Appeared in the proceedings of the 7th International Wrkshop on
Protocol s for Hi gh-Speed Networks (PfHSN 2002) Berlin, Germany April 22-24 2002.

LA- UR 02-2052.

Dynamic Right-Sizing: An Automated,
Lightweight, and Scalable Technique
for Enhancing Grid Performance

Wu-chun Feng, Mike Fisk, Mark Gardner, and Eric Weigle

Research & Development in Advanced Network Technology (RADIANT)
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545
{feng, mfisk, mkg, ehw}@lanl.gov
http://www.lanl.gov/radiant

Abstract. With the advent of computational grids, networking perfor-
mance over the wide-area network (WAN) has become a critical compo-
nent in the grid infrastructure. Unfortunately, many high-performance
grid applications only use a small fraction of their available bandwidth
because operating systems and their associated protocol stacks are still
tuned for yesterday’s WAN speeds. As a result, network gurus undertake
the tedious process of manually tuning system buffers to allow TCP flow
control to scale to today’s WAN grid environments. And although recent
research has shown how to set the size of these system buffers automat-
ically at connection set-up, the buffer sizes are only appropriate at the
beginning of the connection’s lifetime. To address these problems, we
describe an automated and lightweight technique called dynamic right-
sizing that can improve throughput by as much as an order of magnitude
while still abiding by TCP semantics.

1 Introduction

TCP has entrenched itself as the ubiquitous transport protocol for the Inter-
net as well as emerging infrastructures such as computational grids [1,2], data
grids [3,4], and access grids [5]. However, parallel and distributed applications
running stock TCP implementations perform abysmally over networks with large
bandwidth-delay products. Such large bandwidth-delay product (BDP) networks
are typical in grid-computing networks as well as satellite networks [6-8].

As noted in [6-9], adaptation bottlenecks are the primary reason for this
abysmal performance, in particular, flow-control adaptation and congestion-
control adaptation. In order to address the former problem,! grid and network
researchers continue to manually tune buffer sizes to keep the network pipe full [7,
10,11], and thus achieve acceptable wide-area network (WAN) performance in
support of grid computing. However, this tuning process can be quite difficult,

! The latter problem is beyond the scope of this paper.

2 Wu-chun Feng et al.

particularly for users and developers who are not network experts, because it
involves calculating the bandwidth of the bottleneck link and the round-trip
time (RTT) for a given connection. That is, the optimal TCP buffer size is equal
to the product of the bandwidth of the bottleneck link and the RTT, i.e., the
bandwidth-delay product of the connection.

Currently, in order to tune the buffer sizes appropriately, the grid community
uses diagnostic tools to determine the RTT and the bandwidth of the bottleneck
link at any given time. Such tools include iperf [12], nettimer [13], netspec [14],
nettest [15], pchar [16], and pipechar [17]. However, none of these tools include
a client API, and all of the tools require a certain level of network expertise to
install and use.

To simplify the above tuning process, several services that provide clients
with the correct tuning parameters for a given connection have been proposed,
e.g., AutoNcFTP [18], Enable [19], Web100 [20], to eliminate what has been
called the wizard gap [21].2 Although these services provide good first approxi-
mations and can improve overall throughput by two to five times over a stock
TCP implementation, they only measure the bandwidth and delay at connection
set-up time, thus making the implicit assumption that the bandwidth and RTT
of a given connection will not change significantly over the course of the connec-
tion. In Section 2, we demonstrate that this assumption is tenuous at best. In
addition, these services “pollute” the network with extraneous probing packets.

