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X-2 GARY ET AL.: PROTON BERNSTEIN INSTABILITY: LINEAR THEORY

Abstract.  Linear kinetic dispersion theory for electromagnetic fluctua-
tions in a homogeneous, magnetized, collisionless plasma is used to study the
properties of an ion Bernstein mode instability driven by a proton velocity
distribution f,(v) such that 0f,(v,)/0vy > 0 where L denotes directions
perpendicular to the background magnetic field B,. Here f,(v) = fi(v) —
fo(v) where f; and fo are Maxwellian velocity distributions with slightly dif-
ferent densities and temperatures; plasma parameters are taken from mag-
netospheric observations. Then the growth rate of this instability has rela-
tive maxima at the fundamental and harmonics of w, =~ €,, the proton
cyclotron frequency, wavevector k at 0 < k; << k, where || and L de-

note the directions parallel and perpendicular to B,, and wavelengths of the

order of or smaller than the proton gyroradius. The maximum instability growth

rate is a monotonically decreasing function of the electron-to-proton tem-
perature ratio, but has its largest value at an intermediate value of the pro-

ton 5 (~ 0.5 for the parameters considered here).
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1. Introduction

The perpetual restlessness of the magnetosphere manifests itself as a progression of non-
thermal species velocity distributions, the microinstabilities which arise from the various
forms of free energy, and the consequent enhanced field fluctuations. A striking illus-
tration of the various unstable proton velocity distributions which may develop during a
geomagnetic storm has been obtained from the RAM magnetospheric model [Jordanova
et al., 1997]. Fig. 4 of Chen et al. [2010] shows two distinct types of potentailly unstable
distributions. As a result of nightside injection, proton velocity distributions f,(v) near
midnight are essentially bi-Maxwellian with 7', /T) > 1, where the subscripts indicate di-
rections relative to the background magnetic field B,. But between prenoon and duskside,
energy-dependent ion injection leads to a velocity-ring-type distribution with a distinct
dfp(vy)/0v, > 0 property.

Bi-Maxwellian f,(v) drive the Alfvén-cyclotron instability at frequencies w, < €, where
€2, is the proton cyclotron frequency; there is an abundant literature on linear theory [e.g.,
Gendrin et al., 1984] and computer simulations [e.g., Gary et al., 1995] of this instability
and its associated enhanced fluctuations which many observers call ”electromagnetic ion
cyclotron (EMIC) waves” [e.g., Anderson et al., 1992a, 1992b]. In contrast, the literature
on the instabilities associated with proton velocity-ring-type distributions in the magne-
tosphere is much less substantial; we here address the linear theory properties of such an
instability.

Enhanced magnetic and electric field fluctuations at frequencies between the proton cy-

clotron frequency and the lower hybrid frequency and at propagation nearly perpendicular
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X-4 GARY ET AL.: PROTON BERNSTEIN INSTABILITY: LINEAR THEORY

to B, are observed frequently near the equatorial plane of the terrestrial magnetosphere.
Such enhanced fluctuations were first called “equatorial noise” [Russell et al., 1970; San-
tolik et al., 2002, 2004], but more recently have been termed “ magnetosonic waves”
[Perraut et al., 1982; Horne et al., 2007; Pokhotelov et al., 2008]. Horne et al. [2007]
suggested that these enhanced fluctuations may accelerate electrons from tens of keV up
to a few MeV in the outer radiation belt. This has stimulated substantial recent inter-
est in these fluctuations [Meredith et al., 2008, 2009; Tao et al., 2009; Shprits, 2009; Ni
and Summers, 2010; Bortnik and Thorne, 2010]. Magnetospheric observations character-
ize the unstable proton velocity distributions f,(v) associated with these magnetosonic
waves as having a velocity-ring type property or, more generally, with 0f,(v,)/dv, > 0
where | denotes directions perpendicular to the background magnetic field B, [Perraut
et al., 1982; Boardsen et al., 1992; Meredith et al., 2008; Denton et al., 2010].

If the positive slope of f,(v,) is sufficiently large, linear kinetic dispersion theory in a
relatively homogeneous, collisionless, magnetized plasma predicts that proton Bernstein
modes at 0 < kj << ki become unstable at real frequencies w ~ nf2,, where n =
1, 2, 3 ... Electromagnetic linear theory of this instability has been addressed in the
context of various space plasmas using the assumption of unmagnetized ions [Akimoto et
al., 1985] as well as the more complete model of magnetized ions [Gul’elmi et al., 1975;
Perraut et al., 1982; Boardsen et al., 1992; Dendy and McClements, 1993; McClements
and Dendy, 1993; McClements et al., 1994; Horne et al., 2000; Denton et al., 2010].
Although some particle-in-cell simulations have addressed the nonlinear consequences of
this instability in the electrostatic limit [e.g., Lee and Birdsall, 1979; Roth and Hudson,

1985; Janhunen et al., 2003; Ashour-Abdalla et al., 2006], few simulations have addressed
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the fully electromagnetic properties of this instability [Lee and Birdsall, 1979] in the high-3
regime appropriate for the terrestrial magnetosphere.

