
On the Burstiness of the TCP Congestion-Control Mechanism
in a Distributed Computing System

�

Peerapol Tinnakornsrisuphap
�

, Wu-chun Feng
���

, and Ian Philp
�

tinnakor@cae.wisc.edu, feng@lanl.gov, philp@lanl.gov

�

Department of Electrical & Computer Engineering
University of Wisconsin-Madison

Madison, WI 53706
�

Research & Development in Advanced Network Technology (RADIANT)
Computing, Information, and Communications Division

Los Alamos National Laboratory
Los Alamos, NM 87545

�

School of Electrical & Computer Engineering
Purdue University

W. Lafayette, IN 47907

Abstract

Several studies in network traffic characterization have
concluded that network traffic is self-similar and therefore
not readily amenable to statistical multiplexing in a dis-
tributed computing system. This paper examines the effects
of the TCP protocol stack on network traffic via an exper-
imental study on the different implementations of TCP. We
show that even when aggregate application traffic smooths
out as more applications’ traffic are multiplexed, TCP in-
troduces burstiness into the aggregate traffic load, reducing
network performance when statistical multiplexing is used
within the network gateways.
Keywords: TCP, distributed computing, network traffic
characterization, self-similar traffic.

1. Introduction

High-speed, distributed systems require support for the
fluctuating and heterogeneous demands of individual users.
The ability to characterize the behavior of the resulting ag-
gregate network traffic can provide insight into how traffic
should be scheduled to make efficient use of the network,

�
This work was supported by the U.S. Dept. of Energy through Los

Alamos National Laboratory contract W-7405-ENG-36. This paper is LA-
UR 00-481.

and yet still deliver expected quality-of-service to end users.
These issues are of fundamental importance to the design of
the Next-Generation Internet (NGI) [17], and consequently,
the resurgence of high-speed, distributed computing envi-
ronments such as the Earth System Grid [3].

Several research efforts in the area of network traffic
characterization have concluded that network traffic is self-
similar in nature [11, 16]. That is, when traffic is aggregated
over varying time scales, the aggregate traffic pattern re-
mains bursty, regardless of the granularity of the time scale.
Additional studies have concluded that the heavy-tailed dis-
tributions of file size, packet interarrival, and transfer dura-
tion fundamentally contribute to the self-similar nature of
aggregate network traffic [19].

The problems with the aforementioned research are
three-fold. First, the knowledge that self-similar traffic is
bursty at coarse-grained time scales contributes little insight
into the network’s ability to achieve an expected quality of
service through the Internet’s use of traditional statistical-
multiplexing techniques because the effectiveness of such
techniques manifests itself at the granularity of milliseconds
(particularly in the “small buffer” case), not tens or hun-
dreds of seconds [7]. Second, while current models of net-
work traffic apply to existing file-size distributions and traf-
fic arrival patterns, these models will not generalize as new
applications and services are introduced to the NGI [18].
Third, the proofs of the relationship between heavy-tailed

Proceedings of the 20th International Conference on Distributed Computing Systems (ICDCS 2000).

distributions and self-similar traffic in [9, 19] ignore the
involvement of the TCP congestion-control mechanism.
Thus, while the heavy-tailed distributions of file size, packet
interarrival, and transfer duration may contribute to self-
similarity, there are many other factors which have not been
investigated thoroughly. Moreover, all the studies thus far
have failed to isolate individual aspects of the end-to-end
networking path in order to pinpoint the source of self-
similarity; instead, various aspects have been intermingled
and studied simultaneously.

To address some of the above issues, we present an ex-
perimental study on the effect of different versions of TCP
on the shape as well as the predictability of traffic gener-
ated at the application level. We show that the fluctuations
in the TCP congestion window size and dependencies be-
tween congestion-control decisions made by multiple TCP
streams modulate application traffic to be more bursty and
reduce network performance when statistical multiplexing
is used within the network gateways. The rest of the pa-
per is organized as follows. Section 2 presents additional
background information on the different versions of TCP.
Section 3 outlines the simulation model used in our exper-
imental study and presents and analyzes the results of the
study. Lastly, Section 4 presents our concluding remarks
and future work.

