
Performance of Algorithms for Scheduling
Real-Time Systems with Overrun and Overload

Mark K. Gardner Jane W.S. Liu
Department of Computer Science

University of Illinois at Urbana-Champaign
1304 West Springfield Avenue, MC258

Urbana, IL 61801, USA�
mkgardne, janeliu � @cs.uiuc.edu

Abstract

This paper compares the performance of three classes
of scheduling algorithms for real-time systems in which
jobs may overrun their allocated processor time potentially
causing the system to be overloaded. The first class, which
contains classical priority scheduling algorithms as exem-
plified by DM and EDF, provides a baseline. The second
class is the Overrun Server Method which interrupts the ex-
ecution of a job when it has used its allocated processor
time and schedules the remaining portion as a request to
an aperiodic server. The final class is the Isolation Server
Method which executes each job as a request to an ape-
riodic server to which it has been assigned. The perfor-
mance of the Overrun Server and Isolation Server Methods
are worse, in general, than the performance of the baseline
algorithms on independent workloads. However, under the
dependent workloads considered, the performance of the
Isolation Server Method, using a server per task scheduled
according to EDF, was significantly better than the perfor-
mance of classical EDF.

1. Introduction

In a hard real-time system, all jobs must meet their dead-
lines with a missed deadline being treated as a fatal fault.
Hence hard real-time systems, which are most often found
in safety or mission critical applications, are designed to en-
sure that there are no missed deadlines often at the expense
of resource utilization and average performance. A much
larger class of applications, known as soft real-time systems,
allows some jobs to miss their deadlines in order to improve
resource usage or average performance. However, unlike
non-real-time systems, the goal of a soft real-time system
is to meet as many deadlines as possible before attempting
to maximize the average performance. As real-time sys-
tems become more pervasive, it is clear that techniques for
scheduling hard, soft and non-real-time workloads on the
same system are needed.

In this paper, we address the problem of scheduling
jobs that may overrun their processor allocation, potentially
causing the system to be overloaded. Ideally, those jobs
which do not overrun are guaranteed to meet their dead-
lines while those which do are scheduled so as to have good
response times. The scheduling algorithms we describe en-
able the coexistence of hard, soft and non-real-time work-
loads on a single system.

Our algorithms are based on an extension to the periodic
task model [6]. According to the model, a real-time sys-
tem consists of a set of tasks, each of which is a (possibly)
infinite stream of computations or communications, called
jobs. The execution time of a job is the amount of time the
job takes to complete if it executes alone. All the jobs in a
task have a common maximum execution time and are re-
leased for execution (i.e., arrive) with a common minimum
inter-release time. The minimum inter-release time is called
the period of the task and is larger than zero. A job becomes
ready for execution at its release time and must complete ex-
ecution by its absolute deadline or it is said to have missed
its deadline. The length of time between the release time
and absolute deadline of every job in a task is constant and
is called the relative deadline of the task. The maximum
utilization of a task is the ratio of the maximum execution
time to the minimum period and the maximum utilization
of the system is the sum of the maximum utilizations of its
tasks. Finally, the release time of the first job in a task is
called the phase of the task. We say that tasks are in-phase
when they have identical phases.

In modern real-time systems, tasks are scheduled in a
priority driven manner. At any point in time, the ready job
with the highest priority executes. Most systems use a fixed
priority assignment according to which all jobs in a task
have the same priority. Examples of fixed priority policies
are Rate Monotonic (RM) [6] or Deadline Monotonic (DM)
[5]. The priority of a task under RM is proportional to the
rate at which jobs in the task are released, while the priority
of a task under DM is inversely proportional to the relative
deadline of the task. Priorities may also be assigned dy-
namically. The most common dynamic priority scheduling

Published in the Proceedings of the Eleventh Euromicro Conference on
Real-Time Systems, 9-11 June 1999, held at University of York, England

policy is Earliest Deadline First (EDF) [6] which assigns
priorities to jobs in order of their absolute deadlines.

Hard real-time scheduling theory determines the schedu-
lability of a system based on the maximum execution times
of the tasks in the system. In order to ensure that a system is
schedulable (i.e., every task will meet all its deadlines), the
processor bandwidth set aside for each task is equal to its
maximum utilization. Because the execution times of jobs
in many soft real-time systems vary widely, designing a soft
real-time system using hard real-time scheduling theory of-
ten yields a system whose average utilization is unaccept-
ably low. Instead of a maximum execution time for each
task, we require that guaranteed execution times be spec-
ified. The guaranteed execution time is zero for non-real-
time tasks, equal to the maximum execution time of any job
of the task for each hard real-time task, and somewhere in
between for soft real-time tasks. The schedulability of the
system is determined based upon the guaranteed execution
time of every task. All jobs with execution times less than or
equal to the guaranteed execution time of the task will meet
their deadlines. The system tries to minimize the response
time of each job whose execution time exceeds its guaran-
teed execution times. With this modification to the periodic
task model, systems containing hard, soft and non-real-time
tasks can be described in a uniform manner.

