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Abstract: 
 
 This research combines experiments and finite element modeling to predict the devel-
opment of shear bands in rapidly expanding thin shells. Magnetic flux compression generators 
rely on the expansion of thin ductile shells to generate magnetic fields. This presentation focuses 
on the use of a microvoid damage model in order to model these shear bands and on the strong 
effect of the damage initialization on the timing of the shear band formation. It is proposed that 
the most physically realistic model of initial void volume fraction is a random variation with a 
characteristic length corresponding to the material grain size. 
 Thin cylindrical copper shells were subjected to internal explosive detonations and 
expanded outwardly at strain-rates on the order 104 s-1. The outer surface of the shell was 
photographed using a fast framing camera. At approximately 150% strain, multiple plastic 
instabilities were visible on the surface of these shells in a quasi-periodic pattern. Recovered 
fragments were metallographically examined to provide quantitative information on shear bands. 

A viscoplastic constitutive model was formulated to model the high strain-rate expansion 
and provide insight into the development of shear bands. The model used the Mechanical 
Threshold Stress (MTS) constitutive model, the Mie-Grüneisen equation of state, and a modified 
Gurson yield surface. The model was implemented as a user material subroutine into the 
ABAQUS/Explicit commercial finite element code. 

 Predictions with a purely homogeneous material failed to predict shear banding 
correctly. The model predictions predicted the onset of shear banding too late and predicted the 
final thickness of fragments as too thin. It was realized that on the grain size scale the material is 
not homogeneous. The athermal stress term in the MTS model is known to vary with grains size. 
Modeling a variation in this term on the grain size scale greatly improved the prediction of shear 
banding. 

A method for initializing the athermal stress variation using a physical length scale was 
developed. A set of random numbers varying over a specified range was generated and assigned 
to a rectangular grid with the spacing equal to the material grain size. Using spline interpolation 
and 2-D numerical integration, this grid was used to calculate the initial VVF for the elements in 
the model. This method was found to result in a different value for the shear band initiation strain  
than with the random numbers applied directly to each element. However, the convergence is 
slow, requiring about 4 elements per grain in a 2-D model. 
 



ASME 1999ASME  1999

Modeling of Dynamic Shear Banding

Michael B. Prime1, R. L. Martineau2, & C. R. Necker, Jr3.

1 Engineering Sciences & Applications Division
2 Dynamic Experimentation Division

3 Materials Science & Technology DivisionMaterials Science & Technology Division

Los Alamos National Laboratory
Los Alamos, New Mexico, USA

• Introduction

• Experiments

A l i• Analysis

Engineering 
Analysis

Los Alamos National Laboratory
Engineering Sciences & Applications



ASME 1999
Introduction

ASME  1999

• Adiabatic shear banding
– Adiabatic: high rate = no heat transfer

– Plastic work: dT 
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localization ----> shear banding

p
p

d
C

T 
 

0

Engineering 
Analysis

Los Alamos National Laboratory
Engineering Sciences & Applications



ASME 1999
Introduction

ASME  1999

• Shear Banding in Dynamically ExpandingShear Banding in Dynamically Expanding 
Shells

– Flux compression generators

– Explosive Forming

– Explosive Containment vessels

– Explosive Bonding

• Desire to Predict Timing & Evolution
Finite element modeling (explicit)– Finite element modeling (explicit)
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• Explosively-loaded, end-detonated

• Copper: grainsize: 40m (large cylinders), ~100m 
(small)

• 2 tests: 4" (100mm) ID, 16" (400mm) long, PBX-9501 
(energetic HE) filled, 0.1" & 0.2" (2.5 & 5mm) wall

• 2 tests: 2" (50mm) OD, 8" (200mm) long, ~ 0.25" 
(6mm) annulus of nitromethane, 0.3 ” & 0.36 ” (7.6 & 

Engineering 
Analysis

Los Alamos National Laboratory
Engineering Sciences & Applications

9.2 mm) wall, inner copper cylinder 
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• Diagnostics:g
– Fast framing camera (used 3-5 s frame time)