A more dynamic approach to optimizing communication in a grid involves
automatically tuning buffers over the lifetime of the connection, not just at con-
nection set-up. At present, there exist two kernel-level implementations: auto-
tuning [22] and dynamic right-sizing (DRS) [23,24]. Auto-tuning implements
sender-based, flow-control adaptation while DRS implements receiver-based, flow-
control adaptation.® Live WAN tests show that DRS in the kernel can achieve a
30-fold increase in throughput when the network is uncongested, although speed-
ups of 7-8 times are more typical. (And when the network is heavily congested,
DRS throttles back and performs no better than the default TCP.) However,
achieving such speed-ups requires that our kernel patch for DRS be installed in
the operating systems of every pair of communicating hosts in a grid.*

The installation of our DRS kernel patch requires knowledge about adding
modules to the kernel and root privilege to install the patch. Thus, the DRS
functionality is generally not accessible to the typical end user (or developer).
However, in the longer term, we anticipate that this patch will be incorporated
into the kernel core so that its installation and operation are transparent to the
end user. In the meantime, end users still demand the better performance of

2 The wizard gap is the difference between the network performance that a network
“wizard” can achieve by appropriately tuning buffer sizes and the performance of an
untuned application.

3 The Web100 project recently incorporated DRS into their software distribution to
enable the dynamic sizing of flow-control windows over the lifetime of a connec-
tion [25].

4 Once installed, not only do grids benefit, but every TCP-based application benefits,
e.g., ftp, multimedia streaming, WWW.

Lecture Notes in Computer Science 3

DRS but with the pseudo-transparency of Enable and AutoNcFTP. Thus, we
propose a more portable implementation of DRS in user space that is transpar-
ent to the end user. Specifically, we integrate our DRS technique into fép (drs-
FTP). The differences between our drsFTP and AutoNcFTP are two-fold. First,
AutoNcFTP relies on NcFTP (http://www.ncftp.com/) whereas drsFTP uses
a de-facto standard ftp daemon from Washington University (http://www.wu-
ftpd.org/). Second, the buffers in AutoNcFTP are only tuned at connection
set-up while drsF'TP buffers are dynamically tuned over the lifetime of the con-
nection, thus resulting in better adaptation and better overall performance.

The remainder of the paper is organized as follows. Section 2 demonstrates
why dynamic, flow-control adaptation is needed over the lifetime of the connec-
tion rather than at connection set-up only. Sections 3 and 4 describe the DRS
technique and its implementation in kernel space and in user space, respectively.
Then, in Section 5, we present our experimental results, followed by concluding
remarks in Section 6.

2 Background

TCP relies on two mechanisms to set its transmission rate: flow control and
congestion control. Flow control ensures that the sender does not overrun the
receiver’s available buffer space (i.e., a sender can send no more data than the
size of the receiver’s last advertised flow-control window) while congestion control
ensures that the sender does not unfairly overrun the network’s available band-
width. TCP implements these mechanisms via a flow-control window (fwnd)
that is advertised by the receiver to the sender and a congestion-control window
(cwnd) that is adapted based on inferring the state of the network.

Specifically, TCP calculates an effective window (ewnd), where ewnd =
min(fwnd,cwnd), and then sends data at a rate of ewnd/RTT, where RTT
is the round-trip time of the connection. Currently, cwnd varies dynamically as
the network state changes; however, fwnd has always been static despite the fact
that today’s receivers are not nearly as buffer-constrained as they were twenty
years ago. Ideally, fwnd should vary with the bandwidth-delay product (BDP)
of the network, thus providing the motivation for DRS.

Historically, a static fwnd sufficed for all communication because the BDP
of networks was small. Hence, setting fwnd to small values produced acceptable
performance while wasting little memory. Today, most operating systems set
fwnd ~ 64 KB — the largest window available without scaling [26]. Yet BDPs
range between a few bytes (56 Kbps x 5 ms — 36 bytes) and a few megabtyes
(622 Mbps x 100 ms — 7.8 MB). For the former case, the system wastes over
99% of its allocated memory (i.e., 36 B / 64 KB = 0.05%). In the latter case,
the system potentially wastes up to 99% of the network bandwidth (i.e., 64 KB
/ 7.8 MB = 0.80%).