A job is said to overrun when it executes for more than
its guaranteed execution time. Depending on the amount
of time available, a system may be able to schedule the re-
maining portion of an overrunning job so that it completes
by its deadline. We say that a system is overloaded when it
is not schedulable on the basis of the maximum execution
times of its tasks and hence it is likely that some jobs will
miss their deadlines. Jobs in a system may overrun with-
out the system being overloaded; however, an overloaded
system implies that at least one job overruns.

We begin in Section 2 by describing three classes of al-
gorithms for scheduling systems with jobs that overrun. In
Section 3 we describe the performance criteria used to com-
pare the algorithms and present the results of the compari-
son in Sections 4, 5, and 6. In Section 7 we discuss the
relationship of the algorithms to other related work. In Sec-
tion 8 we summarize the findings of this study.

2. Algorithms for Scheduling Overruns

Any algorithm for scheduling jobs with a potential for
overrun must meet two criteria if it is to perform well.
First, it must guarantee that jobs which do not overrun meet
their deadlines. Second, it should maximize the number
of overrunning jobs that meet their deadlines or minimize
the response times of overrunning jobs. In this section,
we discuss two classes of algorithms, the first of which
achieves the former while striving for the latter. The sec-
ond relaxes the guarantee that non-overrunning jobs will
meet their deadlines in order to perform better on depen-
dent workloads.

As a basis of comparison, we will also consider the per-
formance of classical fixed and dynamic priority hard real-
time scheduling algorithms under various degrees of over-
load. The algorithms used as a baseline are the Deadline
Monotonic (DM) [5] and Earliest Deadline First (EDF) [6]
algorithms. These algorithms have been shown to be opti-
mal in that DM and EDF will ensure that no deadlines are
missed if all the tasks can be scheduled without missing a
deadline by any fixed or dynamic priority algorithm, respec-
tively. The DM algorithm also has the desirable property
that an overrun will not cause a job of a higher priority task
to miss its deadline. In contrast, it is well known that EDF
behaves unpredictably upon overrun. However, EDF has
a higher schedulable utilization than DM and hence makes
better use of resources as long as the maximum utilization is
no greater than one. The desire to combine the predictabil-
ity of DM with the optimal schedulable utilization of EDF
motivates the two classes of algorithms that follow.

The second class of algorithms, called the Overrun
Server Method (OSM), is both a simplification and an ex-
tension of the Task Transform Method proposed by Tia et
al. [12]. Under OSM, a job is released for execution and
scheduled in the same manner as it would be according to
algorithms in the baseline class. At the time of overrun, the
execution of the job is interrupted and the remaining part
of the job is released as an aperiodic request to a server.
A Sporadic Server (SS) [8] is used to execute the requests
in fixed priority systems while either a Constant Utilization
Server (CUS) [1] or Total Bandwidth Server (TBS) [9] is
used to execute requests in a dynamic priority system. We
denote the former as OSM-DM and the latter as OSM-EDF.

Sporadic Servers are specified by a replenishment period
and an execution budget. They have the property that they
demand no more time than a corresponding periodic task
with the same period and maximum execution time. Thus,
the schedulability of a system containing Sporadic Servers
can be determined by the methods applicable to systems of
periodic tasks. We use a particularly aggressive Sporadic
Server implementation which reduces the average response
time of requests [11]. A Sporadic Server has a separate
ready queue so it makes sense to consider various queue-
ing disciplines. We consider the First-Come-First-Served
(FCFS), Deadline Monotonic (DM), and Shortest time Re-
maining at Overrun (SRO) queue disciplines. (In the lat-
ter, the priority of a request is inversely proportional to the
amount of work remaining at the time of overrun.)

As an example of OSM-DM, consider a system of three
tasks. Task ��� has a period of 3 and a guaranteed execution
time of 1. Task ��� has a period of 4 and a guaranteed exe-
cution time of 1. Task ��� has a period of 6 and a guaranteed
execution time of 2. In Figure 1(a), one job of ��� over-
runs. As a result, � � misses a deadline at 6 when the tasks
are scheduled according to the DM algorithm. Figure1(b)
shows the same workload but with a Sporadic Server hav-
ing a replenishment period of 12 and an execution budget
of 1. According to classical schedulability theory, the three

T1

T2

T3

0 5 10

���������������� ����������������
	�	
�
 ������

�������

������

������������������

Overrun

Missed

(a) Classical DM

T1

T2

T3

0 5 10

������������ ���������
���
���
���

�������� � !�!"�"#�#
$�$%�% &�&'�' (�(�(

(�(�(
)�)
)�)

��*
��*
+�+
+�+

,�,
,�,
-�-
-�-

MissedOverrun

S

Request

(b) OSM-DM

Figure 1. Behavior of DM upon overrun

tasks and the server are schedulable according to DM on the
basis of guaranteed execution times. Note that now the jobs
of ��� meet their deadlines in spite of the overrun by the first
job in ��� .