2. Background

TCP is a connection-oriented service which guarantees
the reliable, in-order delivery of a stream of bytes, hence
freeing the application from having to worry about miss-
ing or reordered data. It includes a flow-control mechanism
which ensures that a sender does not overrun the buffer ca-
pacity of the receiver and a congestion-control mechanism
which tries to prevent too much data from being injected
into the network, thereby causing packet loss within the net-
work. While the size of the flow-control window is static,
the size of the congestion window evolves over time, ac-
cording to the status of the network.

2.1 TCP Congestion Control

Currently, the most widely-used TCP implementation
is TCP Reno [8]. Its congestion-control mechanism con-
sists of two phases: (1) slow start and (2) congestion
avoidance. In the slow-start phase, the congestion win-
dow grows exponentially (i.e., doubles every time the
sender successfully transmits a congestion-window’s worth
of packets across the network) until a timeout occurs, which
implies that a packet has been lost. At this point, a���������
	�������������
�
	����
���

value is set to the halved window
size; TCP Reno resets the congestion window size to one
and re-enters the slow-start phase, increasing the congestion

window exponentially up to the
���������
	�������������
�
	����
���

.
When the threshold is reached, TCP Reno then enters its
congestion-avoidance phase in which the congestion win-
dow is increased by “one packet” every time the sender suc-
cessfully transmits a congestion-window’s worth of pack-
ets across the network. When a packet is lost during the
congestion-avoidance phase, TCP Reno takes the same ac-
tions as when a packet is lost during slow start.

To further enhance performance, TCP Reno also im-
plements fast-retransmit and fast-recovery mechanisms
for both the slow-start and congestion-avoidance phases.
Rather than timing out while waiting for the acknowledge-
ment (ACK) of a lost packet, if the sender receives three du-
plicate ACKs (indicating that some packet was lost but later
packets were received), the sender immediately retrans-
mits the lost packet (fast retransmit). Because later pack-
ets were received, the network congestion is assumed to be
less severe than if all packets were lost, and the sender only
halves its congestion window and re-enters the congestion-
avoidance phase (fast recovery) without going through the
slow-start phase again.

TCP Vegas [2] introduces a new congestion-control
mechanism that tries to prevent congestion rather than re-
act to the congestion after it has occurred. The basic idea is
as follows: When the congestion window increases in size,
the expected sending rate (���) increases as well. However,
if the actual sending rate (� �) stays roughly the same, this
implies that there is not enough bandwidth available to send
at �!� , and therefore, any increase in the size of the con-
gestion window will result in packets filling up the buffer
space at the bottleneck gateway. TCP Vegas attempts to
detect this phenomenon and avoid congestion at the bottle-
neck gateway by adjusting the congestion-window size, and
hence ��� , as necessary to adapt to the available bandwidth.

To adjust the window size appropriately, TCP Vegas de-
fines two threshold values, " and # , for the congestion-
avoidance phase, and a third threshold value, $, for the
transition between the slow-start and congestion-avoidance
phases. Conceptually, "&%(' implies that TCP Vegas tries to
keep at least one packet from each stream queued in gate-
way while #)%+* keeps at most three packets from each
stream queued in the gateway.

If ��, �-��./-0�0 %1���324� � , then when ��, �-��./-0�045 " ,
Vegas increases the congestion window linearly during the
next RTT; when ��, �-��./-0�076 # , Vegas decreases the con-
gestion window linearly during the next RTT; otherwise, the
congestion window remains unchanged. The $ parameter
can be viewed as the “initial” # when TCP Vegas enters its
congestion-avoidance phase.

To enhance the performance of TCP, Floyd and Jacobson
proposed the use of random early detection (RED) gate-
ways [6] to detect incipient congestion. To accomplish
this detection, RED gateways maintain an exponentially-

weighted, moving average of the queue length. As long as
the average queue length stays below the minimum thresh-
old (� ������), all packets are queued, and thus no packets are
dropped. When the average queue length exceeds � ������ ,
packets are dropped with probability

�
. And when the av-

erage queue length exceeds a maximum threshold (� ,�� ���),
all arriving packets are dropped.

