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ABSTRACT 

 

Residual stresses were measured in four (10%, 20%, 30%, and 70% tungsten) Kanthal 

matrix – continuous tungsten fiber composites using neutron diffraction.  Parallel to the fibers 

the stress in the Kanthal ranged from 40 (10 %) to 1100 (70 %) MPa compared to -1877 (10 %) 

to -400 (70 %) for the tungsten.  Perpendicular to the fibers the stress ranged from -52 (10%) to 

620 (70%) in the Kanthal compared to -778 (10%) to -195 (70%) in the tungsten.  Predictions, 

assuming the measured residual stresses were solely thermal in origin, were made using 

concentric cylinder and finite element models. In the absence of hardening data the assumed 

material behavior was elastic perfectly plastic and the predictions underestimated the measured 

stresses for all volume fractions.  Nevertheless the model results were consistent with the 

experimental measurements.  The transverse stress in the fibers is discussed in the context of the 

interface normal stress, which is significant to the global mechanical response. 
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1. INTRODUCTION 

High temperature structural metal matrix composites (MMCs) typically consist of a 

compliant matrix with a creep resistant second phase in the form of particles, whiskers or fibers.  

High specific stiffness and strength make composites attractive for many applications, offering 

weight savings of between 25 and 50% compared to ‘conventional’ materials such as superalloys 

[1].  However, due to differences in the coefficient of thermal expansion of the constituents, 

residual stresses develop during processing.  Their magnitude and distribution change with 

volume fraction and arrangement and affect fracture and interfacial behavior. 

Tungsten fiber-reinforced Kanthal metal matrix is a model system deve loped (through 

collaboration between NASA’s Lewis Research Center and Tufts University, Massachusetts), to 

explore performance in applications where high strength at high temperatures (1300 - 1700 K) is 

desired [1-6].  In particular the use of continuous fibers offers superior high temperature stability 

compared to discontinuous fiber composites. 

The matrix alloy, Kanthal, belongs to a family of Fe-Cr-Al refractory alloys, which 

exhibit outstanding high-temperature oxidation resistance, mechanical behavior and weldability.  

Potential applications include corrosion resistant cladding or as a reactor fuel containment in 

space nuclear systems [5-9].  Other refractory metal alloys that are considered for high 

temperature structural applications are based on niobium and molybdenum [2-6]. 

To enhance Kanthal’s strength tungsten fibers, which have a high melting temperature 

(3660 K [10]) and negligible creep below around 1273 K [11-13], are added.  The disadvantage 

is the development of residual stress (due to the mismatch in the coefficient of thermal expansion 

between the Kanthal (9.58 x 10-6/K) and the tungsten (4.4 x 10-6/K)) during cooling from 

fabrication temperatures of around 1338 K.  Since these residual stresses affect the composite 

creep and creep-rupture behavior [14-19], measurement and estimate of their magnitude is 

important.  Ultimately they can cause cracking, interfacial debonding or yield of the matrix, 

degrading mechanical properties such as strength or fracture toughness [20,21].  Not all effects 

are detrimental, since friction at the fiber-matrix interface caused by residual stresses can, in 

some cases, improve the load transfer. 

Considerable theoretical and modeling effort has been used to estimate the residual stress 

in particulate and fiber reinforced composites.  Approaches range from elasticity theory applied 

to concentric cylinders [22-33] to finite element analyses of a unit cell surrounding a fiber [34-
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51].   Conversely X-ray and neutron diffraction are commonly used for experimental assessment 

[52-57]. 
 

2.0 EXPERIMENTAL AND COMPUTATIONAL METHODS 

2.1 Neutron Diffraction Measurements 

Diffraction based stress analysis techniques utilize the distance between atomic planes of 

a crystalline specimen as an ‘internal’ strain gage [58].  When a crystalline material experiences 

a stress, elastic strains are manifested in a distortion of the crystal lattice.  Applied or macro-

residual stresses extending over many grains result in plane specific elastic strains that are 

measurable for different Bragg reflections.   

Typical diffraction spectra (discussed later) are shown in Fig. 1 (a,b).  The spectra 

comprise peaks, which correspond to diffracting planes (characterized by their miller indices 

(hkl)) given by Bragg’s law, λ = 2 d sin (θ) (where λ is the wavelength of the incident spectra, d 

is the interplanar spacing, and 2θ is the scattering angle for the peak).  In the presence of a 

residual strain a diffracted peak will shift to higher or lower d spacing, according to whether it is 

tensile or compressive.  The lattice plane normal for each peak lies parallel to the scattering 

vector (hereafter referred to as Q) in the sample, and bisects the incident and diffracted beams.  