Over the lifetime of a connection, bandwidth and delay change (due to transi-
tory queueing and congestion) implying that the BDP also changes. Figures 1, 2,

4 Wu-chun Feng et al.

3e+08
4
2.5e+08 |- + b
2e+08 | b
"S_ +
=3 +
s +
S 1.5e+08 - + 4
2
°
< +
o +
N +
1e+08 |-
+ + 4 + +
. +
+ + 5 + +
+ +
+ +
5e+07 |- * N + T v 4
++ - + TR+ ot oty
e R e gt :++#+Hf#+ AT
e E A i R O
) - o Aty g Bt ¢
G A TN Chol ' G |
11:00am Noon 1:00pm

Time of Day

Fig. 1. Bottleneck Bandwidth at 20-Second Intervals

and 3 support this claim.? Figure 1 presents the bottleneck bandwidth between
Los Alamos and New York at 20-second intervals. The bottleneck bandwidth
averages 17.2 Mbps with a low and a high of 0.026 Mbps and 28.5 Mbps, respec-
tively. The standard deviation and half-width of the 95% confidence interval are
26.3 Mbps and 1.8 Mbps. Figure 2 shows the RTT, again between Los Alamos
and New York, at 20-second intervals. The RTT delay also varies over a wide
range of [119, 475] ms with an average delay of 157 ms. Combining Figures 1
and 2 results in Figure 3, which shows that the BDP of a given connection can
vary by as much as 61 Mb.

Based on the above results, the BDP over the lifetime of a connection is
continually changing. Therefore, a fixed value for fwnd is not ideal; selecting
a fixed value forces an implicit decision between (1) under-allocating memory
and under-utilizing the network or (2) over-allocating memory and wasting sys-
tem resources. Clearly, the grid community needs a solution that dynamically
and transparently adapts fwnd to achieve good performance without wasting
network or memory resources.

3 Dynamic Right-Sizing (DRS) in the Kernel

Dynamic right-sizing (DRS) lets the receiver estimate the sender’s cwnd and
then use that estimate to dynamically change the size of the receiver’s window
advertisements fwnd (as memory resources will allow on the receiver side). These
updates can then be used to keep pace with the growth in the sender’s congestion
window. As a result, the throughput between end hosts, e.g., as in a grid, will

% To generate these figures, we used nettimer to measure bandwidth and RT'T delay.

Lecture Notes in Computer Science 5

500 T
+ +
450 | * g
4
++
400 |- L + i
T + + +
+ % + I
+
350 + . i
+ ++ "
7 Lo +
£ + - +
= 300 - + 4 4 4
E + +
& + t’ o ﬁ' *. ’ 4:
+ 1 * ¥
250 | oy oot + i
+ Bt 4 T N + * 4
T+ +
+ + T %
i E Wt * } N
200 + + #ow Lot £
+ N ot +
L+ o* Jf ¥+ Tty o+
s oy +++++i+++ L4t [
180 1 +¢+ F’i##% +$+¥ +§Fi+$+ ﬁﬁJrIg?; + N R
| IR -rae o SR I S A RONES Sap e
100 I I I I I
8:00am 9:00am 10:00am 11:00am Noon 1:00pm
Time of Day

Fig. 2. Round-Trip Time at 20-Second Intervals

only be constrained by the available bandwidth of the network rather than some
arbitrarily set constant value on the receiver that is advertised to the sender.

Initially, at connection set-up, the sender’s cwnd is smaller than the receiver’s
advertised window fwnd. To ensure that a given connection is not flow-control
constrained, the receiver must continue to advertise a fwnd that is larger than
the sender’s cwnd before the receiver’s next adjustment.

The instantaneous throughput seen by a receiver may be larger than the
available end-to-end bandwidth. For instance, data may travel across a slow link
only to be queued up on a downstream router and then sent to the receiver in
one or more fast bursts. The maximum size of such a burst is bounded by the
size of the sender’s cwnd and the window advertised by the receiver. Because
the sender can send no more than one ewnd window’s worth of data between
acknowledgements, a burst that is shorter than a RTT can contain at most one
ewnd’s worth of data. Thus, for any period of time that is shorter than a RTT,
the amount of data seen over that period is a lower bound on the size of the
sender’s cwnd. But how does such a distributed system calculate its RTT?

