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ABSTRACT 
 
In order to provide well characterized residual stress specimens, 10-mm thick, 60-mm diameter disks of 2024-
T351 Aluminum were plastically indented by opposing 15-mm diameter indenters of hardened steel. The residual 
stresses in the disk specimen were measured using neutron diffraction, the contour method, and the slitting 
method. A finite element model of the indentation process was constructed, but matching the measured residual 
stresses proved unexpectedly challenging. An attempt was made to improve the agreement honestly (without any 
unjustified parameter changes) by improving the constitutive model for 2024. Cyclic stress-strain curves were 
measured in multiple directions in the source plate of 2024-T351 which showed plastic anisotropy on the order of 
15% in the flow strength. Recent literature has also shown a pressure dependence in 2024-T351 which would 
increase the flow strength in the triaxial stress region under the indenter. Combining anisotropy, cyclic loading, 
and pressure dependence effects in Abaqus has significantly improved agreement with the data, but a completely 
accurate prediction remains elusive. 
 
INTRODUCTION 
 
Residual stresses play a significant role in many material failure processes like fatigue, fracture, and stress 
corrosion cracking [1,2]. Residual stresses are the stresses present in a part free from external load, and they are 
generated by virtually any manufacturing process. The subject of this study is indented-disk test specimens that 
were designed to provide a controlled distribution of residual stress [3] in order to develop and test methods for 
measuring residual stresses. 
 
Accurate finite element modeling of the disk specimens has proven somewhat challenging. In previous work, 
accurate residual stress modeling for disks of 316L stainless steel was achieved only after cyclic testing and 
subsequent calibration of a combined hardening model to capture the Bauschinger effect [3]. In this paper, we 
explore accurate modeling for indented disks made of 2024-T351 Aluminum, which have proven even more 
challenging to model accurately. 
 
EXPERIMENTAL 
 
Disks were plastically compressed through the thickness by two cylindrical indenters of smaller diameter, see 
Figure 1. The disks of 2024-T351 aluminum were 60 mm in diameter and 10 mm thick. The indenter material 
used was A2 tool steel characterized by a high hardness (58 HRC) and a high yield stress (about 1300 MPa). The 
indentation was performed quasi-statically to a maximum load 99.6 kN and then unloaded. The residual stresses 
in the specimens were measured using neutron diffraction [4,5], the contour method [6-8], and the slitting method 
[9,10], with the measurement details on the 2024 specimen discussed in this paper reported elsewhere [3,11]. 



 
Figure 1 Indented disk residual stress specimens were made using 2024-T351 Aluminum 
 
 
MODELING 
 
The disk indentation process was modeled using ABAQUS version 6.11. For initial runs with isotropic plasticity 
models, a half-symmetry axi-symmetric model of the specimen, see Figure 2, was built using 15,000 four-node 
quadrilateral elements with reduced integration (CAX4R). Square elements 0.1 mm on a side gave a 50 x 300 
mesh in the disk. The contact behavior between the indenter (master surface) and the disk (slave surface) was 
assumed frictionless because lubricant was used during the experimental test, and a surface-to-surface contact 
algorithm was used. A pressure load was applied to the top surface of the indenter to match the experimentally 
applied load. Figure 3 shows the 1/8th symmetry, 3D mesh used for later simulations with anisotropic material 
models. 20 node brick elements with reduced integration (C3D20R) were used with elements approximately 0.5 
mm on a side. 
 
The indenter was modeled as elastic with Young’s modulus of 204 GPa and Poisson's ratio of 0.3. For the Al 
2024, the Young’s modulus was 73.2 GPa and Poisson’s ratio was 0.33. The plasticity model for the Al 2024 was 
varied during the study and is described below. 
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Figure 4 Isotropic plasticity, combined hardening cyclic stress-strain curves calibrated for 2024-T351 
Aluminum alloy. The model fits the cyclic behavior but does not fit the anisotropy 

 

 

Figure 5 Residual elastic radial strains in 2024-T351 
disk, model vs. data. Taken at mid-thickness along 

diameters of disk corresponding to rolling and transverse 
directions of plate material 

 

Figure 6 Residual Hoop Stress in 2024-T351 disk, models vs. 
data. Taken at mid-thickness along diameters of disk 

corresponding to rolling and transverse directions of plate 
material 

 

Reverse Yielding 
In ABAQUS, a combined hardening model cannot be used simultaneously with anisotropic plasticity, and clearly 
anisotropic plasticity is necessary to accurate model the stresses. A short study was performed to estimate the 
magnitude and importance of reverse yielding during unloading of the indenters on the disk. The constitutive data 
was fit using a kinematic hardening model. The model fit is shown in Figure 7. Such a model only allows for linear 
strain hardening, but does a reasonable job of fitting the loading portion of the data and conservatively estimates 
the reverse yielding. 
 
