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Abstract

Linear kinetic theory of electromagnetic fluctuations in a homogeneous, magnetized, collisionless
electron-positron plasma predicts two lightly damped modes propagate at relatively long wave-
lengths: an Alfvén-like mode with dispersion w, = ko4 and a magnetosonic-like mode with
dispersion w, =~ kv 4 if B, << 1. Here 04 is the Alfvén speed in an electron-positron plasma and ||
refers to the direction relative to the background magnetic field B,. Both modes have phase speeds
wy/k which monotonically decrease with increasing wavenumber. The Alfvén-like fluctuations are
almost incompressible, but the magnetosonic-like fluctuations become strongly compressible at
short wavelengths and propagation sufficiently oblique to B,. Using the linear dispersion prop-
erties of these modes, scaling relations are derived which predict that turbulence of both modes
should be relatively anisotropic, with fluctuating magnetic energy preferentially cascading in direc-
tions perpendicular to B,. Turbulent spectra in the solar wind show two distinct power-law regimes
separated by a distinct breakpoint in observed frequency; this characteristic should not be present
in electron-positron turbulence because of the absence of whistler-like dispersion. Linear theory
properties of the cyclotron and mirror instabilities driven by either electron or positron temperature
anisotropies are generally analogous to those of the corresponding instabilities in electron-proton

plasmas.



I. INTRODUCTION

Most computational studies of homogeneous turbulence in magnetized, collisionless plas-
mas have utilized fluid models such as magnetohydrodynamics (MHD) [References [1] and
[2] and citations therein] and electron magnetohydrodynamics (EMHD). [3], [4], [5] However,
collisionless dissipation usually increases with increasing wavenumber k, so that a kinetic ap-
proach is necessary to provide a complete description of short-wavelength turbulence such as
that due to whistler fluctuations in collisionless plasmas. Particle-in-cell (PIC) simulations,
which represent both electrons and ions as super-particles, capture not only the wave-wave
interactions represented by fluid descriptions, but also the wave-particle interactions such as
Landau and cyclotron damping which describe the dissipation of plasma turbulence cascad-
ing to short wavelengths. Current computing facilities do not yet allow long-time simulations
of plasma turbulence with physically realistic proton-electron mass ratios. But substantial
simulations of turbulence in electron-positron plasmas do lie within the realm of current
capability. Thus electron-positron PIC models can be powerful tools for testing predictions
drawn from fundamental theories of plasma turbulence and magnetic reconnection [6], [7],
8], 9]

The first PIC simulation of whistler turbulence[10] demonstrated the forward cascade of
such fluctuations from relatively long to shorter wavelengths, and also showed that such
turbulence becomes anisotropic with more energy at directions of propagation relatively
perpendicular to the background magnetic field B, as contrasted with directions relatively
parallel to B,. Saito et al. [11] carried out further PIC simulations of whistler turbulence,
showing that the turbulence becomes more anisotropic as the fluctuation amplitudes in-
crease, and deriving scaling arguments which predict an anisotropy consistent with that
obtained from the computations.

Theories of fluctuations in electron-positron plasmas may also be applied to astrophys-
ical plasmas. The high-energy radiation environments of some astrophysical objects may
maintain an electron-positron plasma through pair creation and annihilation; under such
circumstances relativistic theories [12], [13], [14], [15], [16] and simulations [17] must be
used. However, the research described in this manuscript addresses only non-relativistic
plasmas; this enables us to examine the complete kinetic dispersion equation for homoge-

neous, collisionless plasmas without any approximations beyond that of small-amplitude



linear theory.

It has been hypothesized that weak homogeneous turbulence in collisionless, magnetized
plasmas reflects the properties of its constituent small-amplitude fluctuations. In the frame-
work of this hypothesis, we here use linear theory of electromagnetic fluctuations to predict
basic properties of turbulence in electron-positron plasmas as a preface for future PIC sim-
ulations of such turbulence.

Therefore, we here consider the linear kinetic theory of fluctuations in electron-positron
plasmas, and use the results to construct scaling relations analogous to those of Reference
[11]. If the electron and positron temperatures are similar, electrostatic fluctuations at
frequencies below the plasma frequency are heavily damped, so we here address only elec-
tromagnetic fluctuations. If the wavevector k satisfies k x B, = 0, Iwamoto [18] used linear
kinetic theory to show that the left-hand and right-hand circularly polarized fluctuations
have identical dispersion, and, as a consequence, the whistler mode does not exist in electron-
positron plasmas. Here we consider the more general case of propagation oblique to B,; we
find two distinct electromagnetic modes in an isotropic electron-positron plasma, analogous
to the Alfvén and magnetosonic modes of an electron-proton plasma; we label them the
Alfvén-like and magnetosonic-like modes. We find that both modes are relatively free of dis-
persion in the wavenumber regime of weak damping; this stands in contrast to the strongly
dispersive fluctuations found on magnetosonic-whistler modes in electron-proton plasmas.
Thus electron-positron PIC simulations should enable the study of kinetic dissipation in
plasmas in the absence of whistler-like dispersion.