In a typical TCP implementation, the RTT is measured by observing the
time between when data is sent and an acknowledgement is returned. However,
during a bulk-data transfer (e.g., from sender to receiver), the receiver may not be
sending any data, and therefore, will not have an accurate RTT estimate. So, how
does the receiver infer delay (and bandwidth) when it only has acknowledgements
to transmit back and no data to send?

A receiver in a computational grid that is only transmitting acknowledge-
ments can still estimate the RTT by observing the time between when a byte is
first acknowledged and the receipt of data that is at least one window beyond
the sequence number that was acknowledged. If the sending application does not

6 Wu-chun Feng et al.

7e+07

++

6e+07

5e+07 | B

4e+07 | g

3e+07 B

Bandwidth*Delay Product (bits)

Fig. 3. Bandwidth-Delay Product at 20-Second Intervals

have any data to transmit, the measured RTT could be much larger than the
actual RTT. Thus, this measurement acts as an upper bound on the RTT and
should be used only when it is the only source of RTT information.

For a more rigorous and mathematical presentation for the lower and upper
bounds that are used in our kernel implementation of DRS, please see [23, 24].

4 DRS in User Space: drsFTP

Unlike the kernel-space DRS, user-space DRS implementations are specific to a
particular application. Here, we integrate DRS into ftp, resulting in drsFTP. As
with AutoNcFTP and Enable, we focus on (1) adjusting TCP’s system buffers
over the data channel of ftp rather than the control channel and (2) using ftp’s
stream file-transfer mode. The latter means that a separate data connection
is created for every file transferred. Thus, during the lifetime of the transfer,
the sender always has data to transmit; once the file has been completely sent,
the data connection closes. We leverage the above information in our design of
drsFTP.

The primary difficulty in developing user-space DRS code lies in the fact that
user-space code generally does not have direct access to the high-fidelity infor-
mation available in the TCP stack. Consequently, drsFTP has no knowledge of
parameters generated by TCP such as the RTT of a connection or the receiver’s
advertised window.

Lecture Notes in Computer Science 7

4.1 Adjusting the Receiver’s Window

Because the receiver is running in user space, it is unable to determine the actual
round trip time of TCP packets. However, in developing drsFTP, we do know
that the sender always has data to send for the life of the connection. It then
follows that the sender will send as much data as possible, limited by its idea
of congestion- and flow-control windows. So, the receiver can assume that it is
receiving data as quickly as the current windows and network conditions allow.

We use this assumption in the following manner. The drsFTP application
maintains an application receive buffer of at least twice the size of the current
kernel TCP receive buffer (which can be obtained via the getsockopt () function
call with the TCP_RCVBUF parameter). Every time the application reads from the
network, it attempts to read an entire receive buffer’s worth of data. If more
data than some threshold value is read, the assumption can be made that the
flow-control window should be increased.

The threshold value depends on the operating system (OS), in particular,
how much of the TCP kernel buffer that the OS reserves as application buffer
space and how much is used for the TCP transfer (i.e., how much of the buffer
is used for the TCP receive window). The threshold value is always less than
the value reported by TCP_RCVBUF. For example, we based our tests of drsFTP
on the Linux operating system. Linux maintains half of the TCP buffer space as
the TCP receive window and half as buffer area for the application. Thus, the
threshold value we used was % the total reported by TCP_RCVBUF size.

In the worst case, the sender’s window is doubling with every round trip
(i-e., during TCP slow start). Thus, when the determination is made that the
receiver window should increase, the new value should be at least double the
current value. In addition, the new value should take the threshold value into
consideration. Thus, for our drsFTP implementation, we increase the receive
window by a factor of four. This factor is applied to both the application buffer
and the kernel buffer (via setsockopt () /TCP_RCVBUF).

4.2 Adjusting the Sender’s Window

In order to take full advantage of dynamically changing buffer sizes, the sender’s
buffer should adjust in step with the receiver’s. This presents a problem in user-
space implementations because the sender’s user-space code has no way of de-
termining the receiver’s advertised TCP window size. However, the ftp protocol
specification [27] provides a solution to this dilemma. Specifically, ftp main-
tains a control channel, which is a TCP connection completely separate from
the actual data transfer. Commands are sent from the client to the server over
this control channel, and replies are sent in the reverse direction. Additionally,
the ftp specification does not prohibit traffic on the control channel during data
transfer. Thus, a drsFTP receiver may inform a drsFTP sender changes in buffer
size by sending appropriate messages over the ftp control channel.