– Visar/Fabry-Perot interferometry

• Uses:
– Validate finite element model with disps, velocities

– Observe shear banding formation on surface, final 
fracture
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Failed shear band

Shear band

30 mm

• Cross-Section of soft-catch fragment, 
smaller cylinders only

• Many Shear bands evident

• Data
– Shear band spacing

– fragment thickness gives upper bound on final 
failure
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• Same test, 20% thicker cylinder

• Void plane

• Less developed shear bandsLess developed shear bands

• lower strain at failure
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• Axisymmetric FEM• Axisymmetric FEM 
model

– ABAQUS Explicit + VUMAT

– Adiabatic Heatingg

– HE burn, JWL EOS

– Matches data

– Wrong plane for shear bands
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• Pressure load instead of HE elements
– carefully extracted from axisymmetric contact forces

• Refined mesh to capture shear banding• Refined mesh to capture shear banding
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•Track final fragment thicknesses
•Plateaus quickly
•Unambiguous
•No fragments for energetic shots

•tmin/tmax = 0.9
•Compare with optical record of 
perturbation appearance
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perturbation appearance



ASME 1999
Model Predictions - Johnson-Cook

ASME  1999

4

4.5

experiment

JC

Big cylinders

necking too late

2.5

3

3.5

r/
r0

 a
t 

ne
ck

JC necking too late

2

thin thick

0.17

0.18

Small Cylinders

0 11

0.12

0.13

0.14

0.15

0.16

a
g

m
e

n
t t

h
ic

kn
e

s
s

 (
in

ch
)

i t

fragments too 
thin (=necking 
too late)

0.08

0.09

0.1

0.11

3 4

fr
a experiment

J-C

FEM with Johnson-Cook constitutive law predicts 
shear banding too late in time

Engineering 
Analysis

Los Alamos National Laboratory
Engineering Sciences & Applications



ASME 1999
MTS constitutive model

ASME  1999

• Physically realistic 
• Mechanical Threshold Stress is internal state variable 

(as compared to just strain strain rate temperature)(as compared to just strain, strain rate, temperature)

• Evolution controlled by thermally activated interaction 
of dislocations with obstacles
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 strain-evolving

• Dislocation accumulation (strain hardening)
• Dislocation annihilation (recovery)

R t iti it
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• Rate sensitivity
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• 4 tests with our Copper
– 2 low rate, Troom tensile

– 2 high rate Hopkinson bar, Troom & 200 Cg p ,
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Homogeneous Models Don’t Work
• Shear bands come later than observed

I iti l A hInitial Approach
• Void growth model (Gurson)

• Predictions good if use random spatial variation 
in initial void volume fraction

• Voids not observed experimentally

Mechanisms (Meyers; Curran, Seaman, & Shockey)

• Second phase particles & carbides form voids

Di l ti il & l t i b d i• Dislocation pileup & release at grain boundaries

• Grain size inhomogeneity

• Textural localization

ALL HAVE GRAIN SIZE LENGTH SCALE

MTS athermal stress
• Long range (i.e., grain size) interactions

• depends on grain size (Gourdin & Lassilla 1991)

Initialize with a variation on grain size scale
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+1.17e+07
+1.25e+07
+1.33e+07
+1.42e+07
+1.50e+07

(Ave. Crit.: 75%)

SDV56

+5.00e+06
+5.83e+06
+6.67e+06
+7.50e+06
+8.33e+06
+9.17e+06
+1.00e+07
+1.08e+07

• Randomly initialized a

• Element size = 90 m• Element size = 90 m 

• 5MPa to 15MPa
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• Conclusion: perturbations important, 
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• Very speculative: much more work
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Very speculative: much more work 
needed
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• Beginning of shear localization
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• Equivalent plastic strain rate plotted here
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Failed shear band
Shear band

• Cross-Section of soft-catch fragment, smaller cylinders only
30 mm

• Many Shear bands evident

• Data: Shear band spacing, fragment thickness gives upper 
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bound on final failure
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