The schedulability of an OSM-EDF system using either
CUS or TBS can also be determined by the methods ap-
plicable to systems of period tasks because they demand
no more time than a corresponding task with the same uti-
lization. The difference between the two algorithms is that
TBS uses background time whereas CUS does not. Typi-
cally, CUS is preferred when there are several servers and
it is undesirable for the servers to compete for background
time. However, one would expect the average response time
of requests executed by CUS to be greater than if executed
by TBS. We later show results that support this conclusion.

The final class of algorithms is the Isolation Server
Method (ISM) named for its use of SS, CUS, or TBS to
isolate other parts of the system from the behavior of an
overrunning job. Jobs are submitted as aperiodic requests to
the server assigned to their task at the time of their release
and execute completely under server control. A server may
be assigned to execute jobs from multiple tasks. Whereas
OSM requires a portion of the processor separate from the
tasks to be allocated to servers, ISM allocates portions of
the processor to servers and does not allocate time to the
tasks. Because jobs of a task are released as requests to a
server, an overrunning job under ISM can only delay the
completion of jobs from tasks assigned to that server. The
execution of jobs in tasks not assigned to that server are
isolated from the overrunning job. Unlike OSM, ISM can-
not guarantee all jobs with execution times which do not
exceed their guaranteed execution times will complete by
their deadlines. We denote fixed priority ISM by ISM-DM
and dynamic priority ISM by ISM-EDF.

As an example, consider another system of three tasks
scheduled according to the EDF algorithm together with

T1

T2

T3

0 5 10 15

././.0/0
1/1/1/12/2/2/2

3/3/34/4/4 5/5/56/6
7/7/78/8

9/9/9:/:/:
;/;/;</</< =/=>/>

?/?/?@/@/@ A/AB/B

C/CD/D E/E/EF/F/F

S

Met

Overrun

Overrun

Missed

Requests

(a) OSM-EDF

T1

T2

T3

0 5 10 15

G/G/GG/G/GH/H/HH/H/H

I/I/I/II/I/I/IJ/J/J/JJ/J/J/J
K/K/KK/K/KL/L/LL/L/L

M/M/MM/M/MN/N/NN/N/N
O/O/OO/O/OP/PP/P

Q/Q/QQ/Q/QR/R/RR/R/R S/SS/ST/TT/T
U/U/U/UU/U/U/UV/V/VV/V/V

W/W/W/WW/W/W/WX/X/XX/X/X

Y/Y/Y/YY/Y/Y/YZ/Z/Z/ZZ/Z/Z/Z

Met

MetOverrun

Overrun

(b) ISM-EDF

Figure 2. Behavior of server upon overrun

TBS. Task � � has a period of 4 and a guaranteed execu-
tion time of 1. Task ��� has a period of 12 and a guaran-
teed execution time of 4. Task � � has a period of 24 and
a guaranteed execution time of 2. Under OSM-EDF, the
overrun server has a replenishment period of 3 and an ex-
ecution budget of 1 while ISM-EDF has a separate server
per task with utilizations equal to the utilizations of the re-
spective tasks. According to classical schedulability theory,
the system is schedulable under both OSM-EDF and ISM-
EDF. Suppose that a job of ��� overruns by 2 at time 6 and a
job of ��� overruns by 1 at time 7, as shown in Figure 2. The
overrunning job of � � misses its deadlines under OSM-EDF
but completes in time under ISM-EDF. Also, both over-
running jobs complete earlier under ISM-EDF than under
OSM-EDF because ISM servers execute jobs at their origi-
nal priority, while OSM servers execute the overrun portion
of jobs at the priority of the corresponding server. In this
case, the server has a lower priority than ��� while it exe-
cutes the overrunning job of ��� .

3. Comparison Study

In this section, we describe the methodology used to
compare the performance of the three classes of algorithms.
The average performance of the system is obtained by dis-
crete event simulation. We first discuss the criteria used to
compare the performance and then describe the workload
used in the comparison.

3.1. Performance Criteria

In Section 2 we stated what the ideal behavior of an al-
gorithm for scheduling jobs in the presence overruns should
be. First and foremost is the requirement that jobs which do
not exceed their guaranteed execution times should never
miss a deadline. OSM meets this condition by design. ISM
relaxes this condition slightly in that an overrunning job
may delay the completion of subsequent jobs assigned to

the same server. The next condition is that the algorithm
maximizes the number of deadlines met and minimizes the
response time of overrunning jobs. Thus, the fraction of
deadlines met by jobs in each task and the average response
time of jobs in a task are important metrics.

It is clear that the above metrics cannot be directly com-
pared for different workloads because, for example, the per-
centage of deadlines missed depends upon the execution
time and deadline of the tasks, both of which vary across
workloads. for this reason, we use the ratio of a metric mea-
sured for one algorithm against the same metric measured
for another algorithm on the same workload, averaged over
all the workloads. For example, if the average ratio of dead-
lines met is 1.0, then the two algorithms have equivalent
performance on the average. Likewise, an average ratio of
deadlines met of 1.25 indicates that the first algorithm per-
forms 25% better than the second on the average. Since
we wish to compare the performance of the algorithms on a
system-wide basis rather than a task by task basis, the aver-
age of the ratios of all the tasks were taken.