Section IT of this manuscript describes some linear theory properties of these two modes.
Section III uses these linear properties to predict some properties of turbulence in electron-
positron plasmas. Section IV describes linear theory properties of the cyclotron and mirror
instabilities driven by temperature anisotropies on either the electrons or the positrons.
Section V draws conclusions from our research.

We denote the jth species plasma frequency as w; = \/W, the jth species cy-
clotron frequency as Q; = e;B,/mjc, and f); = 87mjkBT||j/B§. Solutions to the linear
dispersion equation are in terms of a wavevector k with real components and a complex
frequency w = w, +iy. The symbols || and L denote directions parallel and perpendicular,
respectively, to the background magnetic field B,, and the subscripts e and p will refer to

electron and positron, respectively. Here the Alfvén speed in an electron-positron plasma is



U4 = B,/v/8mn.m.. We define 6, the angle of mode propagation, by k - B, = kB, cos(f).

II. LINEAR THEORY

This section describes results from the solution of the linear kinetic dispersion equation
for electromagnetic fluctuations in a homogeneous, collisionless electron-positron plasma.
Unless stated otherwise, the dimensionless parameters characterizing the zeroth order back-
ground plasma are §. = 0.10, w./|Q| = 2.5, T, = T),, T\ ; = T)};, and m, = m,,. Our results
are essentially independent of w,/|€2.| as long as this parameter is much greater than unity.
We choose w,/|Q2| = 2.5 for our calculations because PIC simulations run most efficiently
when w,/|€| is of order unity. We assume the zeroth order velocity distribution of each
species to be a Maxwellian or bi-Maxwellian, and solve the full electromagnetic dispersion
equation[19] without analytic approximation.

Linear theory yields two distinct electromagnetic modes, which we call the Alfvén-like
and magnetosonic-like modes, with linear dispersion properties illustrated in Figures 1 and
2. At k x B, = 0, the two modes have identical dispersion and damping, with w, = kv,
and essentially zero damping at kc/w, << 1. At parallel propagation, the Alfvén-like mode
is left-hand circularly polarized, and the magnetosonic-like mode is right-hand circularly
polarized. At shorter wavelengths, the cyclotron resonances assert themselves (positron
cyclotron resonance for the Alfvén-like mode and the electron cyclotron resonance for the
magnetosonic-like mode), w, becomes dispersive, and cyclotron damping displays its char-
acteristic rapid onset as kjjc/w, approaches unity.

At propagation oblique to B,, however, the properties of the two modes diverge; the
Alfvén-like mode shown in Figure 1 satisfies w, = kjv4 at long wavelength, whereas the
magnetosonic-like mode shown in Figure 2 is more nearly isotropic with w, =~ kv, at
kc/w. << 1. Both modes have phase speeds w,/k which monotonically decrease with in-
creasing wavenumber, so that neither mode exhibits whistler-like dispersion.[18] For the /3, =
0.10 case illustrated here, damping of both modes has significant onset at kjc/w. ~ 1.

The differences in dispersion between the two modes are relatively small, so for diagnostic
purposes it is useful to consider other quantities which have larger differences in numerical
value. We here examine several ”transport ratios”, ratios of the squares of fluctuating

quantities which are independent of fluctuation amplitude and can be readily computed



from linear theory [e.g., Reference [19], Chapter 5]. The three quantities of interest here are

the magnetic compressibility
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In electron-positron plasmas both the Alfvén-like and magnetosonic-like modes have zero
magnetic compressibility for all wavevectors illustrated in Figures 1 and 2. In contrast the
magnetic compressibility in electron-proton plasmas is non-zero for both kinetic Alfvén and
magnetosonic modes; although C} << 1 for the former mode at 3, = 0.10 [Reference [20],
Figure 7], the latter mode can exhibit C| close to unity at sufficiently oblique propagation.

Although the magnetic compressibility is zero, the parallel fluctuating electric fields in
electron-positron plasmas are not. Figure 1b and Figure 2b show that [0E|*/|0E|? << 1
for both modes; the same condition holds for the kinetic Alfvén and magnetosonic modes in
an electron-proton plasma [e.g., Fig. 7 of Reference [20]].