The term ”magnetosonic waves” is a misnomer. In magnetohydrodynamic (MHD) the-
ory, magnetosonic waves correspond to the normal mode which, at propagation oblique
to the background magnetic field, is compressive and has a phase speed faster than the
incompressible Alfven mode. Because MHD theory is limited to frequencies much below
the proton cyclotron frequency, the magnetosonic mode has historically been associated
with such very low frequencies. Unfortunately, many observers have chosen to apply the
"magnetosonic” label to their measurements of compressional modes at and above the
proton cyclotron frequency. We will bow to precedent and use this incorrect term in re-
ferring to observations of such fluctuations in the magnetosphere. But we insist on using
the more appropriate term ”ion Bernstein mode instability” (often omitting "mode” for
the sake of brevity) in describing linear theory calculations of such growing and enhanced
fluctuations.

We denote the jth species plasma frequency as w; = \/W, the jth species cy-
clotron frequency as ; = e; B,/mc, the jth component thermal speed as v; = \/kgTj/m;,
B; = 8mnjkpTj/B2, and 3; = 8tn,kpT;/B2. The Alfvén speed is vy = B,/v/Amn,m;.
Here n, is the total plasma density, B, denotes the uniform background magnetic field,
and we consider a two-species plasma of electrons (subscript €) and protons (subscript p).

The Cartesian coordinate system of our linear dispersion theory [Gary, 1993] admits
spatial variations in both the direction parallel to B, (denoted by ||) and one direction
perpendicular to the background field (denoted by L), but no spatial variations in the

other perpendicular direction (denoted by L1). So the real wavevector is defined as
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k = zk) + yk, = zk cos() + yk sin(f) where § denotes the wavevector direction relative
to B,, and the complex frequency is w = w, + 4y where v > 0 represents temporal growth
of a normal mode of the plasma.

Here we consider the linear theory of the proton Bernstein mode instability driven
by 0f,(vy)/0v, > 0. We represent this nonthermal property of the proton velocity
distribution via the difference of two isotropic Maxwellian distributions with different

densities and temperatures [Horne et al., 2000; Denton et al., 2010]:

fp(V) = fi(v) — fa(v) (1)

with

j

filv) = Wexp(—ﬁ/%ﬁ)
Here v? = vﬁ + o2, with n, = ny — ny and n,T, = nT) — nyT>. The background electrons
consist of a single component described by a Maxwellian velocity distribution.

From Table 6 of Denton et al. [2010], n, = 0.50 cm™3, kT, = 4.23 keV, and B, =
32.8 nT. Thus vy/c = 3.4 x 1073, ny/n, = 6.3, na/n, = 5.3, To/T; = 0.90, and T, /T, =
0.10. However, we choose T';/T|y = T12/T\ 2 = 1, so that T,,/T; = 1.53, B = 0.80

and (3, = (T,/T)) = 1.224. Using these parameters Figure 1 illustrates the reduced

perpendicular velocity distribution

folvs) = [ dudsfy(v)

where ¢ is the azimuthal angle of the perpendicular component of the velocity. This shows

the positive slope at relatively small v; which is the free energy driving this instability.
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2. Linear Theory

This section describes results obtained by numerically solving the electromagnetic linear
kinetic dispersion equation for Maxwellian velocity distributions [Gary, 1993] without
approximation. For the parameters stated in the Introduction, the maximum growth rate
of the instability is v,,/€, ~ 0.038 at k,,v,/Q, ~ 3.10, 6,, = 86.75°, and w, /2, ~ 0.98.
The first three harmonics (n = 2, 3, and 4) of this mode are also unstable, although the
maximum growth rates decrease monotonically with increasing n.

Figure 2 shows properties of the fundamental mode of the proton Bernstein instability
as functions of wavenumber at 6,,, the angle of maximum growth rate. The magnetic
fluctuations have both a transverse and a compressive component with [0B)|*> < 0B |*
at maximum growth rate. The corresponding electric field fluctuations are predominantly
electrostatic, with [§F|? orders of magnitude larger than the other two electric field
components. At maximum growth rate, the dimensionless ratio [0E|?/|dB|* ~ 9.0 x1075.

Figure 3 shows the same properties of the fundamental mode as functions of 6 at k,,,
the wavenumber of maximum growth rate. For these parameters, the mode grows over a
very limited range of less than two degrees in f so, as in Figure 2, there is relatively little
change in the dimensionless parameters over the range of propagation of the instability.
This narrow range of unstable wavevectors implies that we can show the scaling properties
of this instability by considering conditions at the maximum growth rate.