Since ftp is a bidirectional data-transfer protocol, the receiver may either
be the ftp server or client. However, RFC 959 specifies that only ftp clients

8 Wu-chun Feng et al.

may send commands on the control channel, while ftp servers may only send
replies to commands. Thus, a new ftp command and reply must be added to
the ftp implementation in order to fully implement drsF'TP. Serendipitously,
the Internet Draft of the GridFTP protocol extensions to ftp defines an ftp
command “SBUF”, which is designed to allow a client to set the server’s TCP
buffer sizes before data transfer commences. We extend the definition of SBUF
to allow this command to be specified during a data transfer, i.e., to allow buffer
sizes to be set dynamically. The full definition of the expanded SBUF command
appears below:

Syntax:

sbuf = SBUF <SP> <buffer-size>
buffer-size ::= <number>

This command informs the server-PI to set the TCP buffer size to the
value specified (in bytes). SBUF may be issued at any time, including
before or during active data transfer. If specified during data

transfer, it affects the data transfer that started most recently.

Response Codes:

If the server-PI is able to set the buffer size to the requested buffer

size, a 200 response code may be returned. No response code is necessary
if specified during a data transfer, but a response is required if

specified outside of the data transfer.

In addition, we propose a new reply code to allow the server-as-receiver to notify
the client of changes in the receiver window.

126 Buffer Size (xxx)
xxx ::= buffer size in bytes

The 126 Reply may occur at any point when the server-PI is sending
data to the user-PI (or a server-PI running concurrently with the
user-PI). As with the SBUF command during data transfer, this

reply is informational and need not be acted upon or responded to
in any manner.

This reply code is consistent with RFC 959 and does not interfere with any ftp
extension or proposed extension.
4.3 TCP Window Scaling

Because the window-scaling factor in TCP is established at connection set-up
time, an appropriate scale must be set before a new data connection is opened.
Most operating systems allow TCP_RCVBUF and TCP_SNDBUF to be set on a socket

Lecture Notes in Computer Science 9

before a connection attempt is made and then use the requested buffer size to
establish the TCP window scaling.

5 Experiments

In this section, we present results for both the kernel- and user-space implemen-
tations of DRS. In particular, we will show that the throughput for both the
kernel- and user-space implementations improves upon the default configuration
by 600% and 300%, respectively. The kernel implementation performs better
because it has access to fine-granularity information in the kernel and has two
fewer copies to perform than drsFTP.

5.1 Experimental Setup

Our experimental apparatus, shown in Figure 4, consists of three identical ma-
chines connected via Fast Ethernet. Each machine contains a dual-CPU 400-MHz
Pentium IT with 128-MB of RAM and two network-interface cards (NICs). One
machine acts as a WAN emulator with a 100-ms round-trip time (RTT) delay;
each of its NICs is connected to one of the other machines via crossover cables
(i.e., no switch).

FTP Server WAN Emulator FTP Client
eth0 ethl eh0 ethl eth0 ethl
ToLAN ToLAN

Fig. 4. Experimental Setup

5.2 Kernel-Space DRS

In the kernel implementation of DRS, the receiver estimates the size of the
sender’s congestion window so it can advertise an appropriate flow-control win-
dow to the sender. Our experiments show that the DRS algorithm approximates
the actual size quite well. Further, we show that by using this estimate to size
the window advertisements, DRS keeps the connection congestion-control lim-
ited rather than (receiver) flow-control limited.

10 Wu-chun Feng et al.

Performance As expected, using larger flow-control windows significantly en-
hances WAN throughput versus using the default window sizes of TCP. Figure 5
shows the results of 50 transfers of 64 MB of data with ttcp, 25 transfers using
the default window size of 32 KB for both the sender and receiver and 25 trans-
fers using DRS. Transfers with the default window sizes took a median time
of 240 seconds to complete while the DRS transfers only took 34 seconds (or
roughly seven times faster).