2.2 TCP Probability & Statistics

The Central Limit Theorem states that the summation of
a large number of finite-mean, finite-variance, independent
variables approaches a Gaussian random variable with less
variability (or less “spread” or burstiness) than the original
distribution(s). So, if each random variable were to repre-
sent traffic generated by a particular communication stream,
then the sum of a large number of these streams represents
aggregate network traffic with less variability, and thus less
variation or spread in the required bandwidth, i.e, network
traffic is less bursty or more smooth. Such aggregate traf-
fic behavior enables statistical-multiplexing techniques to
be very effective over the Internet. Unfortunately, although
application-generated traffic streams may have finite means
and variances and may be independent, TCP can modulate
these streams in such a way that they are no longer inde-
pendent, for example. Hence, the thrust of this paper is
to examine how TCP modulates application-generated traf-
fic and how it affects the statistical-multiplexing techniques
currently being used in the Internet as well as distributed
computing systems.

To measure the burstiness of aggregate TCP traffic, we
use the coefficient of variation (c.o.v.) — the ratio of the
standard deviation to the mean of the observed number of
packets arriving at a gateway in each round-trip propagation
delay. The c.o.v. gives a normalized value for the “spread”
of a distribution and allows for the comparison of “spreads”
over a varying number of communication streams.

Rather than use the Hurst parameter from self-similar
modeling as is done in many studies of network traf-
fic [11, 14, 15, 16, 19], we use c.o.v. because it better
reflects the burstiness of the incoming traffic, and conse-
quently, the effectiveness of statistical multiplexing over
the Internet [4]. If the c.o.v. is small, the amount of traf-
fic coming into the gateway in each RTT will concentrate
mostly around the mean, and therefore will yield better per-
formance via statistical multiplexing.

3. Simulation Study

The goal of this simulation study is to understand the dy-
namics of how TCP modulates application-generated traf-
fic. While this issue has been largely ignored in the self-
similar literature [11, 14, 15, 16, 19], we intend to isolate

and understand the TCP modulation so that we may be bet-
ter able to schedule network resources. Understanding how
TCP modulates traffic can have a profound impact on the
coefficient of variation (c.o.v.), and hence, throughput and
packet loss percentage of network traffic. This, in turn, di-
rectly affects the performance of distributed computing sys-
tems such as the Earth System Grid [3].

3.1 Network Model

To characterize the TCP modulation of traffic, we first
generate application traffic according to a known distribu-
tion. We then compare the c.o.v. of this distribution to the
c.o.v. of the traffic transmitted by TCP. We can then deter-
mine whether TCP modulates the traffic, and if it does, how
it affects the shape (burstiness) of the traffic, and hence, the
performance of the network.

Consider a client-server network with one server and 	
clients. Each client is linked to a common gateway with a
full-duplex link with bandwidth
�� and delay �� . A bottle-
neck full-duplex link of bandwidth
�� and delay �� connects
the gateway to the server. Each client generates Poisson
traffic, i.e., single packets are submitted to the TCP stack
with exponentially distributed interpacket arrival times with
mean '���� . All the clients attempt to send the generated
packets to the server through the common gateway and bot-
tleneck link. The configuration is shown in Figure 1.

..

Gateway/Router Server

Clients

1

M

3

2

τ

µ
τ

µs s

c

c

Buffer size = B

Figure 1. Network Model

In our ns [13] simulations, we vary the total traffic load
offered by varying the number of clients 	 . We use UDP,
TCP Reno (with delay acknowledgments both on and off),
and TCP Vegas as the transport-layer protocols. We also test
the effects of two queueing disciplines in the gateway, FIFO
(First-In, First-Out) and RED, to see whether the queueing
discipline has any effect on the burstiness generated by the
TCP protocol stack. We calculate the c.o.v. of the aggregate
traffic generated by the clients, based on the known distri-
bution each client uses to generate its traffic, and compare
it to the measured c.o.v. of the aggregate TCP modulated

traffic as it arrives at the gateway. The parameters used in
the simulation are shown in Table 1.

Parameters Value

client link bandwidth (���) 10 Mbps
client link delay (���) 25 ms
bottleneck link bandwidth (���) 50 Mbps
bottleneck link delay (���) 25 ms
TCP max advertised window 20 packets
gateway buffer size (�) 50 packets
packet size 1500 bytes
average packet intergeneration time (�
��) 0.01 s
total test time 200 s

TCP Vegas/ 1
TCP Vegas/ � 3
TCP Vegas/ � 1

RED ��������� 10 packets
RED ��������� 40 packets

Table 1. Simulation Parameters.