The strain εhkl in this direction (parallel to the scattering vector) is given by, 

εhkl = (dhkl – d0
hkl) / d0

hkl       (1) 

where d0
hkl is the plane spacing in the absence of a stress. 

At a pulsed neutron source a diffraction pattern is recorded over a range of lattice 

spacings because the neutron beam consists of a range of wavelengths.  The measurements in 

this study were performed using the neutron powder diffractometer (NPD) at the Manuel Lujan 

Jr. Neutron Scattering Center at Los Alamos National Laboratory using established methodology 

[34, 52,53]. 

Each sample was placed with the fiber axes horizontal and oriented at 45o to the incident 

neutron beam.  This allowed simultaneous measurement of lattice spacings parallel and 

perpendicular to the fiber axes, using opposing 90o detector banks (Fig. 2).  Two other strain 

directions (29o and 61o to the fiber axes) were recorded using the ‘148o’ detectors.  Each detector 

bank comprises 31 individual 3He tubes that subtend a combined angle of about 11o 2θ.  Spectra 
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from individual tubes are integrated, with corrections for differences in diffraction angle and 

flight path, to provide a single spectrum for each detector bank. 

The samples were mounted such that the neutron path length through their thickness was 

approximately 2.5mm irradiating a sampling volume of approximately 884 mm3
 in all cases.  

Diffraction spectra from the four banks were acquired simultaneously with a count time of ~2 

hours per sample at a (proton) beam current of 70µA.  Since the irradiated volume is appreciably 

larger than the comparable fiber volume, the strains are volume averaged.  Strains measured at 0o 

and 90o to the fiber direction are referred to as longitudinal, εL, and transverse strains, εT , 

respectively. 

2.2 Models 

 2.2.1 Modeling Introduction 

Generally, where comparison between models and measurements are made either 

concentric cylinder (CC) or finite element model (FE) models are prevalent.  Micro-mechanics 

models are used to predict local stress and strain variations around the fiber offering one 

approach to describe how the different microstructural phases affect the mechanical response.  

 2.2.2 Concentric Cylinder Model 

One micro-mechanical model well suited (simple and easier to apply than finite element 

analysis) for investigating unidirectional composites is the concentric cylinder model [59].  Early 

versions, based on a single fiber embedded in a cylindrical shell [60-64] predicted elastic moduli 

or their bounds for general, three-dimensional loading, as well as thermoelastic and inelastic 

response under axisymmetric loading.  Subsequent generalizations included the interaction of the 

composite cylinder with the surrounding (65-66), or accounted for microstructural details such as 

carbon coating around fibers, layered morphologies or interface layers (67-70) between the fiber 

and the matrix. 

One model relevant to our geometry is the concentric cylinder assemblage (CCA) 

[71,72].  It was generalized to multi- layered configurations subject to axisymmetric 

thermomechanical loading, with layers exhibiting either elastic or elastoplastic behavior [73-74] 

(referred to as the multiple concentric cylinder model - MCCM).  This generalization was 

facilitated by an ana lytical solution methodology based on the local-global stiffness matrix 

formulation of multi- layered boundary value problems [75-76], together with Mendelson’s 

technique of successive iterations for elastoplastic problems [77].  Thus far, MCCM has been 
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successfully applied to the evolution of residual stresses in silicon carbide/titanium aluminide 

unidirectional composites, and to the subsequent axi-symmetric thermo-mechanical response 

[73,74].  Even though it neglects the interaction of the surrounding medium, its results are 

comparable to a modified self-consistent model where the surrounding medium is considered 

(65).  The properties of the individual regions are allowed to vary with temperature, and both 

fiber and the surrounding, homogeneous matrix, exhibit inelastic effects. 

The CC model used in this study comprised a series of ‘infinitely’ long multiple 

concentric cylinders or shells perfectly bonded to form the simple assembly shown in Fig. 3.  

Each shell is either elastic or inelastic.  The elastic shells are isotropic, while the inelastic shells 

are initially isotropic but use time- independent incremental plasticity with isotropic hardening.  

The CCM represents a unit cell of a regular arrangement of fibers, consisting of a circular fiber 

of radius r = rf surrounded by a matrix sheath of radius r = rm, measured from the fiber center, r = 

0.  The fiber volume fraction is proportional to the square of the ratio, Vf = (rf/rm)2.  

Displacements and stresses in the individual phases are calculated under conditions of spatially 

uniform temperature changes.  The elastoplastic boundary-value problem was solved using an 

assumption of generalized plane strain.  The total strain formulation of the governing differential 

equations was employed within the framework of the so-called method of successive elastic 

solutions outlined by Mendelson [77].  When the stress distributions are elastic, they are 

characterized by uniform values of longitudinal stress throughout the fiber and the matrix and an 

inversely quadratic radial dependence of the hoop and radial stresses in the matrix. 

