
MUSE: A Software Oscilloscope for Clusters and Grids
�

Mark K. Gardner, Michael Broxton, Adam Engelhart, Wu-chun Feng�
mkg,mbroxton,adame,feng � @lanl.gov

Los Alamos National Laboratory
Los Alamos, NM

Abstract

Oscilloscopes and their cousins, logic analyzers, are the
tools of choice for difficult electronic hardware problems. In
the hands of a skilled engineer or technician, these tools can
be used to solve stubborn problems. The key to the utility of
oscilloscopes is the depth of detail they provide and their
flexibility, which allows the level of detail to be adjusted to
fit the task at hand.

Distributed applications, which run on computing clus-
ters and computational grids, are also complex and difficult
to tame. We need tools to understand their complexities and
the ability to choose the level of detail to fit the task, whether
the task be debugging, tuning, monitoring or controlling.

The MAGNET User-Space Environment (MUSE) has
been designed as a “software oscilloscope” for computing
clusters and computational grids. It is a toolkit for applica-
tions and developers to obtain detailed information about
the environment on the host. The information can be used
on-line or saved for off-line analysis. It has low overhead
and allows the level of detail to be adjusted. Furthermore,
MUSE monitors without requiring the modification or re-
linking of applications. It has been designed to make it easy
to develop “adaptive applications” — applications that are
aware of their environment and can adapt to changes.

1 Introduction

Many contemporary architectures for high-performance
computing are built from commercial off-the-shelf (COTS)
components in order to leverage the rapidly increasing
performance and decreasing cost of consumer hardware.
Clusters of (high-end) consumer components connected
with (near-) commodity networks and programmed in a
message-passing style are the scientific workhorses of to-

�
This work was supported by the U.S. Dept. of Energy’s Laboratory-

Directed Research & Development Program and the Los Alamos Com-
puter Science Institute through Los Alamos National Laboratory contract
W-7405-ENG-36. Any opinions, findings, and conclusions, or recommen-
dations expressed in this material are those of the author(s) and do not
necessarily reflect the views of DOE, Los Alamos National Laboratory,
or the Los Alamos Computer Science Institute. Los Alamos Unclassified
Report (LA-UR) 02-7169.

day. The next, or meta, level in high-performance comput-
ing is to view powerful clusters connected by a wide-area
network, such as the Internet, as a computational resource.
Such systems are called computational grids. Yet in spite
of dramatic increases in computational power afforded by
such architectures, writing, debugging and tuning parallel
applications remains a painful task.

A large part of the problem stems from the highly asyn-
chronous nature of distributed computations. Applications
written to take advantage of large numbers of CPUs must
overlap computation and communication in order to effec-
tively use available resources. Not surprisingly, the causes
of performance problems in distributed applications are of-
ten distributed and hence extremely difficult to identify
without a global knowledge of execution history. Further-
more, the causes are often subtle issues of timing which
make accurate global histories more important. Yet accu-
rate global histories are very difficult to obtain. A means for
monitoring distributed applications and the hosts on which
they run is needed. Furthermore, global histories will need
to be filtered to only contain events of interest, or they are
likely to become unmanageable.

Monitoring frameworks for collecting and presenting
significant events in the life of a distributed computation are
being developed as part of, or in conjunction with, frame-
works for writing such applications. (This is particularly
true of computational grids due to their increased complex-
ity.) As an example, NetLogger [9, 19, 20] and Autopi-
lot [14, 15] are both monitoring frameworks which work
well with the Globus [7] computational grid toolkit.

One of the challenges faced by monitoring frameworks
is the selection of an appropriate level of detail at which
to identify a problem. For example, it is sufficient to col-
lect a periodic heartbeat from nodes in order to monitor
the availability of computing resources in a computational
grid. If, however, the problem is low performance caused by
poorly timed arrivals of messages, details concerning mes-
sage arrival times are required. Perhaps the performance
problem is due to increased latency caused by messages ar-
riving while the process for which they are intended is wait-
ing for its next timeslice. In general, it is difficult to know
beforehand what level of detail is required to diagnose and
solve a particular problem. Not only is sufficient detail re-

In proceedings of the 17th International Parallel and Distributed
Processing Symposium, Nice France, April 22-26 2003.
http://www.lanl.gov/radiant/pubs/magnet/ipdps2003.{ps|pdf}

quired, but problems could be identified and solved much
more quickly if the amount of detail could be varied on the
fly.