3.2. Workload Generation

The performance of a scheduling algorithm depends
upon the average utilization of the system. At low utiliza-
tions, sufficient time exists for nearly all overrunning jobs to
complete in time. As the utilization increases, overrunning
jobs become more likely to miss their deadlines. At some
point, overruns will cause the system to be overloaded. As
long as the average utilization of the system is less than one,
the system will continue to function, albeit with increas-
ingly reduced performance. For the workloads used in this
study, an average utilization of 0.50 is sufficient for nearly
all jobs to met their deadlines. The average utilizations we
consider are 0.50, 0.75, 0.90 and 0.95.

Given the average utilization of the system, the average
utilization of a task is obtained by multiplying the average
system utilization by a utilization factor for the task. The
utilization factors of the tasks in a system are uniformly dis-
tributed in the range ��������� and normalized such that the sum
of the factors equals 1.0. The execution time of jobs in a
task are random variables with a common distribution, ei-
ther uniform or exponential. The mean execution time of a
job is equal to the mean utilization of its task multiplied by
the (constant) period of the task. The minimum execution
time is 1 time unit. The periods of the tasks are a constant
and are uniformly distributed in the range �	�
������
�
��������� .

Overruns are often caused by common factors and hence
the execution time of jobs are likely to be correlated. For
dependent execution times, we model dependencies as be-
ing exclusively between jobs in a task and following a fixed
pattern. The pattern is represented by a list of execution
time factors, with a mean value of 1.0, representing the cor-
relation between the execution times of consecutive jobs.
For example, suppose that the pattern is �����������
���������� . If
the mean execution time of a set of dependent jobs is 100,

the actual execution times of the jobs are ����������������
���������� .
(The mean execution time of a set of dependent jobs is com-
puted by the previous procedure.) Dependence patterns are
varied and clearly application dependent. In our current
study, we examined the performance of the algorithms for
the (independent) pattern ����� and for the (dependent) pat-
tern �����
��� .

For each average system utilization and distribution type,
we generate 100 systems, each consisting of 8 tasks. Each
of the tasks in a system has a minimum of 2000 jobs.

4. Baseline

We compare the performance metrics for equal release
times (in-phase release) and random release times. For the
random release time case, 30 runs with the initial release
time of each task uniformly distributed in � �������� were per-
formed. The results clearly indicate that the average perfor-
mance of the system does not depend on the initial phase
of the tasks. (We note that while the average ratios are not
sensitive to the initial phase of the tasks, the minimum and
maximum ratios are.)

Another factor which may influence the performance is
the number of tasks in the system. Figure 3 gives ratios
of the performance of systems with various numbers tasks
to the performance of systems with one task. The average
system utilization is 95%. In general, the average perfor-
mance of the system improves with increased numbers of
tasks. However, Figure 3(b) shows the average response
time ratio of systems with two tasks is worse than systems
with one task for an exponential workload scheduled DM.
There are two factors which cause this behavior. First, dis-
tributing a given system load across more tasks lowers the
average overrun per task thereby improving the average re-
sponse time ratio. Second, more than one task in a system
implies that a job may be delayed by the execution of an-
other job causing its response time to increase. This neg-
ative effect is most pronounced with two tasks per system
because the average execution time per task is greatest. The
latter effect is most prevalent for an exponential distribution
since its average overrun is greater than it is for a uniform
distribution with the same mean and minimum. We use 8
tasks per system for the remainder of the paper.

Finally, we compare the performance of EDF and DM
on independent and dependent workloads. As can be seen
in Figure 4, the average performance of the EDF policy is
clearly worse than the average performance of DM.

5. Overrun Server Method

As discussed above, one way to schedule jobs with the
potential for overrun is to suspended a job when it has ex-
ecuted for its guaranteed execution time and release the re-
mainder of the job as a request to an overrun server. Only
jobs with execution times in excess of their guaranteed val-
ues may miss their deadlines. The main issues in using
overrun servers to schedule jobs are the number of servers

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8

A
ve

ra
ge

 R
at

io
: P

er
ce

nt
 D

ea
dl

in
es

 M
et

Tasks per System

N/1 - Exp, DM
N/1 - Uni, DM

N/1 - Exp, EDF
N/1 - Uni, EDF

(a) Deadlines Met

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6 7 8

A
ve

ra
ge

 R
at

io
: R

es
po

ns
e

T
im

e

Tasks per System

N/1 - Exp, DM
N/1 - Uni, DM

N/1 - Exp, EDF
N/1 - Uni, EDF

(b) Response Time

Figure 3. Performance vs. number of tasks

to use, the assignment of jobs to servers, the parameters of
each server, and the queueing discipline employed by the
server.

