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Abstract 

 A solution is presented that will allow the compliance method for residual stress 

measurement to be applied to layered materials. The solution is for surface strains due to 

arbitrary normal stress loading on the faces of a slot in a layered half-space. The materials are 

homogeneous isotropic elastic with different elastic constants and the slot may penetrate into 

the substrate. The solution is accomplished using the body force method and the solution for a 

point force in two bonded half spaces. The results indicate that, for residual stress 

measurement, the effects of the substrate properties are significant for materials with elastic 

moduli differing by 50 percent or more when the slot penetrates to at least one-half of the 

layer thickness. 
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Introduction 

 It is difficult to measure the variation of residual stress with depth, especially in a 

layer of one material on a substrate of another where the elastic constants differ. Knowledge 

of these stresses is very useful since, for example, they can cause cracking or debonding of a 

cladded layer. All current residual stress measurement techniques suffer from limitations. And 

in the rare instances when they have been applied to layered materials, they generally ignore 

the effect of a substrate with different elastic constants. The use of the compliance method 

(Cheng et al., 1994) to address some of these limitations motivated this work. A more detailed 

discussion of the various techniques is saved for another paper where the result here is 

applied experimentally to residual stress measurement. 

 The compliance method has been successfully applied to measurement of residual 

stresses for single materials. A slot is introduced incrementally into a body containing 

residual stress. The resulting strain at a location on the surface is measured and used to 

calculate the stress variation with depth. To apply the method it is necessary to calculate the 

compliance functions, or surface strains for arbitrary face loading of a slot, for the relevant 

geometry. Cheng and Finnie (1993) performed the calculation for a surface slot in a single 

material using the body force method (Nisitani 1978). 

 In this work the compliance functions are calculated for a surface slot in a layered 

half-space consisting of two homogeneous isotropic elastic materials. The calculation 

technique is a new extension of the body force method. In the body force method, the stress 

solutions for a point force in an unnotched body are used to solve the problem of stresses in a 

body containing a notch. Body forces, or continuously embedded point forces, are applied to 

the boundary of the prospective notch. Their magnitude is adjusted to satisfy the boundary 

conditions. Here, because the point force solution for the exact geometry is not available, the 

body forces are applied to the site of a prospective free surface as well as the notch. Noda et  

al. (1992) used a similar approach, but to solve for the stress field near the notch. Here the 
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stresses at the free surface are required, which adds the complexity of solving for stresses 

remote from the notch and at a location where body forces are applied. 

 The body forced method is chosen over other methods such as the finite element 

method or the boundary integral method for several reasons. The calculations must be 

performed for a large number of permutations of slot depth, face loading, and layer thickness. 

Meshing only the boundaries, as compared to using finite elements, is simpler, quicker, can 

be more easily automated, and allows more local refinement for the same computation time. 

The body force method is stress based and the quantity of interest is strain, which is given 

directly from the stress components. Displacement based methods, including finite elements 

and boundary integral, require differentiation to get strain, which decreases accuracy in a 

numerical solution. The body force method handles stress singularities, such as at the tip of a 

crack, with no special attention or special elements. And the body force method is 

conceptually simpler to understand and implement than the boundary integral method. 

Analysis 

 Fig. 1 shows the problem to be solved. A slot of depth d  and width 2w in a layered 

half-space  is loaded with an arbitrary normal stress distribution, symmetrical with respect to 

the y-axis, on its faces. The surface layer has different elastic properties then the substrate and 

thickness h. This loading corresponds to the residual stresses released by making the slot. The 

response at a strain gage on the surface is desired. To apply the body force method a point 

force solution for the unnotched body is required. Unfortunately, the solution for a point force 

in a layered half-space is not available. The closest available solution is for a point force in 

two bonded half-spaces, as shown in Fig. 2. It was first obtained by Frasier and Rongved 

(1957) and also given later as a subcase of more complex solutions (Dundurs and Hetényi, 

1961, 1962, and Wu and Chou, 1982). The solutions were all carefully checked for accuracy, 

and that given by Dundurs and Hetényi was found to be the only one error free. The stress 
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components in the coordinate system used here are given in the Appendix. The errors found 

in the other solutions and details on converting between solutions are given in Prime (1994). 

 The following notation is used in referring to stresses due to a point force: 

σ xi
Pj x, y,s, t( ) is the x component of normal stress at (x,y) in material i (i=1,2) due to horizontal 

(x-direction) force P at (s,t) in material j (j=1,2). Q instead of P refers to a vertical (y-

direction) force and τ xy is shear stress. 