We have developed a tool, which we call MUSE—
MAGNET User-Space Environment — that allows the on-
line monitoring of nodes of a computing cluster or compu-
tational grid. The information available through MUSE can
be tuned to provide just the right level of detail for the task
at hand, whether that task be debugging, tuning or status
monitoring.1 Furthermore, MUSE can be used to support
the development of “adaptive applications” — applications
that are aware of the environment in which they execute and
can adapt their behavior based on that awareness.

As an example of an adaptive application that MUSE
facilitates, consider a distributed visualization tool which
steers through a large data set. The application consists of a
renderer which is co-located with the stored data at a remote
site and a user interface which executes on the scientist’s
workstation. When the available bandwidth is plentiful, the
renderer can send raw frames to the user interface for dis-
play. This provides the maximum resolution to the scientist.
If the network becomes congested, however, the renderer
can reduce the frame rate or compress the data to provide
better response times. The key capability needed to respond
appropriately is for the application to know what bandwidth
is available from the network. MUSE is designed to provide
such information to applications.

2 Design of MUSE

As the name “MAGNET User-Space Environment” im-
plies, MUSE provides an environment for user-space appli-
cations to make convenient use of the wealth of information
which the MAGNET toolkit [5, 6, 10] exports from the op-
erating system kernel. It was designed to consolidate the
functions of event filtering and information synthesis into
one component, magnetd. The resulting information can
be saved to disk for later analysis or sent to (multiple) ap-
plications for immediate use. Thus, MUSE provides the
infrastructure for debugging or tuning system performance,
monitoring computing clusters or computational grids, or
building adaptive applications.

In the following sub-sections, we present the architec-
ture of MUSE and its main component, magnetd, then de-
scribe how magnetd filters events and synthesizes infor-
mation. Finally, we describe how magnetd supports user-
defined extensions through the use of dynamically linked
data handlers.

2.1 magnetd

Figure 1 shows the architecture of MUSE. The main
component of MUSE, magnetd, is designed as a multi-
threaded daemon process with two main threads of execu-
tion. The first, called the data collection thread, is responsi-

1Initial feedback from end users indicates that cluster environments re-
quire finer granularity than grid environments.

*
*
*

Server

Server

Data Collection

Master Server

*
*
*

Monitor

Application

Monitor

Application

Process

Network

*
*
*

MUSE

magnetd

Kernel

MAGNET

Figure 1. Architecture of MUSE

ble for extracting event records from the MAGNET kernel
buffer and processing them. The second, the master server
thread, listens for command connections from clients inter-
ested in obtaining information from magnetd and creating
server threads to service their requests.

Although clients can request a copy of the MAGNET
event stream, it is more efficient for most applications to
request the subset of events that they find interesting. This
greatly reduces the amount of information applications need
to process and also minimizes the amount of communica-
tion required.

To emphasize the need for filtering, we have seen MAG-
NET trace rates as high as 1.76 million event records per
second (33.6 MBps, where MBps = ����� bytes per second)
depending on the host and configuration. A single copy
of the event stream sent to a remote application could eas-
ily consume a 100 Mbps Ethernet connection. Filtering the
event stream before sending it to applications reduces the
cost of communication and consolidates the filtering code
for all applications. Functions which perform this service
are called filters.

After the event stream is filtered, the remaining events
can be synthesized into application-specific information
through the use of data handlers. Handlers may perform
arbitrary computations but should be as lightweight as pos-
sible since time-consuming computations are likely to per-
turb the phenomena being monitored and will reduce the
time available for other handlers. Used judiciously, how-
ever, handlers further reduce the amount of communication
and simplify application processing.