A simulation of the indentation process with the kinematic hardening model showed no reverse plasticity during 
the unloading. Therefore, it should not be necessary to accurately model the cyclic behavior of the 2024 Al so 
long as premature reverse yielding is not predicted. 
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Figure 9 Anisotropic plasticity fit to data, optimized over range 0 – 1.0% plastic strain 
 
The anisotropic model was used on the indentation simulation. The resulting residual strain and residual stress 
predictions are compared with data in Figure 10 and Figure 11. The model now shows the observed anisotropy in 
the results, but the overall magnitude is still incorrect. 
 

 

Figure 10 Residual elastic radial strains predicted with the 
anisotropic plasticity model, versus data 

 

Figure 11 Residual hoop stresses predicted with the 
anisotropic plasticity model, versus data 

  

Pressure dependent plasticity 
In addition to the residual stresses, the simulations were also compared with load-displacement data taken during 
the indentation process [13]. The displacement portion of the load-displacement data has large uncertainty 
because of the need to correct for machine compliance and the presence of lubricant during the indentation, but is 
informative nonetheless. It was hoped that the data was accurate enough to see if the model had larger 
inaccuracies during the loading or unloading portions of the simulation. Comparing the model prediction to the 
load-displacement data indicates that the modeled yield strength during loading needs to be about 10% stronger 
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Figure 13 Effect of pressure dependent plasticity model on 
residual elastic radial strains versus data 

Figure 14 Effect of pressure dependent plasticity model 
on residual hoop stress versus data 

  
 
CONCLUSION 
 
The models do not predict the residual stresses in the indented disks as well as hoped. Further studies have 
shown that the predictions are insensitive to the friction coefficient between the indenter and disk and to other 
parameters. The most likely explanation remain that the constitutive model is inaccurate in some regard. The next 
step would be to obtain some in situ data during the indentation process. It is hoped that such data would be able 
to identify if the inaccuracy occurs during the loading or unloading of the indenter, which would narrow down what 
aspect of the model to improve. The original in situ data was load-displacement data on the indenter, but it lacks 
the necessary sensitivity. The addition of strain gauges to take load-strain data might prove informative.  
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APPENDIX 
 
For reference, the information to reproduce the constitutive behaviour of this paper is given below in two parts: 1) 
the information for the input file and 2) the user subroutine for the triaxiality user defined field. 
 

Input file text 
 
*USER DEFINED FIELD 
*DEPVAR 
1 
*INITIAL CONDITIONS, TYPE=FIELD, VARIABLE=1 
,0 
*Material, name=Al2024_cyclic 
*Density 
 2.7e-09, 
*Elastic 
73200., 0.33 
*Plastic, hardening=isotropic, dependencies=1 
80.55, 0.0000e+000, 0.0, -3.000  
131.58, 2.5000e-004, 0.0, -3.000  
207.90, 5.0000e-004, 0.0, -3.000  
252.85, 7.5000e-004, 0.0, -3.000  
294.90, 1.0000e-003, 0.0, -3.000  
322.78, 1.2500e-003, 0.0, -3.000  
341.79, 1.5000e-003, 0.0, -3.000  
358.45, 1.7500e-003, 0.0, -3.000  
369.07, 2.0000e-003, 0.0, -3.000  
377.69, 2.2500e-003, 0.0, -3.000  
384.92, 2.5000e-003, 0.0, -3.000  
391.61, 2.7500e-003, 0.0, -3.000  
397.88, 3.0000e-003, 0.0, -3.000  
402.24, 3.2500e-003, 0.0, -3.000  
406.36, 3.5000e-003, 0.0, -3.000  
410.22, 3.7500e-003, 0.0, -3.000  
413.93, 4.0000e-003, 0.0, -3.000  
416.46, 4.2500e-003, 0.0, -3.000  
419.62, 4.5000e-003, 0.0, -3.000  
422.66, 4.7500e-003, 0.0, -3.000  
425.34, 5.0000e-003, 0.0, -3.000  