5.1. Number of Servers

The number of servers can range from a single server for
all tasks to a server for each overrunning task. Clearly the
aggregate average utilization of the servers can be at most
��� �

��� � , where � � is the average utilization of task � � ,
without the potential for causing non-overrunning jobs to
miss their deadlines. (It is less than this under fixed prior-
ity scheduling policies due to a lower schedulable utiliza-
tion.) The question is how to distribute the uncommitted
utilization of processor. If the remaining utilization is di-
vided without regard for the average utilization of overruns
assigned to each server, e.g., dividing the remaining utiliza-
tion evenly, some servers may have a proportionally greater
average demand than others. This utilization distribution is
likely to cause jobs to have worse response times and be less
likely to complete by their deadlines. On the other hand, di-
viding the remaining utilization proportionally according to
the average utilization of overruns assigned to each server
ensures that servers will receive processor time proportional
to their load.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: P

er
ce

nt
 D

ea
dl

in
es

 M
et

Average System Utilization

EDF/DM - Exp, Ind
EDF/DM - Uni, Ind

EDF/DM - Exp, Dep
EDF/DM - Uni, Dep

(a) Deadlines Met

0.8

1.0

1.2

1.4

1.6

1.8

2.0

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: R

es
po

ns
e

T
im

e

Average System Utilization

EDF/DM - Exp, Ind
EDF/DM - Uni, Ind

EDF/DM - Exp, Dep
EDF/DM - Uni, Dep

(b) Response Time

Figure 4. EDF vs. DM

The results indicate that the performance of a single
server for all tasks and a server per task bound the perfor-
mance of systems with intermediate numbers of servers. In
addition, there is no significant difference in performance
between different assignments of tasks to servers since the
load on the servers are equal. For brevity, we present only
the results for systems with 1 or 8 servers having groups of
consecutive tasks assigned to servers.

5.2. Deadline Monotonic

Given the server utilization, an overrun server in a fixed
priority system requires the specification of a replenishment
period in order to establish a budget for the server. It also
requires a scheduling discipline for its job queue. For sim-
plicity, we consider the choice of replenishment period and
queue discipline for a system with a single overrun server.

The literature pertaining to the service of aperiodic re-
quests almost universally suggests that the priority of a
server should be greater than that of the tasks. To deter-
mine the best server period, we simulate the behavior of a
simplified set of 30 systems consisting of 3 tasks with 1000
jobs per task and 9 priorities chosen to be slightly higher
than, equal to, and slightly lower than the priority of each
task. The execution time of jobs in the highest priority are

1.00

1.05

1.10

1.15

1.20

1.25

50 60 70 80 90 100

A
ve

ra
ge

 R
at

io
: P

er
ce

nt
 D

ea
dl

in
es

 M
et

Average System Utilization

DM / FCFS - Exponential
SRO / FCFS - Exponential

DM / FCFS - Uniform
SRO / FCFS - Uniform

(a) Deadlines Met

0.0

0.2

0.4

0.6

0.8

1.0

50 60 70 80 90 100

A
ve

ra
ge

 R
at

io
: R

es
po

ns
e

T
im

e

Average System Utilization

DM / FCFS - Exponential
SRO / FCFS - Exponential

DM / FCFS - Uniform
SRO / FCFS - Uniform

(b) Response Time

Figure 5. Performance of queue disciplines

taken from a uniform or exponential distribution. The ex-
ecution times of the other tasks are constant. The task pe-
riods are in the range �	�
������� ������� . The average utilizations
of the systems are 75%, chosen to be less than the Liu and
Layland bound of 75.7% guaranteeing that the systems are
be schedulable on the basis of mean execution times. The
results indicate that the choice of Sporadic Server priority
does not affect the average response time or percentage of
deadlines met.

Next we consider the choice of queue discipline for the
Sporadic Server ready queue. We use FCFS as a baseline (as
in [12]) and compare its performance with DM and SRO on
the workloads discussed in Section 3.2. Figure 5 shows that
the percentage of deadlines met when DM is used as the
queue discipline is higher than when FCFS is used. Like-
wise, more deadlines are met when SRO is used.

The latter result may be surprising because SRO per-
forms poorly as a real-time scheduling algorithm since it
prioritizes jobs on the basis of remaining work at release
rather than on task deadlines or periods. However, it min-
imizes response time and thus it allows more overrunning
jobs to complete by their deadlines when used as a SS queue
discipline. We use SRO as the queue discipline in the ex-
periments that follow.

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: P

er
ce

nt
 D

ea
dl

in
es

 M
et

Average System Utilization

TBS/CUS - Exponential
TBS/CUS - Uniform

(a) Deadlines Met

0.0

0.2

0.4

0.6

0.8

1.0

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: R

es
po

ns
e

T
im

e

Average System Utilization

TBS/CUS - Exponential
TBS/CUS - Uniform

(b) Response Time

Figure 6. Performance of TBS vs. CUS

5.3. Earliest Deadline First

We now consider OSM in a deadline-driven system. As
stated earlier, we consider either CUS or TBS in connection
with an EDF scheduling policy. The CUS and TBS overrun
servers are specified by establishing server utilizations and
assigning tasks to servers in the manner discussed earlier.