Figure 4 displays the wavenumber dependence of « for the unstable regimes of the
fundamental and the first three harmonics. The angles of propagation correspond to the
relative maximum of the fundamental and the first three harmonics and are as labeled;

the frequencies corresponding to the successive growth rate peaks are w, /€, = 0.978,
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X-8 GARY ET AL.: PROTON BERNSTEIN INSTABILITY: LINEAR THEORY

1.970, 2.968, and 3.958. For these plasma parameters, the relative maximum growth rate
diminishes with increasing harmonic number, as well as shifting to larger k,, and to more
nearly perpendicular propagation. The phase speed at maximum growth rate is uniformly
much less than vy; here w, /kvs = 0.200, 0.226, 0.239, and 0.262 at the successive growth
rate peaks. The phase speeds of the unstable modes are also considerably smaller than the
proton thermal speed; here w,/kv; = 0.316, 0.357, 0.378, 0.414 at the succesive peaks of
v/, These phase speeds of course correspond to the regime of strong positive derivative
of f,(v1), as indicated by the vertical arrows in Figure 1. The ratio of electric field energy
to magnetic field energy density also increases monotonically with increasing frequency;
|0E[2/|0B|?> = 9.0 x107°, 2.8 x10~%, 5.8 x10~*, and 8.8 x10* at the successive growth
rate peaks.

So far we have plotted the instability growth rate as a function of a single parameter;
for example, in Figure 2 @ is fixed and /€, is plotted as a function of wavenumber. This
plot suggests that significant instability growth is limited to a relatively narrow band
of wavenumbers. Figure 5a provides a different perspective, showing the growth rate of
the fundamental as a two-dimensional function of k£, and 6. This figure shows that the
apparent narrow slice of instability growth actually extends over a much broader range
of wavenumber values; similarly the 6 range which corresponds to appreciable growth is
considerably broader than that indicated in Figure 3. Figure 5b shows a similar plot of
v(k1,8)/Q, for the unstable part of the first harmonic, again implying a much broader
range of unstable wavenumbers and quasi-perpendicular propagation angles than would

be suggested by one-dimensional cuts through this plot.
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Figure 6 illustrates linear properties at maximum growth rate of the fundamental of
this instability as a function of B, under the condition that all other dimensionless pa-
rameters stated in the Introduction are held constant. An interesting feature of panel (a)
is that v,,/€, is not a monotonic function of the proton 3, but, as in Table 7 of Denton
et al. [2010], has a relative maximum near B, ~ 0.30, that is, Bp ~ 0.46. In panel (b)
kmv1/Qe shows much less variation with (3, than does knc/w,, suggesting that the pro-
ton thermal gyroradius, rather than the proton inertial length, is the more appropriate
factor to describe the scaling of wavenumber of maximum growth. Figure 6(c) shows
that increasing proton 3 implies that the direction of propagation of the instability moves
monotonically away from the perpendicular. And Figure 6(d) shows that the magnetic
compressibility, i.e., Cj = |08 |?/|0B|?, increases with increasing proton 3 [Denton et al.,
2010], consistent with the expectation that electrostatic instabilities should become more
strongly electromagnetic as this parameter increases. Thus Figure 6 implies there are
three distinct regimes for this instability: relatively weak growth in the electrostatic limit
of proton 3 = 0, relatively strong growth with electromagnetic properties at intermediate
proton 3, and then growth rate diminishing to zero at relatively large proton .

Figure 7 shows the maximum growth rate of the instability fundamental as a function
of T, /T,. The v,,/€, is a strongly decreasing function of the electron-proton temperature
ratio. Sample computations not shown here show that the three unstable harmonics also
have their growth rates reduced to damping for sufficiently large T,/T;. This indicates
that this instability is subject to strong electron Landau damping as the relative electron
temperature increases. This, in turn, suggests that hybrid simulations, in which electrons

are represented as a fluid, do not provide a full description of the physics of this instability,
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X-10 GARY ET AL.: PROTON BERNSTEIN INSTABILITY: LINEAR THEORY

and that particle-in-cell simulations are a more appropriate tool to simulate the nonlinear
physics of this growing mode.

If we increase the free energy associated 0f,(v,)/0v, > 0, we expect that the maximum
instability growth rate should increase. If, given the constraint n;/n, — ns/n, = 1.0, we
increase ny/n, and hold all other dimensionless plasma parameters constant, we dig a
deeper hole in the v; ~ 0 part of the proton velocity distribution; the corresponding
increase in the proton free energy yields an increase in instability growth rate.