70

60 1 /i
sol i/l

40 |
303
20 | §
10 t§/
0

Megabtyes

0 50 100 150 200 250 300
Seconds

Fig. 5. Progress of Data Transfers

Figures 6 and 7 trace the window size and flight size of the default-sized
TCP and the DRS TCP. (The flight size refers to the amount of sent but un-
acknowledged data in the sender’s buffer. This flight size, in turn, is bounded
by the window advertised by the receiver.) For the traditionally static, default,
flow-control window as shown in Figure 6; the congestion window quickly grows
and becomes rate-limited by the receiver’s small 32-KB advertisement for the
flow-control window. On the other hand, DRS allows the receiver to advertise a
window size that is roughly twice the largest flight size seen to date (in case, the
connection is in slow start). Thus, the flight size is only constrained by the con-
ditions in the network, i.e., congestion window. Slow start continues for much
longer and stops only when packet loss occurs. At this point, the congestion
window stabilizes on a flight size that is roughly seven times higher than the
constrained flight size of the static case. And not coincidentially, this seven-fold
increase in the average flight size translates into the same seven-fold increase in
throughput shown in Figure 5.

In additional tests, we occasionally observe increased queueing delay caused
by the congestion window growing larger than the available bandwidth. This
causes the retransmit timer to expire and reset the congestion window to one
even though the original transmission of the packet was acknowledged shortly
thereafter.

Lecture Notes in Computer Science 11

40

" Static window

35 Static flightsize

Kilobytes

0 50 100 150 200 250
Seconds

Fig. 6. Default Window Size: Flight & Window Sizes

1200 : T
Dynamic window
1000 | Dynamic flightsize

800
600

Kilobytes

400
200 r

0

0 5 10 15 20 25 30 35
Seconds

Fig. 7. Dynamic Right-Sizing: Flight & Window Sizes

Low-Bandwidth Connections Figures 8 and 9 trace the window size and
flight size of default-sized TCP and DRS TCP over a 56K modem. Because
DRS provides the sender with indirect feedback about the achieved throughput
rate, DRS actually causes a TCP Reno sender to induce less congestion and
fewer retransmissions over bandwidth-limited connections. Although the over-
all throughput measurements for both cases are virtually identical, the static
(default) window generally has more data in flight as evidenced by the roughly
20% increase in the number of re-transmissions shown in Figure 10. This ad-
ditional data in flight is simply dropped because the link cannot support that
throughput.

Discussion The Linux 2.4.x kernel contains complementary features to DRS
that are designed to reduce memory usage on busy web servers that are transmit-
ting data on large numbers of network-bound TCP connections. Under normal
circumstances, the Linux 2.4 kernel restricts each connection’s send buffers to
be just large enough to fill the current congestion window. When the total mem-
ory used exceeds a threshold, the memory used by each connection is further

12 Wu-chun Feng et al.

35 | ‘ " Static flightsize
Static window —

30 [e P
251 N P

Kilobytes

0 10 20 30 40 50 60
Seconds

Fig. 8. Default Window Size: Low-Bandwidth Links (56 K Modem)

16 . i i
Dynamic flightsize
14 ¢ Dynamic window -~ |
12 ¢
3
2 10
Q
2 8
>
6 L
4
2

0 10 20 30 40 50 60
Seconds

Fig. 9. Dynamic Right-Sizing: Low-Bandwidth Links (56K Modem)

constrained. Thus, while Linux 2.4 precisely bounds send buffers, DRS precisely
bounds receiver-side send buffers.

5.3 drsFTP: DRS in User Space

For each version of £tp (drsFTP, stock FTP, statically-tuned FTP), we transfer
100-MB files over the same emulated WAN with a 100-ms RTT delay. As a base-
line, we use stock FTP with TCP buffers set at 64 KB. Most modern operating
systems set their default TCP buffers to 64 KB, 32 KB, or even less. Therefore,
this number represents the high-end of OS-default TCP buffer sizes. We then
test drsF'TP, allowing the buffer size to vary in response to network conditions
while starting at 64 KB as in stock FTP. Lastly, we benchmark a statically-tuned
FTP, one that tunes TCP buffers once at connection set-up time. To test the
extremes of this problem, we test the statically-tuned FTP with two different
values — one set to the minimum bandwidth-delay product (BDP) and one to
the maximum.