Clients communicate with magnetd by sending re-
quests to the master server thread using UNIX or TCP/IP
sockets. Local (UNIX) connections are useful for applica-
tions, running on the same host as magnetd, to query the
state of the host. Remote (TCP/IP) connections are useful
for the monitoring of computing clusters and computational
grids by middleware or by the distributed application itself.

typedef struct magnet_data RECORD;
typedef struct data {int count;} DATA;

int help(int rsize, char *rstr) {
strncpy(rstr, "counts events", rsize);
return NO_ERROR;

}

int create(void *args, void **data,
void **filters) {

*data = malloc(sizeof(DATA));
if (!*data) {return MEM_ERR;}
((DATA *) *data)->count = 0;
return NO_ERROR;

}

int destroy(void **data) {
free(*data);
return NO_ERROR;

}

int process(void **data, RECORD *record) {
((DATA *) *data)->count++;
return NO_ERROR;

}

int query(void **data,
int size, char *result) {

snprintf(result, size, "event count %d",
((DATA *) *data)->count);

return NO_ERROR;
}

Figure 2. A Handler that Counts Events

Using the command connection, a client creates a han-
dler to synthesize parameters of interest, such as measured
bandwidth. It also adds filters to restrict which events are
used to compute the parameters. The client also starts,
stops, resets and queries the handler through the command
connection.

Depending on how the handler is written, the synthesized
parameters may be sent periodically (“push” model) or in
response to a query from the client (“pull” model).

2.2 User-Defined Handlers

magnetd supports a plug-in architecture that makes it
very easy for developers to write handlers to suit their ap-
plication without recompiling magnetd. The object code
for a handler is contained in a dynamically linked library.
Figure 2 shows a simple handler that counts the number of
events that match its filters.

Handlers are required to implement five functions:
create, destroy, process, query and help. Each
handler function is expected to return zero on success or a
non-zero error code on failure. All of the functions except
process are called in response to a command from the
client, so the error code is propagated back to the client. Er-
rors in the process function are logged to the console and
magnetd stops the handler to prevent further errors.

The create function performs initialization, including
allocating storage for the handler’s internal state. Although
the example does not show it, filters can be added within

create, if appropriate. Newly created handlers are placed
in a “stopped” state and must be activated by a separate
“start” request from the client. When a client is finished
with a handler, it sends a “destroy” request, which results
in the handler’s destroy function being called to perform
appropriate clean-up activities, including deallocating the
internal state.

The process function analyzes, stores, or streams
events as appropriate. Updates to the handler’s internal
state also occur in process. Filters ensure that records
received by the handler only contain relevant events. Han-
dlers should be designed to minimize the execution time of
the process function to minimize perturbing the quanti-
ties being measured. In the example, the count is incre-
mented for each event received.

In response to “query” requests from clients, the query
function prepares a string reflecting the values of the param-
eters computed by the handler. In the example, the response
string reports the number of events that the handler has seen.
For more details about handlers, see the documentation at
http://www.lanl.gov/˜radiant/.

3 Performance

The process of monitoring a computation has the poten-
tial to perturb the very parameters being measured. If the
effects of the perturbation are small enough, they can safely
be ignored. In this section, we bound the effects of using
MUSE to monitor parallel scientific computations from the
NAS Parallel Benchmark suite.

The two metrics we consider are the reduction in CPU
cycles available due to the increased load caused by mon-
itoring and the latency between when an event occurs and
when the monitoring application receives the event. The
former is important since fewer CPU cycles translates into
slower execution of applications on the host. The latter is
important for on-line monitoring purposes since stale infor-
mation makes good decisions difficult.

3.1 Load Increase

We use the NAS Parallel Benchmark suite version 2.2
IS Class A kernel [16] as the workload. The IS kernel is
a distributed bucket sort algorithm in which each proces-
sor sends the keys which fall in its range to all the other
processors. Because IS communicates heavily, magnetd
must process a large number of network events. The CPU
cycles used by magnetd are unavailable for computing
and hence reduce the operations per second reported by
the benchmark. Each socket send of � bytes generates����� ��� �	� ��
�
��� events when MAGNET is configured to
monitor throughout the network stack.2 We also test the
case where only socket send and receive calls are moni-
tored.

2One event comes from the socket call itself. Three additional events
occur for each fragment that traverses the network stack. Because Linux
makes use of TCP options, the maximum fragment size is 1448 bytes.

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4

M
O

ps

Handler Instantiations

SMP Baseline
SMP all events
SMP socket-only
Uniprocessor Baseline
Uniprocessor all events
Uniprocessor socket-only

Figure 3. MOps vs. Number of Handlers

The test equipment consists of two identical machines
with dual 933 MHz Pentium III processors and 512 MB of
RAM connected by MPICH running over Gigabit Ethernet.
Five configurations are presented. The first or baseline runs
stock Linux 2.4.18 kernels. The second runs MAGNET-
ized 2.4.18 kernels with magnetd executing on the moni-
toring host without handlers. The final three tests are the
same as the second but with one, two and four handlers
which count the number of events seen. The filters are con-
figured to accept any network event.

