple lines in the system. When one
of these lines is outed, the power flows throughout the network
do not change significantly. Rather, the corresponding multiple
lines assume the power flow lost by the outed line, steady state
pre-fault and post-fault voltage angles are nearly identical and
the dynamic response of the voltage angles exhibit oscillations
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Fig. 5: Illustration of the distribution of probabilities produced from the classifier over each of the 100 validation events. For
each line, `, this box plot describes the distribution of the 100 probabilities produced for the outed line, p(·). The x-axis
displays the line number, `, of the outed line. The same line groups are outlined as in Figure 4. Lines outages with a high
mean and a low lower bound experience occasional operating point classification difficulties resulting in low outliers.

of small magnitude. A resulting low signal-to-noise ratio often
causes single line outages located on multiple lines to be
indistinguishable from each other and from the null outage
which excites no dynamic response. Illustrating this point
are the dense off-diagonal elements located within the green
square of this plot as well as the elements that couple the
multiple lines with the null outage.

Notice the seven dense diagonal blocks coupling the groups
of multiple lines. These dense blocks show that multiple lines
contained in the same group cannot be well distinguished from
each other; however, the classifier is able to identify the group
of multiple lines that contains the outed line. This suggests that
it may be beneficial to consolidate each group of multiple lines
into separate classification outcomes.

The blue square outlines groups of lines that also exhibit an
ambiguously coupled behavior with respect to the classifier,
although the dense blocks on the diagonal are less apparent.
These lines have common topological characteristics as each
pair represent trail edges of the system graph, the adjoining bus
is not connected to a third transmission line, and the adjoining
bus experiences little or no load/generation. These lines are
referred to as trail lines. The groups of trail lines in the
system whose adjoining buses generate or consume 20 MW
of real power or less include (16,17), (18,19), (20,21), (22,23),
(24,25), (26,27), and (28,29). When one of these lines is outed
the power flows throughout the network may change signifi-
cantly and dynamic oscillations of the observed voltage angles
may experience large magnitude. However, outages located
on grouped trail lines tend to excite nearly identical dynamic
system responses. To understand the intuition, consider the
extreme scenario where a group of two trail lines have an
adjoining bus that does not inject or extract power and their
line resistances are zero. In this case an outage on either line
will drop the real power flowing on both lines to zero and
result in identical real power flows throughout the system.

The box plot shown in figure 5 illustrates the distribution
of probabilities produced for the correctly outed line, p(·),
over each of the 100 validation events. The mean for each line
outage represents the diagonal elements of the matrix depicted
in Figure 4.

The ambiguous coupling between line outages on multiple
lines as well as trail lines has already been introduced.
The classifier performs poorly with respect to these outages
because the system’s response to each line in an ambiguous

group is nearly identical. Outages located on multiple lines are
particularly difficult to classify because they not only excite
a similar response to their paired outage, but also excite a
similar response to the null outage. On the other hand, outages
on trail lines do not typically excite a similar response to
the null outage, are thus easier to classify, and exhibit a high
mean probability in figure 5. However, outages on trail lines
are occasionally misclassified as their paired outages and thus
such outages often exhibit a low 75th percentile. Line outages
37-56 do not present topological classification difficulties and
exhibit both a high mean probability and a high 75th and 25th

percentile bounds.
For each outage, outlier events exist resulting in misclas-

sification. This is illustrated in figure 5 as most line outages
experience lower probability bounds that are nearly zero. Many
of these outliers occur when the randomly sampled initial
state is such that the power flowing across the outed line
is nearly zero. During such events, the system experiences a
very small perturbation and the transient oscillations are low in
magnitude. A resulting low signal-to-noise ratio causes these
outliers to be indistinguishable from the null outage. These
outlier events will be labeled as operating point classification
difficulties. Lines 30-33 and line 23 are most vulnerable to op-
erating point classification difficulties because they experience
the lowest power flow at the mean power injections, ν.