 Beginning with two bonded half-spaces, continuously embedded point forces 

f x s,t( ) and f y s, t( ) are applied to the desired sites of the slot bottom (y=h-d, -w<x<w), slot 

sides (x=±w, h-d<y<h) and free surface (y=h, x>w and x<-w), see Fig. 3. The magnitudes of 

the applied forces must be adjusted so that the stresses on the contours match those of Fig. 1. 

By applying additional point forces, symmetric with respect to y=h, to the mirror image of the 

slot bottom (y=h+d, -w<x<w) and slot sides (x=±w, h<y<h+d), the shear stress on the free 

surface is made small in advance. This will accelerate convergence of the numerical solution. 

The symmetry as illustrated in Fig. 3 applies only to the case of normal loading on the slot 

face. Anti-symmetric forces would be used to consider shear loading. 

 Note that following equation is written without considering the signs of the point 

forces implied by the symmetry in Fig. 3. The equation is, therefore, applicable to general 

loading. When the equation is discretized the signs are included explicitly.  

 The normal stress on the bottom of the slot can be expressed as a sum of the 

contributions from all portions of the contour. 
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σ y(x,h − d) = f x(s,h − d)σy **
P* (x,h − d,s,h − d) + f y (s,h − d)σy **

Q * (x,h − d ,s,h − d)[ ]ds
− w

w

∫

+ f x (s,h + d)σy**
P1 (x, h − d ,s,h + d) + f y (s,h + d)σy**

Q1 (x,h − d ,s, h + d)[ ]ds
−w

w

∫

+ f x(w,t)σy **
P* (x,h − d,w, t) + f y(w, t)σy **

Q* (x,h − d ,w, t)[ ]dt
h−d

h+d

∫

+ f x(−w, t)σ y**
P* (x,h − d, −w, t) + f y(−w, t)σy**

Q * (x, h − d ,−w, t)[ ]dt
h−d

h+d

∫

+
−∞

− w

∫ +
w

∞

∫
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

f x (s,h)σ y**
P1 (x,h − d, s,h) + f y (s,h)σ y**

Q1 (x,h − d,s,h)[ ]ds

 

 
 
 
 
 
 
 
 

(1) 

 

where * = 1 for t of (x,y,s,t) positive and 2 for t negative, and ** = 1 for y positive and 2 for y 

negative. 

 To conserve space the equations for the shear stress on the slot bottom, τ xy x,h − d( ), 

the stresses on the slot sides, σ x ±w, y( ) and τxy ±w, y( ), and the stresses on the free surface, 

σ y x, h( ) and τxy x,h( ) , are omitted now but included in their discretized form later. They are 

of similar form to Eq. (1).  

 The unknown body forces f x s, t( ) and f y s,t( ) must be determined numerically. The 

inherent symmetry in the problem, as illustrated in Fig. 3, is used to minimize calculation. 

Making use of this symmetry, the contour is discretized. Half of the slot bottom is divided 

into n1 intervals from x = 0 to x = w. One of the slot sides is divided into n2  intervals from y 

= h-d to y = h. And half of the free surface is divided into n3  intervals from x = w to x = smax 

(the value of smax is discussed later). The stresses on each of these contours is calculated as a 

sum of the contributions from point forces on all of the contours. Consider the body forces 

within each interval as constant with magnitudes f fxi yiand  for the ith interval. This gives 2N 

equations in 2N unknowns where N is n1+n2+n3:   
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(2) 

The entries in the above matrix are calculated from the following equations, which are the 

discretized form of Eq. (1) and its counterparts. The normal stresses on the slot bottom are 

now given by 

σy (x,h − d) =

fxiσ y **
P* (x,h − d, s,h − d) + fyiσ y**

Q* (x,h − d,s,h − d)[ ]ds
si

si +1

∫ +

fxiσ y **
P* (x,h − d, −s,h − d) − fyiσ y**

Q* (x,h − d,−s,h − d)[ ]ds
si

si +1

∫ +

fxiσ y **
P1 (x,h − d, s,h + d) − fyiσ y**

Q1 (x,h − d,s,h + d)[ ]ds
si

si +1

∫ +

fxiσ y **
P1 (x,h − d, −s,h + d) + fyiσ y**

Q1 (x,h − d,− s,h + d)[ ]ds
si

si +1

∫

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 
⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