3.2 TCP Reno vs. Vegas

Here we examine how TCP modulates application-
generated traffic when all the clients are running the same
implementation of TCP.

Since the traffic generated by the application layers is
Poisson, the c.o.v. of the number of packets received
during one RTT for the unmodulated aggregate traffic is
1/ � � � �� � where

�
is the number of clients aggregated and

&%)� � � %! �� �#" � � . Thus, the traffic generated from
the application layer becomes smoother as the number of
sources increases.

Figure 2 shows that UDP does not adversely modu-
late traffic because the c.o.v. of aggregated UDP traffic is
very close to that of the aggregated Poisson process. This
result is not surprising since UDP transmits packets re-
ceived from the application layer to the network without any
flow/congestion control. For TCP, we divide the results into
three cases.

1. Uncongested: the amount of traffic generated is much
lower than the available bandwidth, i.e., the number of
clients is less than 10.

2. Moderately congested: the amount of traffic generated
causes some, but not severe, congestion, i.e., the num-
ber of clients is between 10 and 38.

3. Heavily congested: the amount of traffic generated is
higher than what the network can handle, i.e., the num-
ber of clients is greater than 38.

0 10 20 30 40 50 60 70 80 90 100
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

number of clients

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

Poisson
UDP
Reno
Reno/RED
Vegas
Vegas/RED
Reno/DelayAck

Figure 2. Coefficient of Variation of the Aggre-
gated TCP Traffic.

30 40 50 60 70 80 90 100
5.5

6

6.5

7

7.5

8

8.5
x 10

5

number of clients

to
ta

l n
um

be
r

of
 p

ac
ke

ts
 s

uc
ce

ss
fu

lly
 tr

an
sm

itt
ed

Reno
Reno/RED
Vegas
Vegas/RED
Reno/DelayAck

Figure 3. Throughput of the Aggregated TCP
Traffic.

30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

number of clients

pa
ck

et
 lo

st
 p

er
ce

nt
ag

e
(%

)

Reno
Reno/RED
Vegas
Vegas/RED
Reno/DelayAck

Figure 4. Packet Loss Percentage of the Ag-
gregated TCP Traffic.

In the uncongested case, the traffic entering the gateway
is very similar to the traffic that the clients generate. This
result is due to the absence of congestion in the network,
i.e., the congestion-control mechanism has not activated to
control or modulate the application-generated traffic.

When the clients generate a moderate amount of traf-
fic, and hence introduce intermittent congestion, the TCP
congestion-control mechanism begins to modulate the
application-generated traffic. We can see this effect in Fig-
ure 2 as the number of client connections varies from 10
to 38 — the TCP c.o.v. numbers are up to 50% higher
than the aggregated Poisson, and hence indicate that the
congestion-control mechanisms of TCP noticeably modu-
late traffic when the network is moderately congested; that
is, TCP induces burstiness into the aggregate traffic stream.
Because the network only experiences intermittent conges-
tion, this induced burstiness is not strong enough to ad-
versely impact throughput and packet loss, as shown in Fig-
ures 3 and 4. (Note: The number of clients starts at 30 for
these figures because the different TCP implementations ex-
hibit nearly identical behavior for less than 30 clients.)

Under heavy congestion, the c.o.v. increases sharply
for all TCP implementations except TCP Vegas. The
TCP Reno and TCP Reno/RED c.o.v. numbers are over
140% and 200% larger than the aggregated Poisson num-
bers, respectively. This result indicates that TCP Reno
and TCP Reno/RED significantly modulate application-
generated traffic (Poisson traffic) to be much more bursty.
And unfortunately, this modulation is adverse enough to
impact the throughput and packet loss percentage of TCP
Reno and TCP Reno/RED, as shown in Figures 3 and 4.
This leads us to believe that these TCP Reno implemen-
tations introduce a high level of dependency between the
congestion-control mechanisms of each of the TCP streams.