B. 150 Bus Test Case

To demonstrate our methodology on a larger test case and to
investigate PMU placement, we developed a 150 bus test case
using the PSAT toolbox in MATLAB [12]. This large test case
is represented by the graph shown in Figure 6. There are six
regions in the system illustrated by blue and black dots each
connected by eight tie lines. Regions 5 and 6 consist of only
one bus containing a load of 2/8 p.u. and 1/8 p.u. respectively.
Regions 1 through 4 are duplicate 37 bus systems containing
the same graphical structure as in Figure 2. The PMU locations
shown in Figure 2 are used for each of the regions 1 through
4 and no PMUs exist in regions 5 and 6. The tie lines that
connect regions have low impedance and are connected to the
bus equipped with PMU 1. Figure 6 assigns indices to each of
the tie lines. The slack bus for the entire network is designated
to be the bus in region 3 that is equipped with PMU 1. The
slack bus picks up the additional load that is introduced in
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Fig. 6: 150 bus system. Regions are labeled in blue and tie
lines are labeled in black.

regions 5 and 6. There are 12 total PMUs in the system, and
there are 232 lines in the system. Each PMU samples at a
frequency of f = 30 Hz and the measurement co-variance is
set to Ω = 4.84× 10−410−4I.

1) Computational Scalability: An important feature of the
proposed classifier is the minimal real time computation.
Once an outage has been detected two major computations
must be carried out. First, each of the PMU signals must
be transformed into the frequency domain. The computation
time of a discrete Fourier transform has been extensively
studied [15], [16]. Signals considered in this paper include
few measurement samples and Fourier transform computations
are executed on the order of 10−5 seconds. Second, each of
the probabilities must be calculated. The algebraic probability
calculation, equation (4), requires little effort to evaluate and
are executed in fractions of a second for very large systems. In
fact, the vector of probabilities scales linearly with the number
of available PMUs, b, and number of potential outages, L.

In this example we consider L = 233 potential line outages,
one for each of the m = 232 lines and one for the null outage.
Using a time horizon of 1 second results in 63 predictors for
each of the 12 PMUs and 756 total predictors. Transforming
each of the 12 signals into the frequency domain requires
roughly 10−5 seconds of computation. The 233 algebraic
probability calculations, require a total of roughly 0.14 sec-
onds. This computational time was measured using a single
processor on a standard 2.7 GHz laptop computer. Assuming
detection occurs within one second of the outage occurrence,
our procedure will provide probabilities 1.14 seconds after the
fault has occurred.

Additional computation is required to solve the optimization
problem (6) and train the classifier. This computation is
executed apriori and is further discussed in section IV-B. In
this example, data was collected from s = 100 simulations
for each of the L = 233 outages. The model is fit to the
resulting 23, 300 events. The fitting process (solving problem
(6)) required two hours to complete using a single 2.7 GHz
processor. This computation time may be improved by uti-
lizing additional computational resources including hardware
and custom algorithms. Each of the 23, 300 simulations require
less than 1.5 seconds of computation time on a single 2.7 GHz
processor using simulation code that is not computationally
efficient. Utilizing four processors can lower the simulation
computation to less than two and a half hours. Utilizing

computationally efficient simulation software can significantly
decrease this computational burden.

2) Classification Difficulties: Once again, we consider a
classifier that utilizes a time horizon of T = 1 second. The
classifier was built using s = 100 events for each of the
L = 233 possible line outages. Using validation data that
was constructed from a seperate set of random load samples,
the probability vector, p(·), was calculated 100 times for
each outage ` ∈ L. Figure 7 illustrates the performance of
the classifier. For each outed line, `, this bar graph presents
the average probability for the outed line, p(·), over the
100 probabilities produced. This metric is used to analyze
the classifier’s performance for individual line outages. The
performance characteristics of each outage in regions 2, 3,
and 4 are nearly identical to those contained in region 1. For
this reason, the analysis of outages in region 1 are directly
applicable to outages in regions 2, 3, and 4.