i =1

n1

∑

+

fxiσ y**
P* (x, h − d ,w,t) + fyiσ y**

Q* (x,h − d,w,t)[ ]dt +
ti

ti +1

∫

− fxiσ y**
P* (x,h − d,−w, t) + fyiσ y**

Q * (x,h − d, −w, t)[ ]dt +
ti

ti +1

∫

− fxiσ y**
P1 (x,h − d,w,2h − t) + fyiσ y**

Q1 (x,h − d,w,2h − t)[ ]dt +
ti

ti +1

∫

fxiσ y**
P1 (x, h − d ,−w,2h − t) + fyiσ y**

Q1 (x,h − d,−w,2h − t)[ ]dt
ti

ti +1

∫

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 
⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

i = n1 +1

n1 + n2

∑

+
fxiσ y**

P1 (x,h − d ,s,h) + fyiσ y**
Q1 (x,h − d,s,h)[ ]ds

si

si+1

∫ +

fxiσ y**
P1 (x,h − d ,−s,h) − fyiσ y **

Q1 (x,h − d, −s,h)[ ]ds
si

si+1

∫

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ i = n1 + n2 +1

n1 + n2 +n3

∑

              (3) 
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The normal stresses on the slot side are 

σx (w, y) =

fxiσ x **
P* (w, y,s,h − d) + fyiσ x**

Q* (w,y, s,h − d)[ ]ds
si

si +1

∫ +

fxiσ x **
P* (w, y,− s,h − d) − fyiσ x**

Q* (w,y,−s,h − d)[ ]ds
si

si +1

∫ +

fxiσ x **
P1 (w, y,s,h + d) − fyiσ x**

Q1 (w,y, s,h + d)[ ]ds
si

si +1

∫ +

fxiσ x **
P1 (w, y,− s,h + d) + fyiσ x **

Q1 (w, y,−s,h + d)[ ]ds
si

si +1

∫

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 
⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

i=1

n1

∑

+

fxiσx**
P* (w, y, w,t) + fyiσx**

Q* (w, y, w, t)[ ]dt +
ti

ti+1

∫

− fxiσ x**
P* (w,y,−w, t) + fyiσ x**

Q* (w,y,−w,t)[ ]dt +
ti

ti+1

∫

− fxiσ x**
P1 (w,y,w,2h − t) + fyiσ x**

Q1 (w,y, w,2h − t)[ ]dt +
ti

ti+1

∫

fxiσx**
P1 (w, y, −w,2h − t) + fyiσ x**

Q1 (w,y, −w,2h − t)[ ]dt
ti

ti+1

∫

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 
⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

i= n1+1

n1 +n2

∑

+
fxiσ x **

P1 (w, y,s,h) + fyiσ x**
Q1 (w, y,s,h)[ ]ds

si

si+1

∫ +

fxiσ x **
P1 (w, y,−s,h) − fyiσ x **

Q1 (w, y,−s,h)[ ]ds
si

si+1

∫

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ i= n1+ n2 +1

n1 +n2 +n3

∑

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(4) 
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The normal stresses on the free surface are 

σy (x,h) =

fxiσ y1
P*(x,h,s, h − d) + fyiσ y1

Q *(x,h,s,h − d)[ ]ds
si

si + 1

∫ +

fxiσ y1
P*(x,h,−s,h − d) − fyiσ y1

Q *(x, h, −s,h − d)[ ]ds
si

si + 1

∫ +

fxiσ y1
P1 (x,h,s,h + d) − fyiσ y1

Q1 (x,h,s,h + d)[ ]ds
si

si + 1

∫ +

fxiσ y1
P1 (x,h,−s,h + d) + fyiσ y1

Q1(x,h,− s,h + d)[ ]ds
si

si + 1

∫

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 
⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

i =1

n1

∑

+

fxiσ y1
P* (x,h,w, t) + fyiσ y1

Q *(x, h, w,t)[ ]dt +
ti

ti+ 1

∫

− fxiσ y1
P* (x,h, −w, t) + fyiσ y1

Q*(x,h,−w,t)[ ]dt +
ti

ti+ 1

∫

− fxiσ y1
P1(x,h,w,2h − t) + fyiσ y1

Q1(x,h,w,2h − t)[ ]dt +
ti

ti+ 1

∫

fxiσ y1
P1(x, h, −w,2h − t) + fyiσ y1

Q1(x,h,−w, 2h − t)[ ]dt
ti

ti+ 1

∫

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 
⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

i =n1 +1

n1 +n2

∑

+
fxiσ y1

P1(x,h, s,h) + fyiσ y1
Q1(x,h,s,h)[ ]ds

si

si+1

∫ +

fxiσ y1
P1(x,h, −s, h) − fyiσ y1

Q1(x,h,− s,h)[ ]ds
si

si+1

∫

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ i =n1 +n2 +1

n1 +n2 + n3

∑

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(5) 