The number of IS kernel operations per second as a func-
tion of the number of handlers is presented for both unipro-
cessor and SMP kernels in Figure 3. In all cases, the 95%
confidence intervals are less than � 0.03%.

First, we note that the performance of the stock kernel
on multiple processors is nearly 0.5% lower than the stock
kernel on a single processor due to locking overhead. Next,
the number of IS kernel operations per second is reduced by
only 1.3–1.4% in the SMP configuration with 1–4 handlers.
The gradual increase in overhead indicates that SMP sys-
tems are not sensitive to the number of handlers. There is a
higher impact on uniprocessor systems, however. The per-
formance is reduced by 7.2–24.7% when magnetd com-
petes with the application for processor cycles.

Due to the fact that the IS kernel communicates heavily
and MAGNET is configured to collect events throughout
the networking stack in these tests, the results are represen-
tative of worst-case behavior. The performance impact is
less if MAGNET is configured to only collect the events
needed. For example, if we collect only socket events, the
rate at which monitored events occur is reduced by 24.6%.
The overhead is also reduced by a similar amount. Although
the overhead is still 19.8% for a single processor, scientific
applications with a balanced compute to communication ra-
tio will see less overhead.

Clearly, excess processing capacity must exist for the ef-
fect of monitoring to be negligible. This is not surprising
since extensive monitoring does perturb the system. The
effect can be minimized by configuring MAGNET to ex-

0

1

2

3

4

5

6

7

8

2.05 2.06 2.07 2.08 2.09 2.1

L
at

en
cy

 f
ro

m
 M

A
G

N
E

T
 to

 m
ag

ne
td

 (
m

s)

Time (sec)

Figure 4. Latency Between MAGNET and
magnetd with Sleeping on Idle

port only the events necessary for handlers to perform their
computations and by running multiple processors.

3.2 Data Path Latency

We now turn our attention to measuring the latency from
when an event occurs until the time an application receives
it. There are four components to the latency. The first is the
time it takes MAGNET to register the event. The second is
the time it takes magnetd to receive an event record from
MAGNET. The third is the time it takes a handler to receive
an event record from magnetd. The fourth is the time it
takes to transmit results from the handler to the application.

It takes MAGNET an average of 371 ns to register an
event on the test hosts. The next two components of la-
tency depend upon the performance of magnetd, while
the fourth is independent. We quantify magnetd’s perfor-
mance by comparing the timestamp when an event record
arrives with the timestamp when it was sent.

In the results that follow, the monitoring application is
run on the same host as magnetd. Components of the dis-
tributed application use either Fast Ethernet or Gigabit Eth-
ernet to communicate. The results are for runs which used
Fast Ethernet except where noted.

Figure 4 shows the time it takes for magnetd to see
an event exported by MAGNET. The latency repeatedly de-
creases to near zero indicating that magnetd processes
events faster than they are generated. The latency is
the smallest for the last event to arrive before magnetd
sleeps and greatest for events which arrive immediately af-
ter magnetd goes to sleep. The linear shape of the curves
confirms that magnetd removes events from the kernel
buffer in FIFO order.

The average latency from MAGNET to magnetd
is 4.01 ms. Since a timeslice under Linux is 10 ms,3

magnetd is operating at 40% capacity in this test. Con-

3The spacing between lines in Figure 4 corresponds to a timeslice.

0

1

2

3

4

5

0 200 400 600 800 1000

B
an

dw
id

th
 (

M
bp

s
=

 1
06 b

ps
)

Time (sec)

Decaying Average (magnetd)
Overall Average (magnetd) 3.946 Mbps
Overall Average (FTP) 3.947 Mbps

Figure 5. Verification of Bandwidth Handler
Accuracy

figuring magnetd to poll for new events continuously re-
duces the average latency to 38 � s at the cost of greater CPU
load.

We note that the latencies between MAGNET and
magnetd are higher for Gigabit Ethernet than for Fast Eth-
ernet (4.98 ms vs. 4.01 ms). This is caused by interrupt co-
alescing which increases the average latency substantially.
The average latency from magnetd to a handler is also
higher for Gigabit Ethernet than for Fast Ethernet (1.273 ms
vs. 0.248 ms). The cause is still unknown.