Again, a CUS server and a TBS server behave identi-
cally except that the latter is allowed to compete for back-
ground processing time. Because of this, jobs executed by
a TBS server may complete earlier and meet their dead-
lines. Thus we would expect TBS to perform better than
CUS as an overrun server. As Figure 6 shows, the aver-
age response time of TBS is much lower than CUS, partic-
ularly at moderate to high average system utilization. The
percentage of deadlines met is also greater for TBS. The
concave shape of the curves comes from two opposing ef-
fects. At low load, the average overrun is small so TBS
and CUS perform similarly. Increasing load causes an in-
crease in the average overrun which TBS is able to execute
earlier. At the same time, increasing the load decreases the
amount of background time that TBS can exploit. As the av-
erage load approaches 100%, the performance once again
becomes similar because the algorithms behave similarly.
We use TBS as the server for the remainder of the paper.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: P

er
ce

nt
 D

ea
dl

in
es

 M
et

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(a) Deadlines Met

0.5

1.0

1.5

2.0

2.5

3.0

3.5

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: R

es
po

ns
e

T
im

e

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(b) Response Time

Figure 7. OSM-DM vs. DM

5.4. Performance of OSM vs. Baseline

Figures 7 and 8 compare the performance of OSM with
the performance of the baseline algorithms. As Figure 7(a)
shows, significantly more deadlines were missed by OSM-
DM. The Liu and Layland bound for the baseline algorithm
is 72.4% and hence the systems are not likely to be schedu-
lable at 75% average system utilization or above. Adding
overrun servers reduces the likelihood of being schedulable
even further. In spite this, we present results for higher uti-
lizations as an indication of soft real-time behavior at high
system loads. Figure 7(b) indicates that OSM-DM yields
better response times than classical DM for a single overrun
server and dependent exponential workloads. In all cases, a
single overrun server for all tasks performs better than hav-
ing an overrun server per task because SS cannot reclaim
the time allocated to another server even though the server
is idle.

In Figure 8 we see that OSM-EDF performs better than
classical EDF for exponential workloads, particularly if the
workload has dependencies. Also it performs better on
exponential workloads than on uniform ones because the
probability of overrun is less for an exponential distribution
than for a uniform one when the guaranteed execution time
equals the mean. The average amount of processor time

0.5

1.0

1.5

2.0

2.5

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: P

er
ce

nt
 D

ea
dl

in
es

 M
et

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(a) Deadlines Met

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: R

es
po

ns
e

T
im

e

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(b) Response Time

Figure 8. OSM-EDF vs. EDF

not used by jobs which do not overrun is greater than the
average amount of overrun for an exponential distribution,
whereas they are equal for a uniform distribution with the
same mean and minimum. Finally, we observe that OSM-
EDF performs better with a server per task than with a sin-
gle server because TBS makes use of background time un-
used by other servers.

5.5. Performance of OSM-EDF vs. OSM-DM

Under classical scheduling, DM performs better than
EDF when jobs overrun. However, as Figure 9 shows,
OSM-EDF generally performs better than OSM-DM in the
server per task configuration. Thus, in general, OSM should
employ a server per task and be scheduled EDF.

6. Isolation Server Method

Another way to schedule jobs with the potential for over-
run is to release the jobs as requests to isolation servers for
execution. The same issues need to be considered when
scheduling jobs using ISM as when scheduling overruns us-
ing OSM: the number of servers, the assignment of jobs to
servers, the budget of each server, and the queueing disci-
pline employed by each server.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: P

er
ce

nt
 D

ea
dl

in
es

 M
et

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(a) Deadlines Met

0.5

1.0

1.5

2.0

2.5

3.0

3.5

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: R

es
po

ns
e

T
im

e

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(b) Response Time

Figure 9. OSM-EDF vs. OSM-DM

6.1. Effects of Parameters

As in Section 5, we consider 1–8 servers. Unlike OSM,
each server is allocated a portion of the processor bandwidth
proportional to the fraction of the total utilization the tasks
it executes contribute. As is the case for OSM-DM, the per-
formance metrics are not sensitive to the choice of SS server
replenishment period using ISM-DM, and the SRO queue
discipline gives the best results. TBS is also clearly supe-
rior to CUS for ISM-EDF. Here also, the performance of a
single server for all tasks and a server per task bounds the
performance of intermediate numbers of servers hence only
the results for 1 and 8 servers are presented.