The signs in Eqs. (3)-(5) are given by considering the signs of the point forces in Fig. 3 and 

the direction of integration for the various contours. The equations for the shear stresses on 

these surfaces, are given by substituting τxy for σ y  throughout Eqs. (3) and (5), and τxy for σ x  

throughout Eq. (4). 
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 Now the values of the stresses on the right-hand sides of Eq. (2) are set equal to the 

value within each interval given by the desired solution, Fig. 1. These are zero except for the 

normal stresses on the slot side. Eq. (2) can now be solved directly for the unknown 

f fxi yi and . The tangential stress on the free surface is then given by 

σx (xg ,h) =

fxiσx 1
P*(xg ,h,s,h − d) + fyiσ x 1

Q *(xg,h,s,h − d)[ ]ds
si

si+1

∫ +

fxiσx 1
P*(xg ,h,−s,h − d) − fyiσx1

Q*(xg,h,− s,h − d)[ ]ds
si

si+1

∫ +

fxiσx 1
P*(xg ,h,s,h + d) − fyiσ x 1

Q *(xg,h,s,h + d)[ ]ds
si

si+1

∫ +

fxiσx 1
P*(xg ,h,−s,h + d) + fyiσ x1

Q*(xg,h, −s,h + d)[ ]ds
si

si+1

∫

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 
⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

i =1

n1

∑

+

fxiσ x1
P*(xg,h, w, t) + fyiσx1

Q*(xg,h,w, t)[ ]dt +
ti

ti+1

∫

− fxiσ x1
P* (xg ,h, −w, t) + fyiσ x1

Q* (xg ,h,−w, t)[ ]dt +
ti

ti+1

∫

− fxiσ x1
P* (xg ,h, w,2h − t) + fyiσ x1

Q*(xg,h, w, 2h − t)[ ]dt +
ti

ti+1

∫

fxiσ x1
P*(xg,h, −w,2h − t) + fyiσ x1

Q*(xg,h, −w,2h − t)[ ]dt
ti

ti+1

∫

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 
⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

i =n1 +1

n1 + n2

∑

+
fxiσ x1

P1(xg ,h,s, h) + fyiσ x1
Q1(xg ,h,s,h)[ ]ds

si

si +1

∫ +

fxiσ x1
P1(xg ,h,−s,h) − fyiσ x1

Q1(xg,h,−s,h)[ ]ds
si

si +1

∫

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ i =n1 + n2 +1

n1+ n2 + n3

∑

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(6) 

From which the strain, i.e., the compliance, is given as 

ε x xg,h( )=
σx xg ,h( )

E1
′  (7)

where ′ =E E  for plane stress and ′ E = E 1− ν2( ) for plane strain with E the elastic modulus 

and ν Poisson's ratio. The corresponding plane stress or plane strain point force solution must 

also be used, which only involves a change in one constant (see Appendix). For residual stress 

measurement, where the slot width is usually very narrow compared to the thickness of the 

part, the plane strain solution is generally used. 
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Numerical Implementation 

 Several details of the numerical implementation are relevant to successful and 

accurate use of the body force method, some of which are not explicitly mentioned in the 

previous literature. 

 All the integrals in Eqs. (3) to (6) can be carried out in closed form, and are given 

explicitly in Prime (1994). A word of caution is in order for evaluating the stress in the 

interval containing the body force, where the stress is singular. Fraga and Hewitt (1983) 

demonstrated that the principal value of the integral for these functions is obtained by just 

evaluating the indefinite integral at the endpoints , ignoring the singularity. However, care 

must be taken in the present case when evaluating the integral. For example , a term of the 

form arctan ((x-s)/(y-t)) occurs in evaluating σ y  at the bottom of the slot (Eq. (3)), where y=t. 

Because material is being "removed" above the contour (y>t, see Fig. 3), the region of interest 

is slightly below the contour giving the value of arctan(-∞), or −π 2 , rather than arctan(∞), 

or π 2 . The correct value can always be found by offsetting the contour of integration by a 

small amount towards the material being retained. 