At oblique propagation the electron and positron compressibilities are non-zero and equal
for both Alfvén-like and magnetosonic-like fluctuations. However, as shown in Figures lc
and 2c, €}, << 1 for the former mode, whereas C}, > 1 at sufficiently oblique angles of
propagation and sufficiently large kc/w, of the latter mode. Similar relationships hold for
kinetic Alfvén and magnetosonic fluctuations at m, = 1836m,..

Figure 3 illustrates the (3, dependence of dispersion and damping for the Alfvén-like
mode at parallel propagation. With increasing (3),, the mode shows stronger departures
from w, = kjv4 at short wavelengths, and the onset of positron cyclotron damping takes
place at smaller values of kjc/w.. The same figure applies to the magnetosonic-like mode
at k x B, = 0 if 3. and ), are interchanged. As (3. increases, that mode shows stronger
dispersion and the onset of electron cyclotron damping is at smaller values of kjc/w.. At
k x B, = 0 the magnetosonic-like mode is relatively independent of variations in 3, and the
Alfvén-like mode is similarly independent of variations in ). Note that, even for T, # T},

there is no evidence for whistler-like (i.e. w, ~ k?) dispersion for either mode.



III. SCALING RELATIONS

This section uses the results of Section II to construct a scenario for cascading weak tur-
bulence in a homogeneous electron-positron plasma. Our two fundamental assumptions are,
first, that linear dispersion and dissipation determine the characteristics of such turbulence
[21] and, second, that some nonlinear properties of the turbulence follow from arguments
parallel to those applied to weak whistler turbulence. [5], [11], [22], [23]

Observations [24] show two distinct regimes of solar wind turbulence spectra: the long-
wavelength inertial range with [0B|? ~ k= with a ~ 5/3, and a shorter wavelength regime
with a > 5/3 often termed the ”dissipation range”. The breakpoint between the two regimes
lies approximately at kc/wpoton =~ 1. Reference [21] attributes this breakpoint to the tran-
sition from Alfvén-like dispersion (w, =~ kv,) at longer wavelengths to whistler-like disper-
sion at shorter wavelengths. Another scenario attributes the properties of the dissipation
range to the predominance of oblique-propagating kinetic Alfvén waves. [25], [26] Although
the controversy continues as to whether whistlers or kinetic Alfvén waves are the primary
constituent of the short-wavelength regime of solar wind turbulence, both modes exhibit
quadratic dispersion (w, ~ k?) at short wavelengths, and it is plausible to assume that the
steep power-law spectra at high frequencies are due to such dispersion.[21] On the basis of
this assumption, and in the absence of any quadratic dispersion for either the Alfvén-like or
magnetosonic-like modes, we predict no breakpoint in homogeneous electron-positron tur-
bulence. PIC simulations should show only a relatively steep (o > 5/3) power law spectrum
in the cascade regime, followed by a true dissipation range with a faster-than-power-law
spectral decrease at kc/w, > 1 as predicted by Reference [27].

Next, we consider the interaction of wave packets with parallel widths [j = 27 /k) where
the constituent modes each satisfy either the Alfvén-like dispersion equation w, ~ kjv4 or
the low-3 magnetosonic-like w, ~ kv,. The wave packet interaction time 7, is determined
by fluctuation properties at propagation parallel to B,, so

d
Tw (1)
(Ow/0k))
For an eddy of scale length [ the turnover time is 744, =~ [/0v, where the denominator is
the fluctuating electron velocity from the EMHD model. Then
2r w? B,
Tt = 0 [ o] @
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Following the usual assumption of weak incoherent interactions between eddies, the time

scale for the cascade of turbulent fluctuation energy is

2
T
Teascade = cddy (3)

Tw
In strong turbulence, Alfvén-like fluctuations and magnetosonic-like fluctuations are
tightly coupled. But if amplitudes are sufficiently weak, it is possible that the two modes
are only weakly interactive, and that turbulence associated with each mode can be treated
separately. The following arguments are based upon this assumption.
First consider Alfvén-like fluctuations with

2T
w(k) ~
) = o

Then the cascade time is
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Second, consider interacting magnetosonic-like wave packets with low-3 dispersion w, ~
kv 4; then
2k
Tw(kK) 2 ———
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It follows that the cascade time is
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We consider two cases: Case I with k; >> k|, and Case II with k; << k. We also

make two assumptions: first, that the &k, of Case I is of the same order as k; of Case II, and,
second, that [0B(k.)|*> ~ [0B(ky)|*>. Then for the Alfvén-like fluctuations it follows that
k
Tcascade(kJ_) ~ <_|> <<1
Tcascade(kH) kJ_ I