By normalizing the radius of the composite cylinder to 1.0, the radii of the tungsten fibers 

were selected to be 0.316, 0.447, 0.548 and 0.837 to give fiber volume fractions of 10, 20, 30 and 

70%.  Furthermore, the fiber and matrix phases were divided into multiple cylinders to describe 

the plastic strain distributions.  The number of layers depended on the volume fraction, but 

varied from a minimum of 10 to a maximum of 40.  Plastic strains were calculated by evaluating 

integrals of the strain distribution at several points within each layer. 

 2.2.3 Finite Element Modeling 

Although the study on this system is amenable to a CCM solution, many geometries are 

not and a FEM provides an alternative route to insights concerning the spatial distribution of 

stress and inelastic strains.  In the past finite element models applied to composites have 

addressed; HIPing effects, fiber distribution and arrangement on residual stresses [40,44,48-51]. 
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FE models can use either a full 3-D version, or, make 2-D plane field approximations, 

which include plane stress, plane strain, or generalized plane strain [37,46,47,78,79]. 2-D 

calculations are popular because of their reduced computational complexity and studies [37,46] 

For that reason we chose to use a generalized plane strain solution in which the entire composite 

contraction is considered allowing for a nonzero value for the out-of-plane strain component.  

FEM calculations were performed using a commercial finite-element code ABAQUS [80].  Unit 

cells with quarter symmetry and a square fiber array were modeled using 10-node bi-quadratic 

generalized plane strain elements (CGPE10).  This represents a cross-section through a 

continuous infinitely long composite.  Stress variations along the fiber and shear stresses on 

planes parallel to the fibers are assumed to be zero. 

Fig. 4 shows the mesh used for the 30 % Vf model, with the fiber/matrix boundary 

emphasized.  The left and bottom edges were constrained from moving in the horizontal and 

vertical directions, respectively.  The top and right edges were constrained using multi-point 

constraints to remain horizontal and vertical, respectively, but allowed translation in a direction 

normal to the edge.  The analysis used incremental plasticity, the Von Mises yield surface and 

the associated flow rule. 

 

3.0 SPECIMENS 

Tungsten/Kanthal composites containing 10, 20, 30, and 70 % Vf GE 218 tungsten fibers 

(diameter ≈ 200 µm) were fabricated at NASA Lewis Research Center using the arc-spray 

method.  The Kanthal matrix composition in weight % is; 73.2 Fe, 21 Cr, 5.8 Al, and 0.04 C [7].  

Tapes containing unidirectional fibers were hot pressed at 1338K for 1 hour before being cooled 

to room temperature.  The as-fabricated bars were approximately 25 mm wide, 2.5 mm thick, 

and 200 mm long.  An additional monolithic Kanthal bar was fabricated and taken through the 

same heating cycle.  All four composites exhibited fairly even distribution of fibers except for 

the 70% Vf sample, which was densely packed and showed sporadic clustering [14,15], (Fig. 5). 

 
4.0 EXPERIMENTAL RESULTS 

4.1 Neutron Diffraction Single Peak Strains  
The body centered cubic (BCC) tungsten fibers showed a strong <110> texture, therefore, 

only 2 independent hkl reflections (<n>110,211) are reported.  By contrast, the Kanthal matrix 

(which is also BCC) exhibited close to random texture and four independent hkl reflections 
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(<n>110, <n>200, 222, 321) are reported.  Only non-overlapping reflections with a height to 

background ratio of > 100:1 are reported.  The diffraction patterns in Fig. 1 illustrate the strength 

of the tungsten texture. 

Fig. 6 (a,b) shows the measured d-spacings for the tungsten and Kanthal (110) reflections 

at different angles (0o, 29o, 61o, and 90o) to the fiber direction.  Using the measured d-spacings 

for the monolithic tungsten (100% Vf) and monolithic Kanthal (0% Vf), plane specific residual 

strains (εhkl) for a series of planes were calculated using equation 1.  The angular dependence of 

the hkl strains for the 30% Vf fiber composite are plotted in Fig. 7.  The lines through the data 

correspond to fits of the form <ε>f,m = <ε11>f,mcos2α + <ε22>f,msin2α, where f, m are the fiber and 

matrix, α is the angle to the fiber direction and ε11 and ε22 are the extremal strains.  