 The body forces f fxi yi and  are taken as constant within each interval. All previous 

work with the body force method calculated the stresses (right hand side of Eq. (2)) at the 

center point of each interval. To improve convergence in such work (e.g., Nisitani 1978), 

results were extrapolated from calculations at say N = 32 and 64 evenly spaced intervals to 

approximate the value at N=∞ (extrapolated linearly from 1/32 and 1/64 to 1/∞). Because in 

this work the size of the intervals for the free surface body forces will increase as they go to x 

= ∞, as discussed in the next paragraph, this extrapolation based on the number of intervals is 

less straightforward. Instead, an average stress in each interval replaces the previously used 

stress at the midpoint. Five point Gauss-Legendre numerical integration (Davis and 

Rabinowitz 1984) gives the average stress. This was found to converge as accurately as the 

extrapolation method with no significant increase in computation time.   
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 For the solution to converge, the contour of integration along the free surface (t=h, 

w<s<smax) must be substantially longer than the contours for the slot bottom and side. To 

avoid excessive computation time the intervals along the free surface were allowed to 

increase in length by a constant fractional amount, sfraction. The values of smax and sfraction 

have a large effect on convergence and error behavior of the solution. Their effects were 

evaluated by setting E2 and ν2  equal to E1 and ν1 and comparing to the known solution for a 

single material (Cheng and Finnie 1993). In comparing the two solutions, the parameters were 

chosen to be in the typical range found in experimental application of the method to residual 

stress measurement. Non-dimensionalized by w = 1, they are d = 1, 5, 10, 20 and 30 and 

xg = 20, 30 and 40. The value of smax necessary for convergence was found to be 

approximately independent of cut depth and width and to depend only on the gage distance 

xg, varying approximately in the manner shown in Table 1. The effect of varying sfraction 

was quantified by evaluating the root mean square of the error between this solution and the 

known solution for the 15 different combinations of d and xg. The value of smax  was held 

constant at 130, which allowed for reasonable computation times for small values of 

sfraction. Fig. 4 shows the error plotted versus sfraction. Since the matrix in Eq. (2) must be 

inverted once at each cut depth, the calculation time is shown in minutes per cut depth, here 

for a DECstation 5000/125. From the figure, a value of 0.05 for sfraction was chosen to give a 

reasonable compromise between error and computation time. This also means that smax can 

be extended well beyond the minimum value for convergence with little increase in 

computation time, since the intervals are relatively large for large s. 

 For the above calculations and the remainder of those in this work, the slot bottom and 

side combined were divided into 128 intervals of approximately even length. For the case of 

narrow slots, the minimum number of intervals along the bottom was set at 10. The first 

interval along the free surface had the same length as the intervals along the slot side. The 

number of intervals along the free surface was controlled by the choice of smax and sfraction  

and generally exceeded 128. This degree of discretization gave excellent results. 
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 The discretization of the free surface introduces another source of error. Fig. 5 shows 

the variation of the compliance within a free surface interval. The particular case shown is for 

a cut with w = 1, d = 30, constant slot face loading of σ = 1, smax  = 200, and an interval 

spanning approximately s = 28.6 to s = 30.3. The solid line is from the known solution, the 

dashed line is from the layered half-space solution, and the dotted line shows the percentage 

difference. If the point xg is at least 5 percent of the interval length away from the end of the 

interval, the error is ±1 percent or less. In all calculations, the discretization was controlled to 

ensure that xg was not too close to an interval endpoint. In applying these calculations to 

experimental stress measurement, strain at a point is not the quantity of interest. Rather, since 

a strain gage of finite length is used, the average strain over the gage length is important. To 

calculate this, the discretization of the free surface is adjusted near the gage to place an 

integer number, n, of evenly spaced intervals within the gage length. Within each interval the 

average stress is calculated using five point numerical integration, which was confirmed to 

satisfactorily give the average over a variation like that in Fig. 5. Then the average of the 

stresses in the n intervals was taken as the compliance for the gage length. 

Results and Discussion 

 Because the number of variables is so large (slot width and depth, layer thickness, 

location of strain measurement, two elastic constants in each material, variation of loading), it 

is not possible to present graphical results that would apply for all situations. Rather, results 

are shown that illustrate the basic trends with respect to the important variables and that 

illuminate possible errors if simpler solutions, such as ignoring the material properties of the 

substrate, are used. To facilitate comparison, the compliances are non-dimensionalized. 