Lecture Notes in Computer Science 13

60 T Static |
- Static
50 L Dynamic

40

30
20

Cumulative Retransmits

10

O L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Seconds

Fig. 10. Retransmissions in Low-Bandwidth Links

Performance Figure 11 shows the average time to transfer a 100-MB file along
with the range of the half-width of the 95% confidence interval centered around
the average. Both the drsFTP and statically-tuned FTP produce a four-fold
improvement over stock FTP.

When the minimum values are used for the statically-tuned FTP to set fwnd,
the actual BDP fluctuates significantly below and above the set value over the
course of the file transfer. This results in a very large variability in transfer
times, as shown in Figure 11. However, the memory usage stays relatively low
when compared to the statically-tuned FTP where maximum values are used,
as shown in Figure 12.

When the maximum values are used, the transfer time is competitive with
drsFTP but at the expense of using a tremendous amount of memory. That is,
the buffer sizes are set large enough that the statically set value of fwnd is never
exceeded.

As shown in Figures 11 and 12, drsFTP simultaneously achieves fast transfer
times (comparable to statically-tuned FTP with maximum values and four times
faster than stock FTP) and relatively low-memory usage (comparable to the
statically-tuned FTP with minimum values).

6 Conclusion

In this paper, we presented dynamic right-sizing (DRS), an automated, lightweight,
and scalable technique for enhancing grid performance. Over a typical WAN
configuration, the kernel-space DRS achieves a seven-fold increase in through-
put versus stock TCP; and the user-space DRS, i.e., drsF'TP, achieves a four-fold
increase in throughput versus stock TCP/FTP.

Currently, the biggest drawback of drsFTP is its double-buffered implemen-
tation, i.e., buffered in the kernel and then in user space. Clearly, this implemen-
tation affects the throughput performance of drsFTP as drsFTP achieves only
57% of the performance of the kernel-space DRS. However, this implementation
of drsF'TP was simply a proof-of-concept to see if it would provide any benefit

14 Wu-chun Feng et al.

Time to Transfer
450 T T

N
S
S}
T
L

@
@
=}
T
L

w
=}
s}
T
L

N
a1
=}
T
L

N
=}
s}
T
L

Time to Transfer (seconds)

150 B
T T
100 | T T b
50 | B
0 I I I
Default DRS Min Max

Fig. 11. Transfer Time (Smaller is better.)

over a statically-tuned FTP. Now that we have established that there is sub-
stantial benefit in implementing DRS in user space, we are currently working on
a new version of drsF'TP that abides more closely to our kernel implementation
of DRS (albeit at a coarser time granularity) and eliminates the extra copying
done in the current implementation of drsF'TP.

Lastly, we are working with Globus middleware researchers to integrate our
upcoming higher-fidelity version of drsF TP with GridFTP. Currently, GridF'TP
uses parallel streams to achieve high bandwidth.

References

1. Foster, I. and Kesselman, C.: The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan-Kaufmann Publishers. San Francisco, California (1998).

2. Foster, 1., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of Supercomputer Applications (2001).

3. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets. International Journal of Supercomputer Applications (2001).

4. Argonne National Laboratory, California Institute of Technology, Lawrence Berke-
ley National Laboratory, Stanford Linear Accelerator Center, Jefferson Laboratory,
University of Wisconsin, Brookhaven National Laboratory, Fermi National Labo-
ratory, and San Diego Supercomputing Center: The Particle Physics Data Grid.
http://www.cacr.caltech.edu/ppdg/.

5. Childers, L., Disz, T., Olson, R. Papka, M., Stevens, R., Udeshi, T.: Access Grid:
Immersive Group-to-Group Collaborative Visualization. Proceedings of the 4th In-
ternational Immersive Projection Workshop (2000).