In Fig. 8a the plane specific strains for (200), and (222) Kanthal reflections are plotted as 

a function of angle to the fiber orientation for the four different fiber volume fractions.  The 

elastic anisotropic factor of Kanthal is close to that of pure iron 2.71.  The (111) planes have the 

highest stiffness (single crystal elastic modulus ~ 273 GPa) and the (100) planes the least (single 

crystal elastic modulus ~ 125 GPa) [82].  The values in Fig. 8a reflect these differences, with the 

(200) and (222) planes representing the maximum and minimum strains, respectively.  The trend 

is consistent for all four Vf. 

In Fig. 8b the strains for the tungsten (110) and (211) reflections are plotted as a function 

of angle to the fiber orientation.  Since the tungsten fibers exhibited a strong <110> texture the 

<n>(110) planes and (211) planes dominated the spectra with Q parallel to the fiber orientation 

(other planes were visible but were too weak to fit).  By contrast with Kanthal, the elastic 

anisotropy factor for tungsten is 1.00 [81].  Accordingly, all the tungsten hkls have the same 

elastic moduli and, in the absence of plasticity, the strains are expected to be identical.  This 

appears to be the case, except for the 10 vol. % fraction composite (which may be exhibiting 

plastic anisotropy associated with the large stresses and possible yield in the tungsten. 

4.2 Neutron Diffraction Phase Average Strains using Rietveld Refinement 

As seen above a range of the strains demonstrated by the Kanthal are hkl dependent due 

to the elastic and (presumably) to the plastic anisotropy of the polycrystal.  To describe this 

spread with a single “macrostrain” for each phase the use of Rietveld refinement analysis is well 

suited for Time-of-Flight data [82-87].  In the Rietveld technique a spectrum is predicted and 

compared with measured data.  The prediction is optimized to achieve the best agreement with 
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the measured spectrum by systematically varying microstructural parameters (lattice parameters, 

atomic positions and occupancies), peak shape parameters (strain and particle size), sample 

absorption, extinction, preferred orientation and Debye-Waller factors.  Assuming that the lattice 

parameter is representative of the bulk, when a and a0 are the phase specific lattice parameters of 

the composite and monolithic then the mean phase strains can be calculated using; 

ε = (a – a0) / a0         (2) 

Strains calculated from the lattice parameters are plotted in Fig. 9.  The strains are 

maximum parallel (0o) and minimum perpendicular (90o) to the fibers for all four Vf in both 

Kanthal and tungsten.  Parallel to the fibers the strains in the Kanthal are tensile and increase 

from + 300 µe to + 3300 µe as Vf increases from 10 to 70%.  Conversely, the longitudinal strains 

in the tungsten are compressive and decrease from -3500 µe to -700 µe as the Vf increases from 

10 to 70%.  The transverse strains in the Kanthal are compressive for Vf = 10 and 20 vol. %, 

decreasing from -251 µe to -53 µe.  However, for Vf = 30 and 70 vol. %, the Kanthal transverse 

strains are tensile, with values of 78 and 814 µe.  The transverse strains in the fibers are, in all 

cases, compressive and decrease from -135 to -78 µe.  Typical error bars on these strain values 

are ± 100 µε. 

5.0 MODEL - RESULTS 

5.1 Model Assumption 

In the models (section 2.2 & 2.3) we assumed that the difference between the thermal 

expansion coefficients of the components constitutes the only source of residual stress.  Non-

uniform cooling or phase transformations were not considered.  Because creep properties were 

not available viscoelastic/viscoplastic behavior was not considered and, instead we assumed a 

stress-free (or freezing) temperature of 923K (the processing temperature was 1338K).  The 

value of 923K was taken from a previously reported result [14,15].  It is also consistent with the 

work of Kroupa et al [88] who showed, using the Bodner-Partom model that a bilinear elastic-

plastic FEM analysis could predict comparable residual stresses (in a titanium matrix composite) 

to a viscoelastic/viscoplastic analysis provided that the stress- free temperature was ≈ 0.7 - 0.8 

times of the absolute processing temperature.  In the absence of any strain hardening data, 

bilinear thermo-elastic-perfectly plastic analysis was assumed.  Equivalent material properties 

were used in both models and are reported in Tables 1 and 2. 
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5.2 Model Strains  

Spatial elastic strain distributions predicted using the concentric cylinder model for the 

longitudinal, radial and hoop components, are shown for 10, 20, 30 and 70 % Vf composite (Fig. 

10 a-c).  In the tungsten all three strains (longitudinal, radial and hoop) are constant at all radii.  