This section intuitively explains classification difficulties
experienced by the 41 outages that are most difficult to classify
in the 150 bus system according to the provided metric, 27
of which are contained in regions 2, 3, and 4 and are thus
omitted from figure 7. These 41 outages account for all single
line outages that produce an average probability of less than
.1. In attempt to explain only the most severe classification
difficulties, this section does not address outages that produce
average probabilities greater than .1. The value of .1 is chosen
only for illustration purposes.

There are fourteen outages shown in figure 7 that fall below
an average probability of .1, nine of which are contained
in region 1. The topological difficulties identified in the last
example explain why seven of these fourteen outages are
difficult to localize. Specifically, outages on lines 9 through 15
in region 1 are multiple lines. The operating point difficulties
identified in the last example explain why 4 of these fourteen
outages are difficult to localize. Specifically, tie lines 4 and 5
and lines 23 and 31 in region 1 are four of the five lines that
have the lowest pre-outage power flow at the mean injection
values, ν. The remaining 3 difficult to localize outages are left
unexplained. This example will demonstrate that the classifier
cannot localize these 3 outages because of a deficiency in the
PMU configuration.

PMU placement has been briefly studied in attempt to
improve the classifier’s performance. In this example, we are
interested in placing one additional PMU in the system to
boost the performance of the classifier with respect to the 14
outages that are difficult to localize. Each bus connected to
one of these 14 lines were considered as candidate placement
locations. For each of the 10 candidate PMU locations a
different classifier was built. None of the 10 classifiers were
able to raise the performance metric above the threshold for
those 11 outages that have been labeled as being difficult
to localize due to operating point difficulties and topological
difficulties. However, 2 of the 10 classifiers were able to
easily detect the 3 outages whose difficulties have been left
unexplained, tie lines 6-8. These 3 outages are labeled as
having PMU configuration difficulties. One of the improved
classifiers utilized PMU data from the bus in region 6, and
the corresponding results are shown in figure 7.
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Fig. 7: Classification performance for the 150 bus system. Outages on each tie line and each line in region 1 are presented.
Outages on lines in regions 2 through 4 are omitted because they experience nearly identical performance characteristics as
those in region 1. For each outed line, `, this bar graph presents the average probability for the outed line, p(·), over the 100
probabilities produced. The x-axis displays the line number, `, of the outed line. The gray bars show results when an additional
PMU is placed in region 6. The analysis of section III-B2 addresses classification difficulties experienced by all outages whose
average probability falls below the horizontal line drawn at the probability .1.

IV. DISCUSSION AND FUTURE WORK

This section begins by discussing the classification dif-
ficulties identified in Section III. Beyond these difficulties,
additional complications arise when classifier is implemented
into actual system operation. Discussed first is the classifier
update process. As the power injections in the system and the
power injection forecasts evolve in time the classifier must be
updated in a manner that fits well into existing state estimation
procedures. Second, the classifier must be adjusted to perform
well in the presence of an imperfect dynamic simulation
model. To address this problem, a method of feature selection
is discussed.

A. Classifier Difficulties

Section III empirically identifies three difficulties that deter
the performance of the classifier. Future work will adapt the
classifier to accommodate these difficulties. Operating point
classification difficulties are attributed to small system per-
turbations, causing the system to exhibit transient oscillations
that are low in magnitude. Due to their unobtrusive nature,
these outages often do not require immediate corrective action
and may be better suited for a steady state-based classifier.
Eliminating these unobtrusive events supports the purpose
of fast acting classification which is to perform immediate
corrective action.

Topological classification difficulties that were presented are
attributed to pairs of lines that when outed produce a nearly
identical dynamic system response. Since the system response
is similar for each of these pairs, it is likely that the same
corrective action would be employed for either line outage.
With this in mind, each group of multiple and trail lines
may be merged into one classification outcome. Indeed the
emperical results of section III-A2 showed that the presented
classifier was able to successfully locate the ambiguous group
that contained the outed line.