Similarly, for magnetosonic-like fluctuations, we have

2
Tcascade(kL) ~ <ﬂ> << <ﬂ> << 1
Tcascade(kH) kL I ki T
This model therefore implies that, for both modes, the cascade of magnetic fluctuation
energy is much faster in directions quasi-perpependicular to B, than in directions quasi-

parallel to the background field. We thus predict that the cascade regime of electron-

positron turbulence should display the same type of anisotropy as found in PIC simulations
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of cascading whistler turbulence.[10], [11] But for fluctuations at similar wavenumbers, the
model further implies that the ratio of the perp-versus-parallel cascade rates are much faster
for the magnetosonic-like fluctuations, implying that magneotsonic-like turbulence should
be more anisotropic than Alfvén-like turbulence.

A complete simulation of homogeneous turbulence should be run to at least t = T.4scade
to assure that the full late-time physics of the cascade has been captured. From Equations
(4) and (5) we note that the cascade is a product of two factors which both have strong,
but opposite, dependences on the wavenumber; errors in estimating the value of either the
wavenumber or the fluctuating magnetic field energy density can yield an incorrect estimate
for T.qscade- However, let us assume, as is often the case, that the reduced power spectrum
displays a power-law dependence on wavenumber, e.g.,

SB(kL)|? Xk, [0B(k)[?
B B2

o

=e(kic/we) @

where € characterizes the total energy in the spectrum. Then, for example, the cascade time
for Alfvén-like fluctuations at quasi-perpendicular propagation becomes

Tcascade(kL) |Qe| ~ B kl

We
If, as we anticipate, 2 < a < 4 for turbulence in electron-positron plasmas, then this expres-

sion becomes relatively insensitive to the magnitude of the wavenumber and a more accurate

estimate for T.qscade Mmay be obtained.

IV. INSTABILITIES

In this section, we return to linear theory to consider the consequences of the temperature
anisotropy 1'\;/1j; > 1 separately on the positrons and electrons. In an electron-proton
plasma, this anisotropy on the protons leads to two distinct instabilities, the Alfvén-cyclotron
instability with 0 < w, < ,r6t0n and maximum growth rate at k x B, = 0 and the proton
mirror instability with w, = 0 in a homogeneous plasma and which grows only at propagation
oblique to the background magnetic field. If 3,,4t0n ~ 1, these two modes have similar growth
rates and threshold anisotropy conditions.[28] On the other hand, if T, . /T, > 1, the whistler
anisotropy instability at Qporn < wy < €| and maximum growth at k x B, = 0 has a far

larger growth rate than the electron-driven mirror if m, >> m,.
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In an electron-positron plasma 7', /7j. > 1 can drive the magnetosonic-like mode unsta-
ble, just as a sufficiently large 7,,,/7j, > 1 will lead to instability of the Alfvén-like mode.
The relevant wave-particle interactions here are the cyclotron resonances, so we name these
two growing modes the electron cyclotron and positron cyclotron instabilities, respectively.
Figure 4 shows the dispersion of the electron cyclotron instability at three angles of propa-
gation. By analogy with the whistler anisotropy instability, the maximum growth rate ,,
is at k x B, = 0 and kjc/w. ~ 1. For the same parameters except isotropic electrons and
T\p/T), = 3.0, the positron cyclotron instability has identical dispersion properties. For
both instabilities, v/|€2;| increases with increasing species anisotropy and increasing (j;.

A T, /T which is sufficiently greater than unity can also drive a compressible mirror
instability with maximum growth highly oblique to B,. Figure 5 illustrates some dispersion
properties of the positron mirror instability for a single choice of plasma parameters. The
maximum growth rate lies at a wavevector strongly oblique (but not strictly perpendicular)
to B,; increasing the anisotropy pushes v, to smaller values of . The positron compress-
ibility is nonzero but relatively small; although C, is not shown, C, < C), for the parameters
shown here. In contrast, Figure 5b shows that the magnetic compressibility is close to unity.
Each of these properties is similar to those of the proton mirror instability in an electron-
proton plasma. Sample computations show that, if the only change in the parameters is
to transfer the positron anisotropy to the electrons, the growth rate of the electron mir-
ror instability has exactly the same wavevector dependence as that of the positron mirror
instability.