6.2. Performance of ISM vs. Baseline

Figures 10 and 11 compare the performance of ISM with
the performance of the baseline algorithms. As Figure 10
shows, the performance of ISM-DM is worse than classical
DM; the systems are less likely to be schedulable as the av-
erage system utilization increases. We note that ISM-DM
(in Figure 10(b)) has a higher average response ratio than
OSM-DM (in Figure 7) at 50% utilization because overrun-
ning jobs may delay subsequent jobs under ISM where they
cannot under OSM. ISM-DM has a slightly better response
ratio than OSM-DM at high utilizations, however. Once

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: P

er
ce

nt
 D

ea
dl

in
es

 M
et

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(a) Deadlines Met

0.5

1.0

1.5

2.0

2.5

3.0

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: R

es
po

ns
e

T
im

e

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(b) Response Time

Figure 10. ISM-DM vs. DM

again, ISM-DM gives the best results with one server for all
tasks for the same reason that OSM-DM does.

In Figure 11(a) we see that ISM-EDF with one server per
task meets more of its deadlines on the average than classi-
cal EDF and less with a single server for all tasks. Also, the
average response time ratio is better for a server per task,
as Figure 11(b) shows. This behavior is evident for both
dependent and independent workloads with exponential or
uniform distributions.

6.3. Performance of ISM-EDF vs. ISM-DM

As Figure 12 shows, the performance of ISM-EDF is bet-
ter than the performance of ISM-DM in the server per task
configuration and worse in the single server configuration.
There was surprisingly little variation between independent
and dependent workloads. For the best performance, ISM
should employ a server per task and be scheduled according
to the EDF algorithm.

7. Related Work

As was mentioned earlier, the Overrun Server Algorithm
(OSM) is a simplification and extension of the Task Trans-
form Method proposed by Tia et al. [12]. Like their work,
OSM also transforms a job into a mandatory periodic task,

0.5

1.0

1.5

2.0

2.5

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: P

er
ce

nt
 D

ea
dl

in
es

 M
et

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(a) Deadlines Met

0.5

1.0

1.5

2.0

2.5

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: R

es
po

ns
e

T
im

e

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(b) Response Time

Figure 11. ISM-EDF vs. EDF

whose maximum execution time is the guaranteed execution
time in our model, and a request to a server for the execution
of the remaining portion. Under a fixed priority scheduler,
the remaining portion is executed by a Sporadic Server [8].
Under an EDF scheduler, requests are executed by either a
Constant Utilization Server [1] or a Total Bandwidth Server
[9] rather than a Slack Stealer [4].

The Isolation Server Method (ISM) is similar to the
Proportional Share Resource Allocation algorithm (PSRA)
[10]. Both assign a portion of the processor bandwidth to
a task. Whereas PSRA allocates the assigned portion to
jobs in discrete-sized time quanta, ISM allocates the por-
tion in variable sized chunks defined through preemption by
higher priority jobs. The difference between the portion of
a processor bandwidth a task receives under PSRA and the
ideal is bounded by a constant equal to the quantum chosen.
ISM provides the ideal portion precisely. Both algorithms
allow the integration of real and non-real-time processing,
are easy to implement and prevent ill-effects of overrunning
jobs on jobs in other tasks.

The problem of assigning � fixed priority tasks to �
servers, where �

�
� , is addressed in [3]. They give an

exponential time algorithm for determining the assignment
that gives the smallest response time while ensuring that the
system remains schedulable, if such an assignment exists.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: P

er
ce

nt
 D

ea
dl

in
es

 M
et

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(a) Deadlines Met

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 R
at

io
: R

es
po

ns
e

T
im

e

Average System Utilization

1 Svr, Exp, Ind
8 Svr, Exp, Ind
1 Svr, Uni, Ind
8 Svr, Uni, Ind

1 Svr, Exp, Dep
8 Svr, Exp, Dep
1 Svr, Uni, Dep
8 Svr, Uni, Dep

(b) Response Time

Figure 12. ISM-EDF vs. ISM-DM

On the other hand, the systems studied in this work are, for
the most part, not schedulable according to hard real-time
schedulability theory. In addition, we relax the assumption
that jobs are served FCFS. Instead, we also consider the be-
havior of Sporadic Servers with a fixed priority queue dis-
cipline (DM) and a queue discipline designed to minimize
response times (SRO). Our results indicate that the behavior
of a system with multiple servers is bounded by the assign-
ment of all tasks to a single server and the assignment of
each task to its own server.

In [2], Ghazalie and Baker present the performance of
several aperiodic servers in a deadline-driven environment.
Their focus is on the scheduling of aperiodic tasks while our
focus is on scheduling overruns using servers. One of the
servers they consider is a variation of the Sporadic Server,
adapted to a dynamic priority environment, while we use
Sporadic Servers under fixed priority and employ either a
Constant Utilization Server or a Total Bandwidth Server un-
der dynamic priority. They observed that the average re-
sponse time of an aperiodic task decreases with increases
in Sporadic Server server period (dynamic priority) while
we observed that the average performance did not change
with the server period (fixed priority). Besides the differ-
ences due to fixed versus dynamic priority, the difference is
likely the result of considering the behavior of a single sys-

tem versus the average behavior of many systems. We also
considered three disciplines for prioritizing the server ready
queue while it appears that their server executes requests in
order of arrival. Finally, we consider dependencies between
the execution times of consecutive jobs.