427.84, 5.2500e-003, 0.0, -3.000  
429.73, 5.5000e-003, 0.0, -3.000  
432.32, 5.7500e-003, 0.0, -3.000  
434.48, 6.0000e-003, 0.0, -3.000  
436.50, 6.2500e-003, 0.0, -3.000  
438.19, 6.5000e-003, 0.0, -3.000  
440.25, 6.7500e-003, 0.0, -3.000  
442.01, 7.0000e-003, 0.0, -3.000  
443.77, 7.2500e-003, 0.0, -3.000  
445.70, 7.5000e-003, 0.0, -3.000  
447.06, 7.7500e-003, 0.0, -3.000  
448.54, 8.0000e-003, 0.0, -3.000  
450.01, 8.2500e-003, 0.0, -3.000  
451.31, 8.5000e-003, 0.0, -3.000  
452.60, 8.7500e-003, 0.0, -3.000  
454.08, 9.0000e-003, 0.0, -3.000  
455.52, 9.2500e-003, 0.0, -3.000  
457.04, 9.5000e-003, 0.0, -3.000  
458.35, 9.7500e-003, 0.0, -3.000  
459.51, 1.0000e-002, 0.0, -3.000  
461.23, 1.0375e-002, 0.0, -3.000  
463.95, 1.0938e-002, 0.0, -3.000  
467.77, 1.1781e-002, 0.0, -3.000  
472.94, 1.3047e-002, 0.0, -3.000  
480.53, 1.4945e-002, 0.0, -3.000  
490.26, 1.7793e-002, 0.0, -3.000  
503.44, 2.2064e-002, 0.0, -3.000  
520.75, 2.8472e-002, 0.0, -3.000  
542.84, 3.8083e-002, 0.0, -3.000  
562.77, 4.8083e-002, 0.0, -3.000  
580.89, 5.8083e-002, 0.0, -3.000  
597.08, 6.8083e-002, 0.0, -3.000  
611.45, 7.8083e-002, 0.0, -3.000  
624.45, 8.8083e-002, 0.0, -3.000  
636.16, 9.8083e-002, 0.0, -3.000  
646.78, 1.0808e-001, 0.0, -3.000  
656.68, 1.1808e-001, 0.0, -3.000  
665.60, 1.2808e-001, 0.0, -3.000  
673.75, 1.3808e-001, 0.0, -3.000  
681.30, 1.4808e-001, 0.0, -3.000  
688.23, 1.5808e-001, 0.0, -3.000  
694.57, 1.6808e-001, 0.0, -3.000  
700.46, 1.7808e-001, 0.0, -3.000  
705.87, 1.8808e-001, 0.0, -3.000  
710.90, 1.9808e-001, 0.0, -3.000  
715.59, 2.0808e-001, 0.0, -3.000  
51.32, 0.0000e+000, 0.0, 2.000  
83.83, 2.5000e-004, 0.0, 2.000  
132.45, 5.0000e-004, 0.0, 2.000  
161.09, 7.5000e-004, 0.0, 2.000  
187.88, 1.0000e-003, 0.0, 2.000  
205.64, 1.2500e-003, 0.0, 2.000  
217.75, 1.5000e-003, 0.0, 2.000  
228.37, 1.7500e-003, 0.0, 2.000  
235.14, 2.0000e-003, 0.0, 2.000  
240.62, 2.2500e-003, 0.0, 2.000  
245.23, 2.5000e-003, 0.0, 2.000  
249.50, 2.7500e-003, 0.0, 2.000  