In the Kanthal, the longitudinal strain is comparatively uniform across the radius, whereas the 

radial and hoop distributions adopt an inversely quadratic dependence away from the region 

close to the interface.  Residual strains contours are plotted for the 30 % Vf FEM calculation in 

Fig. 11.  Contour maps for the 10,20 and 70 % Vf composites are qualitatively similar but differ 

in magnitude. 

5.3 Strains - ND, CCM and FEM  

Since the neutron measurements irradiate the entire cross-section of the composite the 

measured elastic lattice strains are necessarily a volume average (see Fig. 2). Thus for 

comparison with the models it was necessary to convolute the models with a resolution function 

that is descriptive of the experiment.  In the longitudinal direction, where the strain shows little 

radial variation it is straightforward to obtain an integrated result averaged over the composite 

cross-section.  However, for the transverse direction, the neutron measurement does not 

distinguish between radial and hoop, and comparison with the models requires that this is 

accounted for.  For the tungsten the radial and hoop strains are at least constant across the radius 

albeit of different sign (Fig. 10 b-c).  However, for the Kanthal, the radial and hoop strains vary 

in space, magnitude and sign.  To express the model results as an average transverse strain 

where, <ε>r and  <ε>h are the integrated average strains for the radial and hoop components (see 

Appendix A) we used; 

<ε>T  = 2/π  (<ε>r + <ε>h)        (3)  

The coefficients of thermal expansion for the Kanthal (αm = 9.58 x 10-6/K) and tungsten 

(αf = 4.4 x 10-6/K), dictate that the longitudinal strains for the matrix and fiber are expected to be 

tensile and compressive respectively.  The FE values are consistently about 20% larger than the 

CC values but for the 10,20,30 % samples both are comparable to the neutron results within 

experimental error (Table 3).  However, for the 70 % Vf
 , the predictions significantly 

underestimate the ND value.  Similar observations can be made for the tungsten.  

The average transverse strains (Table 4) are relatively small due to the offsetting signs of 

the radial and hoop strains.  Indeed for some Vf the average transverse strain is more than an 
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order of magnitude less than the longitudinal strains.  Although there are trends in the transverse 

direction the patterns of behavior are harder to discern and are not intuitive.  However it is noted 

that whereas the CC and FE values track one another in sense (if not in magnitude) the model 

predictions fail to describe the experimental results. 

5.4 Stresses - ND, CCM and FEM  
Stresses were calculated using Hooke’s law (subject to the assumption of isotropy) using 

the elastic strains reported in Tables 3 and 4 and room temperature material properties from 

tables 1 and 2. 

σ
ν ν
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1 L T=
+ −

− +
( )( )

(( ) )
1 2

1 2     (4) 
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1 2

     (5) 

Longitudinal, σL and transverse, σT  residual stresses are plotted for ND, CCM and FEM 

in Figs. 12 and 13, respectively.  In Fig. 12, with increase in Vf from 10 to 70% the ND 

measured longitudinal stresses in the Kanthal increase from approximately 40 MPa (10% Vf) to 

1100 MPa (70 % Vf) whereas the compressive stress in the fiber decrease from approximately -

1877 MPa (10% Vf) to -400 MPa (70% Vf).  The CC and FE predictions track the behavior but 

underestimate the magnitudes and (for the Kanthal) show disparities at the 10 and 70 % Vf .  

In Fig. 13, the ND measured transverse stress in the Kanthal varies from (-56 MPa) for 

the 10% Vf to a tensile value of 729 MPa for the 70% Vf.  Correspondingly, the compressive 

stresses in tungsten vary from -880 to -218 MPa as Vf increases from 10 to 70%. The CCM 

predictions for the Kanthal increase from 66 MPa to 273 MPa complemented by tungsten 

stresses decreasing from –573 MPa to -116 MPa with Vf.  The FEM predictions, predict tensile 

stresses in the Kanthal increasing from 54 MPa to 270 MPa and decreasing stresses in the 

tungsten from –494 MPa to -113 MPa with increase in Vf. 

For context using a thermo-elastic analysis we considered the upper and lower bounds of 

the longitudinal stress in the matrix of a concentric cylinder based on a thermo-elasticity 

solution.  An upper limit, independent of volume fraction, is provided when considering a thin 

matrix surrounding a rigid fiber for which the longitudinal Kanthal stress is (αm−αf)Em/(1−νm) = 

959 MPa.  Not surprisingly this is higher than 70 % Vf  CCM value of 501 MPa but is still lower 

than measured value of 1111 MPa.  For a lower limit one might assume free thermal contraction 
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in the transverse direction and assumes the elastic fiber constrains the matrix axially.  In this 

case, the longitudinal Kanthal stresses is given by (αm−αf)EmEfVf/(EmVm + EfVf) from which for 

the 70% Vf  the stress is 855 MPa, respectively.  In the absence of plasticity these limits are, not 

surprisingly, higher than those predicted by the CCM model but are also both less than the 

measured value which must be addressed.  The small differences between the FEM and CCM 

results can be ascribed to differences in constraint and boundary conditions between the models. 