In summary, the biggest cause of latency is the process
scheduler. The average latency is less than 5 ms even for Gi-
gabit Ethernet with interrupt coalescing. Thus, the latency
should be acceptable for many monitoring tasks, particu-
larly in computational grids, where round-trip times are on
the order of 100 ms.

4 Handler Validation

The bandwidth handler supplied with MUSE computes
the average bandwidth over the last � socket send events.
In this section, we show that an accurate bandwidth can in-
deed be computed in a handler from an event stream. We
validate the handler by comparing its results with the results
obtained through independent means.

As a first check, we monitor an FTP application transfer-
ring a 467 MB file from ftp.debian.org and compare the av-
erage transfer rate reported by FTP with the overall average
computed by the bandwidth handler. FTP reports an aver-
age transfer rate of 3.947 Mbps, where Mbps =

�����
bits per

second. The bandwidth handler reports an average transfer
rate of 3.946 Mbps, a difference of 0.025%. Figure 5 shows
the “instantaneous” transfer rate, windowed over ��� ���	�	�
events, along with the two average rates. Times when the
network was congested are clearly visible.

The next check is also performed between the same two
hosts as in Section 3. First, a netperf connection is
started and allowed to reach streaming state. Next, another

300

350

400

450

500

550

600

650

14 15 16 17 18 19 20

M
ea

su
re

d
B

an
dw

id
th

 (
M

bp
s

=
 1

06 b
ps

)

Time (seconds)

Figure 6. Bandwidth Handler for Two netperf
Connections

netperf connection is started 14.33 s after the first con-
nection. Five seconds later, the second netperf is ter-
minated. Figure 6 shows the computed bandwidth as a
function of time. The starting and ending times of the sec-
ond connection are delimited by vertical lines. The figure
clearly shows that the bandwidth of the first connection falls
off exponentially as the second connection goes through
slow start. After about one third of a second, both connec-
tions reach steady state once more. Finally, the bandwidth
of the first connection increases after the second connection
has terminated until it reaches streaming state again. (The
slight curvature in the line during linear increase comes
from computing the average over the last � events.)

5 Applications of MUSE

MUSE provides many benefits to the parallel and dis-
tributed computing community. Its overhead is low enough
that it can be used on-line for many tasks which used to be
done off-line. This ability has many practical applications,
some of which we discuss in this section.

5.1 Event Visualization in Distributed Systems

Distributed systems, by nature, are very complex with
plenty of opportunities for subtle bugs and performance
problems. The ability to visualize the execution history of a
distributed application could potentially save large amounts
of time and speed up the development and deployment of
such applications. Although MUSE does not contain tools
for visualization, it can easily serve as an data source for
existing tools.

As a proof of concept, we have developed a translator
from MAGNET event records to the Universal Log Mes-
sage (ULM) format used by the NetLogger toolkit [9, 19,
20]. This allows one to use the NetLogger Visualization
tool (NLV) to view an event stream graphically. The transla-

Figure 7. Visualizing the Transfer of a Packet in FTP

tor establishes a connection with magnetd, requests some
subset of the event records, translates them to ULM for-
mat and appends them onto the end of a log file. NLV
watches the tail of the file and updates the display as new
events appear. Also as a proof of concept, we have de-
veloped a translator from MAGNET event records to the
format expected by GScope [8], an open-source software
oscilloscope library.

Bulk data transfers, via FTP or some other protocol, are
an important operation in grid computing. In this test, a
monitoring application connects to magnetd on the FTP
server node using TCP/IP. It also connects, via TCP/IP, to
magnetd on the FTP client node. Events are collected
from the MAGNET daemons on both nodes, collated and
displayed.

Figure 7 shows a GScope screen capture of a segment of
a FTP transfer with MUSE monitoring both the client and
the server. The first three data points show the server send-
ing a packet down the network stack and out onto the net-
work. The second three data points shows the same packet
climbing up the network stack on the client. Of the remain-
ing four points, the first three show an TCP acknowledg-
ment being sent back to the server, while the fourth point
shows the socket on the client receiving the packet that was
sent.