Another closely related work is the Open Systems Envi-
ronment (OSE) described in [1]. Similar to ISM-EDF, OSE
ensures that the behavior of a task does not interfere with
the ability of other tasks to meet their deadlines. The pri-
mary motivation of OSE is to allow real-time applications
to be developed and validated independently by assuming
that each application runs alone on a slow processor and
then are executed together on a fast processor without caus-
ing missed deadlines. The primary motivation of OSM and
ISM is to accommodate overrun. Thus, OSM and ISM are
complimentary to OSE.

The work described in this paper differs from recent ap-
proaches, such as [7], by relaxing hard real-time constraints
in a controlled manner rather than attempting to add sup-
port for real-time tasks without compromising fairness. The
latter approach is unable to provide any form of hard real-
time guarantee under overload by virtue of an insistence on
being fair on the average. In contrast, the algorithms dis-
cussed in this paper are able to make real-time guarantees
and thereby sacrifice the ability to be fair to all tasks on
the average. However, fairness within non-real-time tasks
can achieved without sacrificing the ability to make guaran-
tees by executing non-real-time tasks within a server which
implements a traditional time-share scheduler. Thus the al-
gorithms described in this paper are able to guarantee the
deadlines of hard real-time tasks (and soft real-time tasks
whose jobs do not exceed the guaranteed execution time)
while scheduling non-real-time tasks fairly within the por-
tion of the processing time allocated for them.

8. Conclusions

Modern real-time systems are increasingly being re-
quired to accommodate mixed hard, soft and non-real-time
workloads. Designing such systems according to classical
schedulability theory can yield systems with low resource
utilization and poor average performance. We have ex-
tended the periodic task model by requiring that guaranteed
execution times for tasks be supplied rather than the maxi-
mum execution time of all jobs in each task. This modifi-
cation allows us to uniformly describe hard, soft and non-
real-time tasks within the same framework. We say that a
job overruns if it exceeds its guaranteed execution time and
have defined two classes of algorithms for scheduling such
jobs. We have also explored the performance of the two
methods for various workloads in comparison to the class
of classical hard real-time scheduling algorithms.

In general, the classical algorithms perform better when
jobs overrun than do OSM and ISM on independent work-
loads. However, the causes of overrun are often correlated
causing dependencies between jobs. For the dependent

workload considered, ISM with a server per task scheduled
according to EDF performed better than classical EDF. Ad-
ditional work needs to be done to further understand the
behavior of systems on workloads with more complex de-
pendencies between jobs in the same task and on workloads
with dependencies between jobs in different tasks.

Although we have explicitly considered the behavior of
static systems in this paper, the results are also applicable to
systems in which tasks arrive and leave ensuring that non-
overrunning jobs will meet their deadlines through the use
of admission control.

References

[1] Z. Deng, J. W.-S. Liu, and J. Sun. A scheme for scheduling
hard real-time applications in open system environment. In
Proceedings of the Ninth Euromicro Workshop on Real-Time
System, pages 191–199, Toledo, Spain, June 1997.

[2] T. M. Ghazalie and T. P. Baker. Aperiodic servers in a dead-
line scheduling environment. Real-Time Systems, 9(1):31–
67, July 1995.

[3] D. I. Katcher, S. S. Sathaye, and J. K. Strosnider. Fixed
priority scheduling with limited priority levels. IEEE Trans-
actions on Computers, 44(9):1140–1144, Sept. 1995.

[4] J. Lehoczky and S. Ramos-Thuel. An optimal algorithm
for scheduling soft-aperiodic tasks in fixed-priority preemp-
tive systems. In IEEE Real-Time Systems Symposium, pages
110–123, Dec. 1992.

[5] J. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance
Evaluation, 2:237–250, 1982.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal
of the Association for Computing Machinery, 20(1):46–61,
Jan. 1973.

[7] J. Nieh and M. S. Lam. Smart: A processor scheduler for
multimedia applications. In Proceedings of SOSP-15, page
223, Dec. 1995.

[8] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task
scheduling for hard real-time systems. Journal of Real-Time
Systems, 1:27–60, 1989.

[9] M. Spuri, G. Buttazzo, and F. Sensini. Robust aperiodic
scheduling under dynamic priority systems. In In Proceed-
ings of the 17th Real-Time System Symposium, pages 210–
219, Dec. 1996.

[10] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems. In
In Proceedings of the 17th Real-Time System Symposium,
Dec. 1996.

[11] J. Sun. Fixed Priority Scheduling to Meet End-to-End Dead-
lines in Distributed Real-Time Systems. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, 1997.

[12] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C.
Wu, and J. W.-S. Liu. Probabilistic performance guaran-
tee for real-time tasks with varying computation times. In
Proceedings of the Real-Time Technology and Applications
Symposium, pages 164–173, Chicago, Illinois, May 1995.
IEEE.