3.2.1 Analysis of TCP Reno

Figure 5 exhibits a snapshot of TCP Reno’s congestion win-
dow for three of the 20 client streams (clients 1, 10, and 20)
in the uncongested case. Interestingly, nearly all the packet
losses occur during slow start. While this phenomenon may
initially seem surprising, it can be explained as follows: The
application generates traffic independently of the conges-
tion window. So, when the congestion window is small, the
application layer generates “too much” traffic for the con-
gestion window. Consequently, the TCP send buffers accu-
mulate a lot of data waiting to be transmitted. Since the con-
gestion window grows exponentially during TCP slow start,
the likelihood is quite high that a full congestion window’s
worth of data is transmitted when an acknowledgement is
received. For example, having only three of the 20 streams
generate bursts of 17 packets each, as implied by Figure 5,
can cause packet loss, and thus congestion, since the buffer

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

time (x 0.1 seconds)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

client 1
client 10
client 20

Figure 5. Evolution of TCP Reno’s Congestion
Window (# clients = 20).

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

time (x 0.1 seconds)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

client 1
client 16
client 30

Figure 6. Evolution of TCP Reno’s Congestion
Window (# clients = 30).

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

time (x 0.1 seconds)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

client 1
client 19
client 38

Figure 7. Evolution of TCP Reno’s Congestion
Window (# clients = 38).

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

45

50

time (x 0.1 seconds)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

client 1
client 19
client 39

Figure 8. Evolution of TCP Reno’s Congestion
Window (# clients = 39).

size at the gateway is 50 packets.
As the load increases to 30 clients (see Figure 6), conges-

tion occurs even earlier during slow start due to the same
reasoning used in the 20-client test. In addition, conges-
tion also occurs at 40 time units (each time unit = 0.1 sec-
ond), where the congestion window size decreases simul-
taneously for all three of the client streams shown before
stabilizing into a steady linear increase.

The ability to “stabilize” into a steady-state linear in-
crease reaches a crossover point between 38 and 39 clients.
As more clients are added (up to and including 38 clients),
the longer it takes for the congestion window to reach its
steady-state linear increase. In the case of 38 clients, as
shown in Figure 7, the congestion window sizes stabilize
after 250 time units. However, Figure 8 shows that with
39 clients, the congestion window sizes never stabilize as
there are just enough packets being generated to consis-
tently (rather than intermittently) cause congestion in the
steady state.

Figures 6 through 8 also indicate that as the traffic load
increases so does the likelihood that decreases in the con-
gestion window size are synchronized, either by timeout
or fast retransmit. Unfortunately, this synchronization in-
duces wild fluctuations in the aggregate congestion window
size, and consequently, queue lengths and packet loss. It is
this behavior which causes the c.o.v. to increase sharply
at 39 clients, as illustrated in Figure 2. As the number
of streams increases to 60, the synchronization is even
more pronounced because the network is so congested that
most of the TCP streams are making the same congestion-
control decisions simultaneously. Thus, the congestion-
control mechanism in TCP Reno introduces a high level of
dependency between TCP streams, as shown in the zoomed
time snapshot of Figure 9.

200 210 220 230 240 250 260 270 280 290 300
0

5

10

15

20

25

time (x 0.1 seconds)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

client 1
client 30
client 60

Figure 9. Evolution of TCP Reno’s Congestion
Window (# clients = 60).

3.2.2 Analysis of TCP Vegas

TCP Vegas takes a more conservative approach to conges-
tion control than TCP Reno. Rather than allowing every
TCP stream to continually try to get as much bandwidth as
possible, i.e., a “greedy” linear increase until a packet loss
occurs, as is done in TCP Reno, TCP Vegas shares avail-
able bandwidth among all TCP connections by performing
a linear increase when there is “too little” traffic in the net-
work, i.e., less than " packets are queued per stream, and a
linear decrease when there is “too much” traffic in the net-
work, i.e., greater than # packets are queued per stream. Us-
ing this approach, each client’s TCP Vegas congestion win-
dow stays close to its “optimal” value. Therefore, the traf-
fic transmitted from each client is modulated nearly equally
each RTT (when the congestion window is near its “opti-
mal” value). The subsequent decrease in the packet-loss
percentage also decreases the dependency between the TCP
Vegas streams, and therefore contributes to the significantly
lower c.o.v.

In addition to the significantly lower c.o.v., Figures 10
through 12 demonstrate that TCP Vegas shares available
bandwidth more fairly than TCP Reno. This substantiates
the work done by [1, 12]. Moreover, TCP Vegas requires
much less buffer space in the gateway to avoid congestion
as TCP Vegas tries to keep number of buffered packets from
each individual stream between " and # .