Uniform normal loading on the slot face with a magnitude of 1 is considered. Although 

compliances for more complex variations in stress are crucial for measuring residual stress, 

by themselves they provide little additional insight. Compliance is given as stress on the free 

surface rather than strain, σx xg( ) rather than εx xg( )= σ x xg( ) E1
′ . This makes the compliance 

a function of the ratios of the elastic moduli, E2 / E1, or shear moduli, G2 / G1, rather than of 
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their magnitudes. Note that Poisson's ratio is already a non-dimensional quantity and its value 

for each of the two materials appears independently rather than as a ratio in the solutions. For 

results looking at the effects of the elastic moduli, both Poisson’s ratios are taken as 0.25. 

 To apply this method to residual stress measurement, the strain gage should be placed 

where the compliance changes rapidly with an extension in the cut depth. This allows the 

stress in that region to be determined. Fig. 6 shows the compliance versus cut depth for 

different values of gage placement. The particular case shown is for E2 / E1 = 0.5 and h = 30. 

When d exceeds xg, the curves tend to flatten out or "saturate." This indicates that at least one 

strain gage should be placed at xg no closer than the maximum depth of cut. This effect 

depends on E2/E1 and is less pronounced when E2 is greater than E1. The other main 

consideration for residual stress measurement is the sensitivity, which is maximized for 

minimum xg.  

 Fig. 7 shows the compliance versus E2 / E1 for several combinations of d and xg with h 

held at 30. As expected the substrate modulus has a strong effect on the compliance, as 

demonstrated by the slope of the curves. The effect appears stronger for a substrate more 

compliant than the layer, which is the more common situation. Also, the effect appears 

strongest for xg close in magnitude to d. As discussed above, this is the optimum location for 

strain gage placement. This all serves to indicate that the substrate modulus should not be 

ignored when measuring residual stress in a layered material. 

 Fig. 8 demonstrates the effect of the proximity of the substrate on the compliance 

measured at the surface. Several values of the substrate modulus are considered for a fixed 

combination of slot depth and gage placement. The compliance is compared to the case of 

E2=E1, which corresponds to ignoring the presence of the substrate. For this particular 

geometry, the error from ignoring the substrate drops to less than 10% when the slot depth is 

less than half of the layer thickness.  

 Differences between the Poisson’s ratios of the two materials can also have a 

significant effect on the compliance. The results vary with geometry, gage location, and 
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modulus ratio. But a general result can be stated that for Poisson’s ratios differing by 0.1 or 

more, the compliances vary by 10% or more from the values for equal Poisson’s ratios. The 

direction of the effect is such that for Poisson’s ratio greater in the layer than the substrate, the 

compliance is increased and vice versa. 

 Table 2 presents compliance results for one particular case chosen to be somewhat 

typical and to contain a broad range of values. The case chosen is again non-dimensionalized 

by w = 1. The layer thickness, h, is taken as 10 and the depth of cut, d, penetrates to 20, twice 

the layer thickness. E2  E1 is taken as 0.5 and ν1 = ν2 = 0.25. Three gage positions, xg = 

10,30,50, each with a gage length of 5 centered about xg are considered. Compliances are 

given for uniform, linearly varying, and quadratically varying stress fields in both the layer 

and substrate. For the compliances due to stress in the layer, the non-uniform stresses are 

taken to vary from 1 at the surface to 0 at the interface. For the compliances due to stresses in 

the substrate, the non-uniform stresses are taken to vary from 1 at the interface to 0 at the final 

depth of cut, d = 20. The results are from the plane strain solution and are given for E1′ = 1. 

These calculations were made using 256 intervals for the slot sides and bottom (n1 + n2), the 

free surface discretization extending to smax  = 450 and with sfraction = 0.01. This degree of 

discretization, along with the use of a finite gage length, allows the results to be convergent to 

the extent reported in the table. It should be noted that due to saturation effects discussed 

earlier, the compliances are not monotonically increasing with depth for the closest gage 

when the depth is greater than 12. 

 Several avenues exist for direct extension of this work. For the case of a finite 

substrate, the body force method can still be used to calculate the compliances. A boundary 

for the free surface of the substrate would need to be considered along with the boundaries for 

the slot and free surface of the layer. The body force method could also calculate compliances 

for the case of orthotropic rather than isotropic elastic materials by using the point force 

solution for that case (Wu and Chou 1982).    
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Conclusions 

 The compliances for a slot in a layered half-space were calculated by extending the 

body force method to new capabilities. The viability of this approach was demonstrated by 

comparison to a known solution for a simpler case, allowing confidence in results for the 

previously unsolved case. This solution provides the capability to apply the compliance 

method to measure residual stress variation with depth in a layer and substrate. 