PMU configuration classification difficulties may be iden-
tifiable using theory provided by existing cyber-security re-
search. For a given PMU configuration, reference [17] iden-
tifies unobservable breaker and jammer attacks which can
be interpreted as transmission line outages exhibiting PMU
configuration classification difficulties. Assuming that every

power injection is metered in the 150 bus test case and 12
PMUs are located as in our example, the only unobservable
breaker and jammer attacks that compromise exactly one
breaker status must compromise the status on tie line 6, 7,
or 8. These are the same lines that present PMU configuration
difficulties. To protect against these attacks, methods from [17]
propose the placement of one PMU in either region 5 or 6. This
PMU placement agrees with the findings in this manuscript
and further suggests that cyber-security-based research may
be relevant in determining PMU placement to eliminate PMU
configuration classification difficulties.

Additional existing quasi-steady state-based PMU place-
ment heuristics may be relevant to improving our classifier.
Reference [18] formulates an integer programming problem
that identifies the PMU configuration that maximizes the
change in observed quasi-steady state voltage angle diferences
in response to a list of potential outages. Such a PMU
configuration will not only correct PMU configuration classifi-
cation difficulties but may also improve the classifiers general
performance.

B. Classifier Updates

The power system operator’s day ahead market schedules
hourly bulk generation based on the load and renewable
generation forecasts roughly one day in advance. The forecasts
are provided as constant values over the hour intervals of
interest. We propose that distribution (3) be created using these
forecasts along with the bulk generation scheduled through the
day ahead market. The mean of the distribution (3), ν, is set
to the forecast injections plus the scheduled bulk generation at
each bus. The co-variance matrix, Λ, is directly related to the
expected forecast accuracy. The classifier training computation
begins immediately after the day ahead market has cleared.
Along with the scheduled bulk generation, the classifier is
updated on the hourly time intervals considered by the day
ahead market.

It is critical for the construction of the classifier to require
less than 24 hours of computation when using the proposed
update method. Scaling to large systems (i.e. 100,000 bus
systems) may be difficult. The number of simulations required
to construct the training data grows linearly with the number
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of line outages considered by the classifier; however, this
computation is executable in parallel. Of greater concern is
the computational burden of solving the optimization problem
(6) to train the classifier. This computation cannot be executed
in parallel and the order of operations required to solve this
problem grows quadratically with the number line outages
considered and linearly with the number of PMU meters.
In reference to the 150 bus test case the computation time
required to construct the training data using 4 processors and
train the classifier was roughly four hours. As a result, four
models must be built in parallel at all times throughout the day
in order to update the classifier each hour. This would require
four processors on a single computer. Future work will focus
on this computational burden.

C. Feature Selection and Imperfect Simulation Models

Rather than solving the maximum likelihood problem (6)
to build the regression model, a grouped elastic net problem
can be solved to encourage a sparse parameter matrix β and
effectively perform feature selection. This method of feature
selection has been investigated. Using the analysis framework
provided in this paper, we have shown that reducing the num-
ber of predictors via feature selection deters the performance
of the classifier. However, removing predictors at specific
frequencies provides a filtering effect that may remove high
frequency oscillations introduced by higher order dynamic
models. As a result, feature selection could possibly improve
the performance of the classifier when the simulation model is
not a perfect representation of the actual system. Future work
will focus on feature selection in the presence of inaccurate
dynamic simulation models using field measurements in a true
power system.

V. CONCLUSION

In this paper we have presented a statistical classifier that
localizes line outages using time series PMU data that is sam-
pled during the transient response of the system. The classifier
is a linear multinomial regression model that is trained by
solving a maximum likelihood problem. The synthetic training
data is constructed from time domain simulations that are
initialized through random sampling of a forecast distribution
on system power injections. The real time evaluation of the
classifier requires minimal computation and produces proba-
bilities over each potential line outage. The empirical results
section analyzes two systems. The 57 bus system is used to
compare our results to existing quasi-steady state classifiers
and to illustrate the ability of the classifier to quickly identify

line outages before a steady state is reached. The 150 bus
system is used to illustrate the computational tractability of
implementing the classifier into a real system. Classification
difficulties were identified based on the topology of the system,
system operating point, and the PMU configuration. Future
work is proposed to improve the classification performance
with respect to these difficulties. Additional future work will
investigate feature selection and PMU placement.
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