3.2.3 Analysis of RED Gateways

While RED gateways were introduced as a way to enhance
TCP performance in Reno as well as Vegas, our results
show that such gateways increase TCP modulation and ac-
tually hurt TCP performance, which consequently affects

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

time (x 0.1 seconds)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

client 1
client 10
client 20

Figure 10. Evolution of TCP Vegas’s Conges-
tion Window (# clients = 20).

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

time (x 0.1 seconds)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

client 1
client 15
client 30

Figure 11. Evolution of TCP Vegas’s Conges-
tion Window (# clients = 30).

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

time (x 0.1 seconds)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

client 1
client 30
client 60

Figure 12. Evolution of TCP Vegas’s Conges-
tion Window (# clients = 60).

40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of clients

T
im

eo
ut

/D
up

lic
at

e
A

C
K

 r
at

io

Reno
Reno/RED
Vegas
Vegas/RED
Reno/DelayAck

Figure 13. Ratio of Timeouts to Duplicate
ACKs.

the network performance in distributed computing systems.
This conclusion is also drawn by [5] although for different
reasons.

Using the � � ��� and � ,�� ��� parameters, a RED gateway
makes the buffer in the gateway appear smaller to the TCP
connections. TCP Reno, whose performance varies signif-
icantly with respect to the gateway buffer size [10], suffers
severely because its buffer requirements can very quickly
become large as each stream is attempting to greedily in-
crease its congestion window size. On the other hand, TCP
Vegas requires a minimal amount of buffer space per con-
nection and produces smoother traffic than TCP Reno in the
presence of a RED gateway, resulting in a better-performing
TCP and thus confirming the research findings in [12].

Unfortunately, TCP implementations with RED gate-
ways perform significantly worse than their “plain” coun-
terparts with respect to c.o.v. and throughput (see Figures 2
and 3) because TCP with RED gateways adversely modu-
late application-generated traffic in such a way as to reduce
the effectiveness of statistical multiplexing in the network.
Figures 2 and 3 illustrate that Vegas outperforms its Ve-
gas/RED counterpart with respect to c.o.v. and throughput
and that Reno outperforms its Reno/RED counterpart.

Interestingly, however, Figure 4 shows that Vegas/RED
not only produces higher packet-loss percentage than Ve-
gas, but it also is higher than either Reno implementation.
This behavior can be explained by an analysis of the TCP
Vegas and Reno algorithms. In our Vegas experiments, the
" and # parameters are set to the commonly used values of
1 and 3, respectively, and thus each Vegas stream attempts
to keep at least one and at most three packets queued in
the gateway. As a result, when the gateway becomes more
heavily congested around 40 streams, the aggregate number
of packets that Vegas tries to keep queued in the gateway is

at least 40 (i.e., one packet per stream) and no more than
120 (i.e., three packets per stream). As a result, with 40
streams, the RED gateway always drops packets because
the �4,�� ��� of the RED gateway is 40. Of the 40 packets
that are actually queued and delivered to the server, dupli-
cate ACKs are generated, causing Vegas to push more data
into the network (even though the RED gateway is already
“full”), hence causing additional packet loss. Figure 13 sup-
ports this explanation by showing that the ratio of timeouts
to duplicate ACKs is very low for Vegas.

Although the gateway in TCP Vegas spends more time
above �4, � ��� on average during heavier congestion, hence
causing higher packet loss; TCP Reno generates more sig-
nificant bursts of packets at particular time instances, caus-
ing large sequences of packet losses, and consequently, a
larger number of timeouts — 250-300% higher than TCP
Vegas. This greater number of timeouts in TCP Reno more
frequently reduces the congestion window size to one. This
frequency of drastic window-size adjustment contributes to
the higher c.o.v. and reduced throughput in TCP Reno.