Lecture Notes in Computer Science 15

Memory Consumed
1.8e+06 T T

1.6e+06 B

1.4e+06 - b

1.2e+06 b

1e+06 | B

800000 - b

Memory Used (Bytes)

600000 - [b

400000 - b

200000 - b

. ‘ ‘ ‘ ‘

Default DRS Min Max

Fig. 12. Memory Usage (Smaller is better.)

6. Partridge, C., Shepard, T.: TCP/IP Performance over Satellite Links. IEEE Net-
work. 11 (1997) 44-49.

7. Allman, M., Glover, D., Sanchez, L.: Enhancing TCP Over Satellite Channels Using
Standard Mechanisms. IETF RFC 2488 (1999).

8. Allman, M. et al.: Ongoing TCP Research Related to Satellites. IETF RFC 2760
(2000).

9. Feng, W., Tinnakornsrisuphap, P.: The Failure of TCP in High-Performance Com-
putational Grids. Proceedings of SC 2000: High-Performance Networking and Com-
puting Conference (2000).

10. Pittsburgh Supercomputing Center. Enabling High-Performance Data Transfers
on Hosts. http://www.psc.edu/networking/perf_tune.html.

11. Tierney, B. TCP Tuning Guide for Distributed Applications on Wide-Area Net-
works. USENIX & SAGE Login. http://www-didc.lbl.gov/tcp-wan.html (2001).
12. Tirumala, A. and Ferguson, J.: IPERF Version 1.2. http://dast.nlanr.net/

Projects/Iperf/index.html (2001).

13. Lai, K., Baker, M.: Nettimer: A Tool for Measuring Bottleneck Link Bandwidth.
Proceedings of the USENIX Symposium on Internet Technologies and Systems
(2001).

14. University of Kansas, Information & Telecommunication Technology Cen-
ter: NetSpec: A Tool for Network Experimentation and Measurement.
http://www.ittc.ukans.edu/netspec.

15. Lawrence Berkeley National Laboratory: Nettest: Secure Network Testing and
Monitoring. http://www-itg.lbl.gov /nettest.

16. Mah, B.: pchar: A Tool for Measuring Internet Path Characteristics.
http://www.employees.org/ bmah/Software/pchar.

17. Jin., G., Yang, G., Crowley, B., Agrawal, D.: Network Characterization Service.
Proceedings of the IEEE Symposium on High-Performance Distributed Computing
(2001).

16 Wu-chun Feng et al.

18. Liu, J., Ferguson, J.: Automatic TCP Socket Buffer Tuning. Proceedings of SC
2000: High-Performance Networking and Computing Conference (2000).

19. Tierney, B., Gunter, D., Lee, J., Stoufer, M.: Enabling Network-Aware Applica-
tions. Proceedings of the IEEE International Symposium on High-Performance Dis-
tributed Computing (2001).

20. National Center for Atmospheric Research, Pittsburgh Supercomputing Cen-
ter, and National Center for Supercomputing Applications. The Web100 Project.
http://www.web100.org.

21. Mathis, M.: Pushing Up Performance for Everyone. http://ncne.nlanr.
net/training/techs/1999/991205/Talks/ mathis_991205_Pushing_Up_Performance/
(1999).

22. Semke, J., Mahdavi, J., Mathis, M. Automatic TCP Buffer Tuning. Proceedings
of ACM SIGCOMM (1998).

23. Fisk, M., Feng, W.: Dynamic Adjustment of TCP Window Sizes. Los Alamos
National Laboratory Unclassified Report, LA-UR 00-3221 (2000).

24. Fisk, M., Feng, W.: Dynamic Right-Sizing: TCP Flow-Control Adaptation
(poster). Proceedings of SC 2001: High-Performance Networking and Computing
Conference (2001).

25. Dunigan, T., Fowler, F. Personal Communication with Web100 Project (2002).

26. Jacobson, V., Braden, R., Borman, D.: TCP Extensions for High Performance.
IETF RFC 1323 (1992).

27. Postel, J., Reynolds, J. File Transfer Protocol (FTP). IETF RFC 959 (1985).