6.0 DISCUSSION 

6.1 Stress comparison (ND, CCM and FEM) 

In figures 12 and 13 the experimental and modeled stresses show encouraging agreement 

both in trend and in value.  Although the models underestimate the experimentally measured 

stress the difference can, likely, be ascribed to the absence of hardening in the material 

descriptions.  This is also consistent with the measured longitudinal stresses in the Kanthal which 

exceeded the “nominal” room temperature yield stresses (used in the models) by more than 50% 

in the 70% volume fraction sample.  Further supporting evidence comes from the FE predictions 

which indicated that plasticity occurred in the Kanthal for all 4 tungsten volume fractions and 

had initiated in the tungsten for the 10 % Vf (Fig 14).  In view of the absence of creep data in the 

model we opted not to “tune” the stress free temperature for better agreement but note that the 

assumption of 0.7 – 0.8 of the processing temperature appears plausible.  (As an aside we note 

that our FEM predicted stresses are higher than those previously reported by Saigal and Leisk 

because we corrected a small error concerning the thermal expansion coefficients in their 

calculations [14-15]). 

Apart from the trendswhich are reasonable, two major points of experiment-model 

disparity occur for the Kanthal longitudinal stress for the 10 and 70 % Vf results.  For the larger 

tungsten volume fraction the stress and plasticity in the Kanthal is largest, thus this sample would 

be expected to show the biggest disparity from an assumption of elastic perfectly plastic 

behavior.  Moreover the relationship between work hardening and volume fraction is more likely 

to contribute for larger volume fractions [89,90-93].  One reason being the impediment of 

dislocation movement by the elastic fiber response when the matrix deforms plastically.   This 

impeding or matrix strengthening stress is proportional to the fiber volume fraction, Vf, and the 

accumulated plastic strain, εp, according to σM,m  = 2KεpGfGmVf / Gf – K(Gf-Gm), where K is an 

accommodation factor between fiber and matrix and εp is the accumulated plastic strain.  
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For the 10 % Vf sample the disparity is harder to explain.  We tested the viability of the 

neutron measurements by checking whether they obeyed stress balance using the relation, σfVf 

+σmVm=0.  As shown in Figure 12 the stress balance is satisfied to within experimental error for 

the 20, 30 and 70 % Vf  but not for the 10 % Vf .  Accordingly the disparity between measurement 

and experiment for the 10 % Vf may be due to experimental error.  

6.2 Localized and volume averaged behavior 

The longitudinal strains (which are measured uniquely in the experiment) are reasonably 

uniform across the sampling volume (Figs 10 and 11) and thus are amenable to volume 

averaging for direct comparison with the neutron results. However the inability of neutron 

measurements to directly measure localized behavior is a practical impediment, which leads to 

some inelegant averaging schemes to compare the model and experiment.  Averages of the radial 

and hoop strains to compare with the measured transverse response involve values that vary in 

sign and magnitude with respect to one another and across the sampling volume.  This makes the 

averaging scheme prone to systematic errors and insensitive to changes in deformation path.  

Indeed the disparities in the average transverse behavior reported in table 4 for the experiment 

and (both) models merits future attention.     

Despite the limitation of these measurements to address localized effects one reason for 

considering length scales comparable to the fiber diameter is the expected range of dislocation 

density and associated potential for changes in the microstructure near the fiber matrix interface.  

A few researchers have shown using transmission electron microscopy and electron back 

scattering patterns from scanning electron microscopy that the matrix characteristics close to the 

interface differ from those of the monolithic material [94-97].  It is speculated that increasing 

dislocation density causes the stored energy to reach a threshold upon which the only way of 

relieving this energy is by rearranging the microstructure with a finer grain size.  Since this can 

produce differences in mechanical performance it has the potential to create an interface zone 

that is not described in either the FE or CC models.  Characterizing the thin interface zone is 

within the realms of current synchrotron XRD measurements but is beyond the scope of this 

study. 

6.3 Radial Interface Stresses 

Transverse and longitudinal properties of continuous fiber reinforced composites are 

influenced by the properties of the fiber/matrix interface.  For example in a study of interface 
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creep in a fiber reinforced metal-matrix composite [98] it was shown that threshold deformation 

behavior for sliding between fiber and matrix, during a fiber push-down test at elevated 

temperatures, was directly related to the normal (radial) residual stress acting on the interface.  