From the figure, we can see that the packet traveled
down the server’s network stack at nearly constant speed,
i.e., each layer took similar amounts of time to process the
packet. On the client side, however, the packet sat in a
buffer in the device driver until the IP layer was ready for it.
The IP layer, on the other hand, passed the packet on to the
TCP layer fairly quickly. Finally, a significant amount of
time passed before the client actually read the packet from
the socket.

With just a short look at the graph we are able to tell a lot
about the behavior of the FTP transfer. We were also able to
identify two places where time is potentially being wasted
and where the transfer might be sped up.

5.2 Distributed Application Monitoring

One of the big challenges in developing a distributed ap-
plication is acquiring insight into the operation of the appli-
cation in order to debug, tune, monitor or control the appli-
cation. Several frameworks, such as NetLogger [9, 19, 20],
Autopilot [14,15], Remos [2,3] and CODE [17], have been
proposed which accomplish these goals.

Each of these frameworks has some mechanism, called a
sensor, for acquiring information about a distributed com-
putation. Some, like NetLogger, require the application
to be modified or relinked in order to collect information.
Some obtain information about the behavior of the oper-
ating system through daemons such as rstatd, through
the /proc file system [12, 18], through SNMP [2, 3],
through active probing [2, 3] or through CPU hardware
counters [4, 11].

MUSE is another way for these frameworks to obtain
information. It makes available, in a convenient form, the
wealth of extremely detailed information which MAGNET
exports. It adds value because it provides information that
the types of sensors discussed above do not and because it
can filter and synthesize specific information needed by the
framework. Furthermore, MUSE is able, through MAG-
NET, to export internal operating system variables which
are important to understand the behavior of the system.

As described in Section 5.1, we have implemented a
translator from MAGNET event records to ULM format so
MAGNET events can be used in the NetLogger framework.
We are working with the University of Illinois to integrate
MUSE into the Autopilot framework.

5.3 Adaptive Applications

Adaptive applications are aware of the environment in
which they execute and can adapt to changing conditions.
Within the context of MUSE, an adaptive application enters
into a dialog with magnetd to receive pertinent informa-
tion about the current state of the system.

Going back to the distributed visualization example in
Section 1, MUSE provides accurate bandwidth measure-
ments that the renderer can use to reduce the frame rate or
increase the compression ratio of the data.

We note that the two validation experiments in Section 4
are a first-order models of a distributed visualization appli-
cation in which the network suffers congestion. Thus, Fig-
ure 6 is a graph of the bandwidth measurements which the
renderer would use to decide what the frame rate or com-
pression ratio should be.

6 Related Work

As discussed earlier, there are quite a few frameworks for
debugging, tuning, monitoring and controlling distributed
applications. Some examples are NetLogger [9,19,20], Au-
topilot [14, 15], Remos [2, 3] and CODE [17] Each of these
has at least one way to obtain the information they act upon.
For example, Autopilot obtains information by manually or
automatically instrumenting the object code. Other tools,
such as Supermon [12, 18] and Cluster Performance Moni-
tor [1], collect operating system performance by exporting
data through the /proc file system or by sending the data
to a centralized monitor via the network.

Another distributed monitoring framework which de-
serves special mention is the Network Weather Service
(NWS) [13, 21, 22]. It is a distributed monitoring system
which periodically samples network bandwidth and latency,
CPU utilization and available non-paged memory. It in-
cludes the ability to forecast resource availability.

MUSE, through MAGNET instrumentation, provides a
different set of information than the sensors in the above
tools. The information it provides is complementary. Since
multiple sets of sensors may give a more complete view
of the behavior of a distributed system, we intend to make
MUSE compatible with those frameworks.

Another tool for fine-grained monitoring of applications
is pfmon [4]. It is an IA-64/Linux-specific tool for CPU
performance monitoring on Intel Itanium and Itanium II
processors. Like MUSE, it provides fine-grained informa-
tion without requiring applications to be modified or re-
linked. Also like MUSE, pfmon requires support to be
compiled into the kernel. Unlike MUSE, the application to
be monitored must be started from within pfmon. Further-
more, there are no provisions for pfmon to export events to
remote hosts.