Figure 6 shows the threshold anisotropies at three different values of the maximum growth
rate for the positron mirror instability (dotted lines) and the positron cyclotron instability
(solid and dashed lines) as functions of f,. The results are qualitatively similar to the
thresholds for the analogous Alfvén-cyclotron and proton mirror instabilities in an electron-

proton plasma; [28] at (), < 5 the positron cyclotron instability has the smaller threshold

anisotropy, whereas the positron mirror instability has the lower threshold if 5, is sufficiently
large and 7,,/€, < 0.01. However, in contrast to the electron-proton case, Figure 6 shows
that, if the maximum growth rate is sufficiently large, the positron cyclotron instability has

the lower threshold anisotropy over 1 < 3, < 100.



V. CONCLUSIONS

We have used linear kinetic dispersion theory to study electromagnetic fluctuations
in a magnetized, homogeneous, collisionless electron-positron plasma. There are two
weakly damped electromagnetic modes: the incompressible Alfvén-like fluctuation and the
magnetosonic-like fluctuation which becomes compressible at propagation oblique to the
background magnetic field. The two modes have identical dispersion and damping at paral-
lel propagation[18], where the onset of cyclotron damping is near kjc/w, ~ 1. Both modes
have phase speeds w, /k which monotonically decrease with increasing wavenumber, so that
neither mode exhibits whistler-like dispersion with w ~ k2. A sufficiently large T, / T drives
the electron cyclotron instability while a sufficiently large T, /T, excites the positron cy-
clotron instability with maximum growth rate in both cases at k x B, = 0 and kjc/w; ~ 1.
The same anisotropies can also excite the electron mirror and positron mirror instabilities
with maximum growth rate at propagation oblique to B, and kc/w, < 1.

Using our linear theory results and a basic turbulence model, we have made predictions
concerning properties of homogeneous turbulence in electron-positron plasmas. We predict
that cascading turbulence will be anisotropic in the same sense as MHD and whistler tur-
bulence. However, in the absence of whistler-like dispersion, we further predict that there
will be only a single regime of turbulent cascade with power-law spectra, followed by a true
dissipation range of rapidly decreasing spectra at kc/we. 2, 1. These predictions now can
be tested with PIC simulations in an electron-positron plasma model, while awaiting im-
provements in computing power and speed that will permit full-fledged PIC simulations of
turbulence in electron-proton plasmas at some later date.

If these predictions are confirmed by PIC simulations in m, = m, plasmas, the next step
should be to extend the simulations to the range 1 < m,/m, < 1836. At m,/m, ~ 64,
linear theory predicts that the characteristic w, ~ kjk dispersion of the whistler becomes
distinct on the magnetosonic-like mode, as illustrated in Figure 7. Thus, PIC simulations of
turbulence at sufficiently large m,/m. should, if the hypothesis of Reference [21] is correct,
then yield cascading spectra with two distinct power law regimes separated by a breakpoint
at kc/wyroton ~ 1. Such computations would also help resolve the current controversy as to
whether short wavelength turbulence observed in the solar wind is primarily due to whistler

modes at w, > Qproron[11] or to kinetic Alfvén fluctuat ions at w, < Qproton.[25], [26]
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electric field ratio |§E)|?/|0E[*. (c) The electron compressibility Ce.
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FIG. 3: Linear dispersion properties at k x B, = 0 of the Alfvén-like mode in electron-positron
plasmas. Except for f),, parameters are as stated in Section II. Here the real frequency wy, /12|
(solid and dashed lines) and the damping rate v/|Q.| (dotted lines) are shown as functions of

wavenumber k| with ), variations as labeled.
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FIG. 4: Linear dispersion properties of the electron cyclotron instability with 7' . /THe = 3.0 in
electron-positron plasmas. All other parameters are as stated in Section II. The real frequency
wr /|| and the growth/damping rate /|| are shown as functions of the wavenumber for angles
of propagation as labeled. At 6 = 0°, the results are identical for the positron cyclotron instability

with TLp/THp = 3.0.

FIG. 5: Linear dispersion properties of the positron mirror instability as functions of the direction
of propagation in electron-positron plasmas. Panel (a) shows the growth rate and the positron
compressibility, whereas panel (b) shows the magnetic compressibility as functions of §. Parameters

are as stated in Section II and as given in panel (b).

FIG. 7: The real frequency of the magnetosonic-like mode in a two-species plasma as a function of
wavenumber at 6 = 0°. The mass ratio m,/m,. is varied as labeled; other parameters are as stated

in Section II.

FIG. 6: Threshold positron anisotropies as functions of 3, for three different values of the max-
imum growth rate of the positron cyclotron instability (solid and dashed lines) and the positron

mirror instability (dotted lines). Other parameters are as stated in Section II.
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Figure 7