Accordingly measurement of the bond strength must account for the presence of any transverse 

residual stress, which must be overcome before interface separation can occur.  Interface bond 

strength is expressed by; 

σbond = βKσapplied + σresidual    (6) 

 Where K (≈ 1.2-1.3) is the stress concentration factor at the interface debond site due to 

the elastic modulus mismatch effect, β  is a multiplication factor, which ranges from unity (no 

sliding) to 1.34 (freely sliding interface). σapplied is the far-field applied stress required to cause 

debonding (normal interface separation) and σresidual is the radial (transverse) residual stress at the 

debond site [50].  Note that for a compressive normal stress σresidual is negative. 

Some researchers have used volume averaged neutron data to estimate the value of the 

radial stress local to the interface [33]. Such estimates are based on predictions of the concentric 

cylinder model. Because the concentric cylinder model predicts that radial and hoop stresses are 

(1) equal to each other and (2) uniform in the fiber (Figure 10), the radial interface stress would 

be equal to the average transverse stress in the fiber. Hence, transverse fiber stresses measured 

by neutron diffraction could be used as an estimate of the radial interface stress (Figure 13). 

However, the finite element simulations in this paper indicate that such a conclusion is only valid 

for relatively small fiber volume fractions (e.g,. up to 20% in the specimens studies here). For 

larger volume fractions, neighboring fibers destroy the axisymmetry assumed by the CCM, and 

the interface radial stress differs significantly from the average transverse stresses in the fiber. It 

is worth noting that techniques such as nanoindentation; microindentation; acoustic emission; 

extended X-ray absorption fine structure (EXAFS) have all been used to estimate radial stresses 

at the fiber/matrix interface.  However, the results of these techniques are often difficult to 

interpret. 

7. CONCLUSIONS  

Mean phase elastic strains and stresses are reported in Kanthal matrix composite samples 

reinforced with four volume fractions of unidirectional tungsten fibers.  Maximum and minimum 

longitudinal stresses were –1900 and –400 MPa for the tungsten for 10 and 70% respectively.  
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For the Kanthal maximum and minimum longitudinal stresses were 1100 and 40 MPa for the 70 

and 10% samples respectively. Stress balance parallel to the fiber direction were within 

experimental error for the 20,30 and 70% samples but exceeded experimental error for the results 

from the 10% sample.  Comparisons with finite element and concentric cylinder models were 

qualitatively adequate but, in the absence of either hardening description for the room 

temperature mechanical behavior or of viscoelastic description for the high temperature 

behavior, quantitative predictions were not possible.  It is suggested that the radial stress at the 

matrix/fiber interface can be inferred from the transverse fiber stress, which is likely to be 

uniform across the cross section. 
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9. APPENDIX 
 
 The derivation of the average transverse strain component from the discrete radial and 

hoop strains is given in the following way. The volume element in a cylindrical coordinate 

system is shown in Figure A1. 

 

dr
r

dφ

dl

 

Figure A1: Volume element in cylindrical coordinate system. 



 16 

The average transverse strain (the strain in the direction of a scattering vector 

perpendicular to the longitudinal axis of a cylindrical sample) is found as 

 

∫ ∫ ∫

∫ ∫ ∫ +
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L R
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where L and R are the length and radius of the sample, respectively. The denominator is the total volume. The total 

volume of the FE model is also given by the sum of all the element volumes, and we find that 
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where ivolE  is the volume of element i in the FE mesh. By reducing equation (B1), the average transverse strain 

can be found as  
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And thereby, the average transverse strain in terms of the finite element calculations can be found as  
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since the radial and hoop strains are independent variables. If we define the average radial and hoop strains as  

 ε r =
ε r

i

i =1

N

∑ volE i

volE i

i=1

N

∑
 and ε h =

εh
i

i =1

N

∑ volE i

volE i

i =1

N

∑
 (A5) 

the overall average transverse strain is found as 

 ε =
2
π

ε r + ε h( ) (A6) 
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Table 1: Tungsten: thermo-mechanical properties used in the models. 

 
Temp. 

oC 
Young’s 
Modulus 
(GPa)   

Poisson’s 
Ratio 

Yield 
Stress 
(MPa) 

Coefficient of 
Thermal 

Expansion (10-6/oK) 
 

26 

138 

251 

420 

533 

         1000 

395 

394 

393 

389 

386 

360 

.28 

.28 

.28 

.28 

.28 

.28 

1305 

1179 

1054 

 893 

 777 

 550 

4.40 

4.42 

4.44 

4.47 

4.49 

4.56 

 
 
 
 

Table 2: Kanthal: thermo-mechanical properties used in the models. 
 