Finally, the tool most like MAGNET-MUSE is the Linux
Trace Toolkit (LTT) [23]. Both tools originated at about the
same time but with different initial purposes. Over time, the
tools have evolved until now they are remarkably similar.
The emphasis in LTT has been breadth of instrumentation,
while the emphasis in MAGNET-MUSE has been depth.
Both LTT and MAGNET-MUSE have low overhead, but it
appears that MAGNET-MUSE is more efficient in certain
circumstances.4 Unlike MUSE, LTT has its own graphi-

4The overhead for LTT is reported to be ����� ��� (Figure 3, configura-

cal event visualization tool. Merging the two open-source
projects would leverage the strengths of each tool.

7 Future Work

MUSE is a very new tool and as such has plenty of room
to grow. One area of future work is the development of han-
dlers for magnetd. Some handlers will be general enough
that they can be used in many different monitoring domains.
For example, a handler which utilizes CPU performance
monitoring hardware, like pfmon does, should be devel-
oped. Most handlers, however, will likely be very applica-
tion specific and hence will probably be written along with
the application which uses them.

So far, all the handlers have been designed to “pull” the
data they require. For some tasks, it would be much more
natural for magnetd to “push” the data to the application.
Early in the life of magnetd, code existed to push data
to NLV for display. In implementing the current handler
mechanism, that code was removed. The code should be
added back and an example of a push-style handler written.

One area which we have not addressed is security. Al-
though the information exported from kernel space by
MAGNET has no obvious security issues that we are aware
of, there are likely to be several subtle ones. Unauthorized
users should be prevented from accessing the MAGNET
event stream. Right now, however, any user on the system
can read the MAGNET device file. This problem can easily
be solved by creating a “MAGNET” user or group and ap-
propriately setting file permissions on the MAGNET device
file used by magnetd to read events from the kernel.

Another way MUSE could be more secure is by authenti-
cating clients before responding to requests. A Kerberos or
PKI system for authentication could be added to magnetd.
In certain contexts, such as when MUSE is used within
a framework which provides authentication in the middle-
ware, MUSE could rely on the security mechanisms of the
framework.

We are collaborating with colleagues to develop the
adaptive distributed visualization application alluded to in
Section 5.3. According to the current design, the resolution
of the frames generated by the renderer is adjusted based on
the available bandwidth.

We have received feedback which suggests that it is im-
practical for some users to install MAGNET in order to
use MUSE. Assuming that this would be the case, we are
nearing completion of a user-space solution for monitor-
ing applications without installing a MAGNET-ized ker-
nel. This tool will become part of the MUSE toolkit. The
MUSE and MAGNET toolkits are available from http:
//www.lanl.gov/radiant/software.html.

tion 6 of [23]) while the overhead of MAGNET alone is �	���
�� [6] under
as similar conditions as we have tested. On SMP machines, the worst-case
overhead of MAGNET-MUSE is ���� ��� , while the worst-case overhead
is ������� �� on uniprocessor machines.

8 Conclusion

MUSE is a tool for applications to obtain information
about the hosts on which they execute without the need to
know the gory details of MAGNET. For many uses, it has
sufficiently low overhead as to ensure very little perturba-
tion of the phenomena being measured. We have shown that
MUSE causes less than a 0.8% reduction in performance of
the NAS IS benchmark if sufficient computing capacity ex-
ists.

Thanks to the fine level of detail provided by MAG-
NET, MUSE can synthesize information from MAGNET
exported events with great accuracy. We have shown that
the handler which synthesizes bandwidth from socket send
events was within 0.025% of the bandwidth reported by
FTP. By selectively processing MAGNET events, MUSE
can tailor the level of detail for any task.

Finally, we gave examples of several ways in which
one can use MUSE. The first was to visualize the events
of a distributed application using NetLogger’s NLV or
GScope. The second illustrated how MUSE could pro-
vide the events needed by computing cluster and compu-
tational grid monitoring frameworks such as CODE [17],
NetLogger [9, 19, 20] or Autopilot [14, 15]. The last exam-
ple showed how an application can take advantage of the
information provided by MUSE to become adaptable.

Acknowledgements

This work was funded in part by the U.S. Department of
Energy Laboratory Directed Research program and the U.S.
Department of Energy Office of Science.

References

[1] D. Anderson and J. Chase. Cluster performance
monitor. http://www.cs.duke.edu/˜anderson/
freebsd/cluster_mon/project.html.

[2] A. DeWitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkiste,
J. Subhlok, and D. Sutherland. Remos: A resource mon-
itoring system for network-aware applications. Technical
Report CMU-CS-97-194, Carnegie Mellon School of Com-
puter Science, 1997.