 The resulting compliances were shown to have a strong dependence on the elastic 

properties of both the layer and substrate. The elastic modulus ratio was the primary factor; 

although the Poisson's ratios also had a significant effect. Special attention was paid to the 

effect of ignoring the substrate properties in residual stress measurement. Because of the large 

number of variables involved, no absolute conclusions were drawn. It could be concluded 

generally that for differences in elastic modulus of 50 percent or more between the two 

materials, the properties of the substrate had significant impact on the surface strains for slots 

penetrating to roughly one-half or more of the layer thickness. 
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APPENDIX 
 
Point Force Solutions for Two Bonded Half-Spaces 
 
 This Appendix contains the point force solution for a point force in two 
bonded half-spaces, as shown in Fig. 2. The solution given here is that due to Hetényi 
and Dundurs (1961,1962), changed to the coordinate set of Fig. 2. 
 
Stress in material 1 at (x,y) for force in material 1 at (s,t) 
 

σx1
P1 =

P(x − s)
2π (κ1 +1)

−
κ 1 + 3

r12
+

4(y − t)2

r14
−

3Aκ1 + B
r2

2

⎡ 

⎣ ⎢ 

−4A
2t2 + (κ1 − 5)(y + t)t −κ1(y + t)2

r2
4

− 32A
(y + t)2 yt

r26
⎤ 

⎦ ⎥ 

 
(A1)

 

σy1
P1 =

P(x − s)
2π (κ1 +1)

κ 1 −1
r12

−
4(y − t)2

r14
−

Aκ1 − B
r22

⎡ 

⎣ ⎢ 

+4A
2t2 + (κ1 −1)(y + t)t −κ 1(y + t)2

r24
+ 32A

(y + t)2 yt
r2

6

⎤ 

⎦ ⎥ 

 
(A2)

 

τxy1
P1 = P

2π (κ 1 +1)
− (κ1 + 3)(y − t)

r12
+ 4 (y − t)3

r14
+ 2A(κ 1 −1)t − (3Aκ1 + B)(y + t)

r22

⎡ 
⎣ ⎢ 

+4A(y + t)
−6t2 − κ 1 − 7( )(y + t)t +κ 1 y + t( )2

r2
4

− 32A
(y + t)3 yt

r26

⎤ 
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σx1
Q1 = Q

2π (κ1 +1)
(κ 1 −1)(y − t)

r12
− 4(y − t)(x − s)2

r14
+ 2A(κ1 + 3)t − (5Aκ1 − B)(y + t)

r22
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⎣ ⎢ 

−4A y + t( )2t2 + κ 1 +1( ) y + t( )t −κ 1 y + t( )2

r24
− 32A

(y + t)(x − s)2 yt
r26

⎤ 
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σy1
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Q
2π (κ1 +1)

−
(κ1 −1)(y − t)

r12
−

4(y − t)3

r14
+

−2A(κ 1 − 1)t + (Aκ 1 − B)(y + t)
r22
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+4A(y + t)
−6t2 + (κ 1 + 5)(y + t)t −κ1 (y + t)2

r2
4

− 32A
(y + t)3 yt

r2
6

⎤ 
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τxy1
Q1 = Q(x − s)

2π (κ 1 +1)
−κ1 + 3

r12
+ 4(x − s)2

r14
− 3Aκ1 + B

r2
2

⎡ 

⎣ ⎢ 

+4A
6 t2 + (κ1 − 5)(y + t)t +κ1(x − s)2

r2
4

+ 32A
x − s( )2 yt

r2
6

⎤ 
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Stress in material 2 for force in material 1: 
 

σx2
P1 =

P(x − s)
2π (κ1 +1)

−(1 − A)κ 1 − 3(1− B)
r12

− 4(y − t)
(B − A)t − (1− B)(y − t)

r14

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  (A7)

 

σy2
P1 =

P(x − s)
2π (κ1 +1)

(1 − A)κ1 − (1 − B)
r12

+ 4(y − t)
(B − A)t − (1− B)(y − t)

r14

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  (A8)

 

τxy2
P1 =

P
2π (κ 1 + 1)

2(B − A)t − 1− A( )κ 1 + 3 1− B( )( )(y − t)
r12

⎡ 

⎣ ⎢ 

−4(y − t)2 (B − A)t − (1− B)(y − t)
r14

⎤ 
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(A9)

 

σx2
Q1 =

Q
2π (κ1 +1)

−2(B − A)t + (1 − A)κ1 − (1 − B)( )(y − t)
r12

⎡ 

⎣ ⎢ 

+4(x − s)2 (B − A)t − (1 − B)(y − t)
r14

⎤ 

⎦ ⎥ 

 
(A10)