4. Conclusion

From our experiments, we have shown that the
congestion-control mechanisms of TCP Reno and TCP Ve-
gas modulate the traffic generated by the application layer.
The congestion-control mechanism of TCP Reno adversely
modulates the traffic to be more bursty, which subsequently
affects the performance of statistical multiplexing in the
gateway; this modulation occurs for two primary reasons:
(1) the rapid fluctuation of the congestion window sizes
caused by the continual “additive increase / multiplica-
tive decrease (or re-start slow start)” probing of the net-
work state and (2) the dependency between the congestion-
control decisions made by multiple TCP streams which in-
creases as the number of streams increase, i.e., TCP streams
tend to recognize congestion in the network at the same time
and thus halve their congestion windows at the same time.
As a result, TCP Reno traffic does not significantly smooth
out even when a large number of streams are aggregated.
On the other hand, TCP Vegas, during congestion avoid-
ance, does not modulate the traffic to be as bursty as TCP
Reno. This translates to smoother aggregate network traffic,
and hence better overall network performance.

References

[1] T. Bonald. Comparison of TCP Reno and TCP Vegas
via Fluid Approximation. Technical Report 3563, INRIA,
November 1998.

[2] L. Brakmo and L. Peterson. TCP Vegas: End to End Con-
gestion Avoidance on a Global Internet. IEEE Journal of

Selected Areas in Communications, 13(8):1465–1480, Oc-
tober 1995.

[3] W. Feng, I. Foster, S. Hammond, B. Hibbard, C. Kessel-
man, A. Shoshani, B. Tierney, and D. Williams. Prototyping
an Earth System Grid. http://www.scd.ucar.edu/css/esg, July
1999.

[4] W. Feng, M. Gardner, I. Philp, and P. Tinnakornsrisuphap.
A New Statistical Model for Characterizing Aggregate Net-
work Traffic. In preparation, 2000.

[5] W. Feng, D. Kandlur, D. Saha, and K. Shin. A Self-
Configuring RED Gateway. In INFOCOM ’99, March 1999.

[6] S. Floyd and V. Jacobson. Random Early Detection Gate-
ways for Congestion Avoidance. IEEE/ACM Transactions
on Networking, 1(4):397–413, August 1993.

[7] M. Grossglauser and J. Bolot. On the Relevance of Long-
Range Dependence in Network Traffic. Computer Commu-
nication Review, 26(4):15–24, October 1996.

[8] V. Jacobson. Congestion Avoidance and Control. In Pro-
ceedings of the SIGCOMM’88 Symposium, pages 314–332,
August 1998.

[9] T. G. Kurtz. Limit Theorems for Workload Input Models.
Stochastic Networks: Theory and Applications, pages 339–
366, 1996.

[10] T. V. Lakshman and U. Madhow. The Performance of
TCP/IP for Networks with High Bandwidth-Delay Products
and Random Loss. IEEE/ACM Transactions on Networking,
5(3):336–350, June 1997.

[11] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the
Self-Similar Nature of Ethernet Traffic (Extended Version).
IEEE/ACM Transaction on Networking, 2(1):1–15, Febru-
ary 1994.

[12] J. Mo, R. J. La, V. Anantharam, and J. Walrand. Analysis
and Comparison of TCP Reno and Vegas. In Proceedings of
INFOCOM’99, March 1999.

[13] ns. UCB/LBNL/VINT Network Simulator. http://www-
mash.cs.berkeley.edu/ns.

[14] K. Park, G. Kim, and M. Crovella. On the Relationship Be-
tween File Sizes, Transport Protocols, and Self-Similar Net-
work Traffic. In Proceedings of the 4th International Con-
ference on Network Protocols, October 1996.

[15] K. Park, G. Kim, and M. Crovella. On the Effect of Traf-
fic Self-Similarty on Network Performance. In Proceedings
of the SPIE International Conference on Performance and
Control of Network Systems, 1997.

[16] V. Paxson and S. Floyd. Wide-Area Traffic: The Failure of
Poisson Modeling. IEEE/ACM Transaction on Networking,
3(3):226–244, June 1995.

[17] S. Shenker. Fundamental Design Issues for the Future In-
ternet. IEEE Journal of Selected Areas in Communications,
13(7):1176–1187, 1995.

[18] W. Willinger and V. Paxson. Where Mathematics Meets
the Internet. Notices of the American Mathematical Soci-
ety, 45(8):961–970, September 1998.

[19] W. Willinger, V. Paxson, and M. Taqqu. Self-Similarity and
Heavy Tails: Structural Modeling of Network Traffic. A
Practical Guide to Heavy Tails: Statistical Techniques and
Applications, pages 27–53, 1998.