[3] P. Dinda, T. Gross, R. Karrer, B. Lowekamp, N. Miller,
P. Steenkiste, and D. Sutherland. The architecture of the
Remos system. In Proceedings of the 10th IEEE Symposium
on High-Performance Distributed Computing (HPDC’01),
Aug 2001.

[4] S. Eranian. The Perfmon Project. http://www.hpl.
hp.com/research/linux/perfmon/.

[5] W. Feng, J. R. Hay, and M. K. Gardner. MAGNeT: Monitor
for application-generated network traffic. In Proceedings of
the 10th International Conference on Computer Communi-
cation and Networking (IC3N’01), Oct 2001. (This paper
gives details about an early implementation of MAGNET).

[6] M. K. Gardner, W. Feng, M. Broxton, A. Engelhart, and
G. Hurwitz. MAGNET: A tool for debugging, analysis and
reflection in computing systems. In Proceedings of the 3rd

IEEE/ACM International International Symposium on Clus-
ter Computing and the Grid (CCGrid’2003), May 2003.
(This paper gives details about the current implementation
of MAGNET).

[7] The Globus Project. http://www.globus.org/.
[8] A. Goel. Gscope: A software oscilloscope library. http:

//gscope.sourceforge.net.
[9] D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee.

NetLogger: A toolkit for distributed system performance
analysis. In Proceedings of the IEEE Mascots 2000 Con-
ference (Mascots 2000), aug 2000.

[10] J. Hay, W. Feng, and M. K. Gardner. Capturing network traf-
fic with a MAGNeT. In Proceedings of the 5th Annual Linux
Showcase and Conference (ALS’01), Nov 2001. (This paper
gives details about an early implementation of MAGNET).

[11] J. Mellor-Crummey, R. J. Fowler, G. Marin, and N. Tallent.
HPCView: A tool for top-down analysis of node perfor-
mance. Journal of Supercomputing, 23:81–104, Aug 2002.

[12] R. Minnich and K. Reid. Supermon: High performance
monitoring for linux clusters. In Proceedings of the 5th An-
ual Linux Showcase and Conference, Nov 2001.

[13] Network Weather Service. http://nws.cs.ucsb.
edu/.

[14] R. L. Ribler, H. Simitci, and D. A. Reed. The Autopi-
lot performance-directed adaptive control system. In Fu-
ture Generation Computer Systems, special issue on perfor-
mance Data Mining, sep 2001.

[15] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Au-
topilot: Adaptive control of distributed applications. In Pro-
ceedings of the 7th IEEE Symposium on High-Performance
Distributed Computing (HPDC-7), Jul 1998.

[16] W. Saphir, R. V. der Wijngaart, A. Woo, and M. Yarrow.
New implementations and results for the nas parallel bench-
marks 2. http://www.nas.nasa.gov/NAS/NPB/
Specs/npb2_report.ps.

[17] W. Smith. A framework for control and observation in
distributed environments. Technical Report NAS-01-006,
NASA Advanced Supercomputing Division, NASA Ames
Research Center, Jul 2001.

[18] M. Sottile and R. Minnich. Supermon: A high-speed cluster
monitoring system. In Proceedings of Cluster 2002, Sep
2002.

[19] B. Tierney, D. Gunter, J. Becla, B. Jacobsen, and D. Quar-
rie. Using NetLogger for distributed systems performance
analysis of the BaBar data analysis system. In Proceedings
of Computers in High Energy Physics 2000 (CHEP 2000),
feb 2000.

[20] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks,
and D. Gunter. The NetLogger methodology for high per-
formance distributed systems performance analysis. In Pro-
ceedings of IEEE the High Performance Distributed Com-
puting Conference (HPDC-7), Jul 1998.

[21] R. Wolski. Dynamically forecasting network performance
using the Network Weather Service. Journal of Cluster
Computing, 1:119–132, Jan 1998.

[22] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A distributed resource performance forecasting ser-
vice for metacomputing. Journal of Future Generation
Computing Systems, 15(5–6):757–768, Oct 1999.

[23] K. Yaghmour and M. R. Dagenais. Measuring and charac-
terizing system behavior using kernel-level event logging. In
Proceedings of Usenix Annual Technical Conference 2000,
Jun 2000.