Temp. 
oC 

Young’s 
Modulus 

(GPa) 

Poisson’s 
Ratio 

Yield 
Stress 
(MPa) 

Coefficient of 
Thermal 

Expansion (10-6/oK) 
 

26 

138 

251 

420 

533 

1000 

202 

196 

183 

172 

162 

125 

.28 

.28 

.28 

.28 

.28 

.28 

530 

520 

465 

375 

275 

27 

9.58 

9.68 

10.08 

10.80 

11.38 

14.75 
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Table 3:  ND, CCM and FEM Average Longitudinal Strains (µε ) 

 

Kanthal 

Tungsten Volume 

Fraction 

ND 

Elastic 

CCM 

Elastic 

FEM 

Elastic 

FEM 

Plastic 

10 % 375 (± 279) 688 833 67 

20 % 1397 (± 159) 1242 1487 278 

30 % 1889 (± 140) 1652 1884 677 

70 % 3263 (± 071) 1902 2386 1881 

 

Tungsten 

Tungsten Volume 

Fraction 

ND 

Elastic 

CCM 

Elastic 

FEM 

Elastic 

FEM 

Plastic 

10 % -3459 (± 276) -3151 -3847 -69 

20 % -2890 (± 232) -2524 -3050 0 

30 % -2367 (± 161) -1945 -2255 0 

70 % -710 (± 117) -414 -548 0 
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Table 4:  ND, CCM and FEM Average Transverse Strains (µε ) 

 

Kanthal 

Tungsten Volume 

Fraction 

ND 

Elastic 

CCM 

Elastic 

FEM 

Elastic 

FEM 

Plastic 

10 % -251 (±212) -62 -83 -33 

20 % -53 (±107) -100 -150 -139 

30 % 78 (±122) -114 -200 -338 

70 % 814 (±153) 82 84 -941 

 

Tungsten 

Tungsten Volume 

Fraction 

ND 

Elastic 

CCM 

Elastic 

FEM 

Elastic 

FEM 

Plastic 

10 % -135 (±178) 306 392 35 

20 % -59 (±89) 214 317 0 

30 % -87 (±121) 140 244 0 

70 % -78 (±67) -18 -5 0 
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Figure 1: Diffraction Spectra for the 30 volume % tungsten fiber (W) reinforced Kanthal Matrix 
(K) composite in a) Q Perpendicular and b) Q Parallel to the fibers.  Tick marks show calculated 
peak positions.  The difference curve is shown beneath each spectrum (a fitted background has 
been subtracted from the data, and the intensity is normalized with respect to the incident 
spectrum). 
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Figure 2.  Sample orientation in the diffractometer (not to scale).  The fiber axes are at 45o to the 
incident neutron beam.  Four detectors are arranged around the sample.  The +90o and –90o 
detectors measure strains perpendicular (Q⊥) and parallel (Q//) to the fiber axes respectively.  
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Figure 3: Geometry of the analytical concentric cylinder model (CCM). 
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Figure 4:  Finite Element Model mesh with boundary conditions (Vf – 30%). 
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(a) 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 

(c) 
 

 
 

(d) 
Figure 5.  Optical micrographs (end view) of (a) 10, (b) 20, (c) 30, and (d) 70 % Vf composite.
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Figure 6:  Measured d-spacing of Kanthal (top) and tungsten (bottom) versus fiber volume 
fraction.
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Figure 7:  Measured plane specific (hkl) strains vs. angle to the fiber direction in the 30 vol. % W 
composite. 
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Figure 8a:  Measured elastic strains for Kanthal 200 and 222 reflections (10, 20, 30 and 70 % Vf).  
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Figure 8b:  Measured elastic strains for tungsten 110 and 211 reflections (10, 20, 30 and 70 % 
Vf).
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Figure 9: Measured mean phase (Rietveld) elastic strains vs. angle to fiber direction tungsten (10, 
20, 30 and 70% Vf ) 
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Figure 10: CCM Predictions of Longitudinal, Radial and Hoop Elastic Strains for 10,20,30 and 
70 Vf tungsten fiber composites. 
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Figure 11:  FEM elastic (upper) and plastic (lower) strain (µε) contours in the longitudinal 
(parallel to the fiber) direction for a 30 Vf tungsten fiber composite. 
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Figure 12:  Longitudinal residual stresses vs. tungsten volume fraction (ND, CCM and FEM). 
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Figure 13:  Transverse residual stresses vs. tungsten volume fraction (ND, CCM and FEM). 
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Figure 14: Volume averaged FEM plastic strains vs. volume fraction of tungsten fibers. 
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