 

σy2
Q1 =

Q
2π (κ1 +1)

−2(B − A)t − (1 − A)κ1 − (1 − B)( )(y − t)
r12

⎡ 

⎣ ⎢ 

+4(y − t)2 (B − A)t − (1− B)(y − t)
r14

⎤ 

⎦ ⎥ 

 
(A11)

 

τxy2
Q1 =

Q(x − s)
2π (κ 1 + 1)

−(1 − A)κ1 − 3(1 − B)
r12

+ 4
(B − A)(y − t)t + (1 − B)(x − s)2

r14

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  (A12)

 



 

where r12 and r2
2  are defined as follows: 

r x s y t r x s y t1
2 2 2

2
2 2 2= − + − = − + +( ) ( ) , ( ) ( )  (A13)

 

and κ1, κ2, A, B, and Γ are defined as follows: 

κ i =
3 − 4ν i (Plane strain i = 1,2)
3- ν i

1+ ν i

 (Plane stress i = 1,2)
⎧ 
⎨ 
⎩ 

A =
1 − Γ

Γκ1 +1
,   B =

κ 2 − Γκ1

Γ +κ 2

,   Γ =
G2

G1

 
(A14)

(A15)

 
When the point force acts at a point (s,t) in material 2, κ1, κ2, and Γ are replaced by κ
2, κ1,  and 1/Γ respectively in (A1) -(A.12) and (A15). And, of course, 1 and 2 are 
interchanged in the notation for the stresses (e.g. σ σx

P
x
P

2
1

1
2 becomes ). 
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Figure Captions 

1. Face loaded slot in layered half-space 

2. Point forces in two bonded half-spaces 

3. Body forces on integration contour, showing symmetry used for numerical solution 

4. Tradeoff between error and computation time as a function of sfraction, smax held at 130    

5. Error within free surface interval due to discretization 

6. Saturation effect. Compliance vs. cut depth for different strain gage locations  

7. Effect of substrate modulus. Compliance vs. modulus ratio, different gage locations and slot 

depths 

8. Effect of substrate proximity. Compliance compared to E2=E1, as a function of layer thickness 

 

Table Captions 

1. Convergence behavior 

2. Compliances values for h = 10, w = 1, E2/E1 = 0.5, ν1 = ν2 = 0.25 
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Prime & Finnie  Figure 2 

 

 

 

    

E1,ν1

E2,ν2

y,t

x,s

P1

(s,t)

Q1

(s,t)

P2

Q2

 

 

 

 

 

 

 



Prime & Finnie  Figure 3 
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Figure 4. 

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

X/ Interval Length

C
om

pl
ia

nc
e 

-1

1

3

5

7

9

11
%

 E
rr

or
 

exact discretized error

 
Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Table 1. Convergence behavior 
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Gage Stress In Layer  Stress In Substrate 
Distance uniform linear quadratic uniform linear quadratic 

depth = 2 
10 0.1449 0.1325 0.1216 – – – 
30 0.01682 0.01534 0.01404 – – – 
50 0.00634 0.00578 0.00528 – – – 

depth = 4 
10 0.4298 0.3619 0.3096 – – – 
30 0.0593 0.04921 0.04155 – – – 
50 0.02310 0.01913 0.01612 – – – 

depth=8 
10 0.9675 0.7102 0.5571 – – – 
30 0.2197 0.1481 0.1099 – – – 
50 0.09414 0.0626 0.04601 – – – 

depth = 12 
10 1.1704 0.8108 0.6236 0.0079 0.0075 0.0071 
30 0.4456 0.2519 0.1772 0.0364 0.0333 0.0306 
50 0.2095 0.1153 0.0801 0.0199 0.0182 0.0167 

depth = 16 
10 1.188 0.820 0.630 0.0050 0.0074 0.0083 
30 0.5661 0.3109 0.2163 0.1500 0.1143 0.0910 
50 0.2804 0.1498 0.1030 0.0896 0.0675 0.0532 

depth = 20 
10 1.179 0.816 0.627 -0.0199 -0.0021 0.0031 
30 0.6471 0.3511 0.2430 0.2755 0.1725 0.1263 
50 0.3382 0.1785 0.1220 0.1831 0.1098 0.0787 
 
 
 
 
 
 
 
 

Table 2. Compliances values for h = 10, w = 1, E2/E1 = 0.5, ν1 = ν2 = 0.25 