253.49, 3.0000e-003, 0.0, 2.000  
256.26, 3.2500e-003, 0.0, 2.000  
258.89, 3.5000e-003, 0.0, 2.000  
261.35, 3.7500e-003, 0.0, 2.000  
263.71, 4.0000e-003, 0.0, 2.000  
265.33, 4.2500e-003, 0.0, 2.000  
267.34, 4.5000e-003, 0.0, 2.000  
269.28, 4.7500e-003, 0.0, 2.000  
270.99, 5.0000e-003, 0.0, 2.000  
272.57, 5.2500e-003, 0.0, 2.000  
273.78, 5.5000e-003, 0.0, 2.000  
275.43, 5.7500e-003, 0.0, 2.000  
276.80, 6.0000e-003, 0.0, 2.000  
278.09, 6.2500e-003, 0.0, 2.000  
279.17, 6.5000e-003, 0.0, 2.000  
280.48, 6.7500e-003, 0.0, 2.000  
281.60, 7.0000e-003, 0.0, 2.000  
282.72, 7.2500e-003, 0.0, 2.000  
283.95, 7.5000e-003, 0.0, 2.000  
284.82, 7.7500e-003, 0.0, 2.000  
285.77, 8.0000e-003, 0.0, 2.000  
286.70, 8.2500e-003, 0.0, 2.000  
287.53, 8.5000e-003, 0.0, 2.000  
288.35, 8.7500e-003, 0.0, 2.000  
289.29, 9.0000e-003, 0.0, 2.000  
290.21, 9.2500e-003, 0.0, 2.000  
291.18, 9.5000e-003, 0.0, 2.000  
292.01, 9.7500e-003, 0.0, 2.000  
292.75, 1.0000e-002, 0.0, 2.000  
293.85, 1.0375e-002, 0.0, 2.000  
295.58, 1.0938e-002, 0.0, 2.000  
298.02, 1.1781e-002, 0.0, 2.000  
301.31, 1.3047e-002, 0.0, 2.000  
306.15, 1.4945e-002, 0.0, 2.000  
312.34, 1.7793e-002, 0.0, 2.000  
320.74, 2.2064e-002, 0.0, 2.000  
331.77, 2.8472e-002, 0.0, 2.000  
345.84, 3.8083e-002, 0.0, 2.000  
358.54, 4.8083e-002, 0.0, 2.000  
370.08, 5.8083e-002, 0.0, 2.000  
380.40, 6.8083e-002, 0.0, 2.000  
389.55, 7.8083e-002, 0.0, 2.000  
397.83, 8.8083e-002, 0.0, 2.000  
405.30, 9.8083e-002, 0.0, 2.000  
412.06, 1.0808e-001, 0.0, 2.000  
418.37, 1.1808e-001, 0.0, 2.000  
424.05, 1.2808e-001, 0.0, 2.000  
429.24, 1.3808e-001, 0.0, 2.000  
434.05, 1.4808e-001, 0.0, 2.000  
438.47, 1.5808e-001, 0.0, 2.000  
442.51, 1.6808e-001, 0.0, 2.000  
446.26, 1.7808e-001, 0.0, 2.000  
449.71, 1.8808e-001, 0.0, 2.000  
452.91, 1.9808e-001, 0.0, 2.000  
455.90, 2.0808e-001, 0.0, 2.000  
**  
*Potential 
 1.162,  1.162,     1.,  1.2364, 1.1, 1.1 



** 
 

User subroutine to give triaxiality as user defined field 
 
      SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT, 
     1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER, 
     2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO, 
     3 LACCFLA) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 CMNAME,ORNAME 
      CHARACTER*3  FLGRAY(15) 
      DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3), 
     1 T(3,3),TIME(2) 
      DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*), 
     1 COORD(*) 
C 
C Cet Pressure from stress invariants output 
      CALL GETVRM('SINV',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,MATLAYO,LACCFLA) 
      PRESS = ARRAY(3) 
      SMISES = ARRAY(1) 
 
C Calculate triaxiality 
      IF (SMISES .ne. 0) THEN 
         TRIAX = -PRESS / SMISES 
      ELSE 
         TRIAX = 0 
      END IF 
 
      FIELD(1) = TRIAX  
      STATEV(1) = FIELD(1) 
C If error, write comment to .DAT file: 
      IF(JRCD.NE.0)THEN 
       WRITE(6,*) 'REQUEST ERROR IN USDFLD FOR ELEMENT NUMBER ', 
     1     NOEL,'INTEGRATION POINT NUMBER ',NPT 
      ENDIF 
C 
      RETURN 
      END 
 