Figure 8 illustrates this; here the dimensionless plasma parameters are the same as
those used in Figure 4 except that ni/n, = 6.8 and ny/n, = 5.8. This figure shows
that this increase in the proton free energy leads not only to an increase in v,,/<2, for the
fundamental mode, but also to a shift in the maximum 7, /€, to the first harmonic mode,
and an expansion of unstable harmonics out to n = 8. Figure 8 demonstrates that, as the
proton free energy is increased, the overall maximum growth rate moves to higher proton
cyclotron harmonics, with w, /€, >> 1 as in the extreme cases illustrated in Gul’elmi et
al. [1975], Dendy and McClements [1993], and Horne et al. [2000]. Comparison against
Figure 4 shows, however, that the increase in free energy and maximum growth rate
does not significantly change the range of phase speeds at the growth rate peaks of the
fundamental and harmonics; for Figure 8 this range is 0.336 < w,/kv; < 0.418.

Our linear code directly yields the following additional results not illustrated here.
Adding a small component of cold protons reduces the maximum growth rate of the
instability. Making both f; and f, anisotropic in the sense of T’ ;/7j; > 1 reduces the
maximum growth rate, whereas the opposite sense of the anisotropy acts to enhance

Ym/$2p of the proton Bernstein instability. This latter result can be understood as follows:
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If the instability growth rate is driven by the proton term proportional to df,(v,)/0v,,
and if f,(v) is given by Equation (1), then the v, derivative yields factors of 1/7',; for

j =1 and 2. So if the Tj; are fixed, increasing the T is likely to reduce 7,,/<2,.

3. Conclusions

We have carried out numerical solutions of the full linear kinetic dispersion equation
for the proton Bernstein instability driven by a proton velocity distribution f,(v) such
that 0f,(v.)/0v, > 0 at relatively small v;. Our results are consistent with previous
theoretical results; the instability propagates almost perpendicular to B, with relative
maxima not only near w, ~ €),,, but also at successive harmonics of the proton cyclotron
frequency. For plasma parameters similar to those reported by Denton et al. [2010], we
find that the w, ~ , fundamental has the largest growth rate, but that higher order
harmonics may also be unstable for sufficiently large free energy in the proton velocity
distribution. The maximum instability growth rate is a monotonically decreasing function
of the electron-to-proton temperature ratio, but has its largest value at an intermediate
value of the proton § (~ 0.5 for the parameters considered here).

We have followed Denton et al. [2010] in using the subtracted Maxwellian proton
velocity distribution of Equation (1) because we, like Denton et al., have access to a
linear kinetic theory code based upon Maxwellian velocity distributions [Gary, 1993].
However, our maximum growth rates (like those of Denton et al.) are relatively weak; for
comparison, Akimoto et al. [1985] use a cold ion velocity ring in their dispersion equation
and obtain much stronger instability growth with v, > €2,. Furthermore, sample particle-
in-cell simulations using a subtracted Maxwellian proton distribution yield similarly weak

growth and relatively low saturation values of the fluctuating fields [Liu et al., 2010].
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However, magnetospheric observations demonstrate that that proton velocity distribu-
tions associated with the so-called “magnetosonic waves” may display much more free
energy than can be conveniently represented in the subtracted Maxwellian model [e.g.,
Perraut et al., 1982; Boardsen et al., 1992; Meredith et al., 2008; Denton et al., 2010].
So the primary goal of the research described here has not been to reproduce specific
magnetospheric observations, but rather to demonstrate general scaling properties of the
proton Bernstein instability, for guiding further observational and computational studies

of the enhanced fluctuations which arise from this growing mode.
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Figure 1. The solid line indicates the reduced proton perpendicular velocity distribution (in
arbitrary units) in the subtracted Maxwellian model using the dimensionless plasma parameters
stated in the Introduction. The dashed line indicates a reduced Maxwellian distribution with
density n, and temperature 7;. The two vertical arrows indicate the phase speeds w,/kv; at

relative maximum growth rates of the fundamental (n = 1) and third harmonic (n = 4) modes.

Figure 2. Linear theory properties of the fundamental proton Bernstein instability as func-
tions of the wavenumber at 6,, = 86.75°. (a) Real frequency (solid line) and growth rate (dotted
line). (b) Energy density of fluctuating magnetic field components as labeled. (c) Energy den-
sity of fluctuating electric field components as labeled. Here and in all subsequent figures the

dimensionless plasma parameters are as given in the Introduction, unless stated otherwise.

Figure 3. Linear theory properties of the fundamental proton Bernstein instability as functions
of the propagation angle at k,,v,/Q, = 3.10. (a) Real frequency (solid line) and growth rate
(dotted line). (b) Energy density of fluctuating magnetic field components as labeled. (c) Energy

density of fluctuating electric field components as labeled.

Figure 4. Linear theory growth rates of the fundamental and first three harmonics of the
proton Bernstein instability as functions of wavenumber. The angles of propagation correspond

to the relative maxima of each mode and are as labeled.
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Figure 5. Linear theory growth rates as a function of perpendicular wavenumber and prop-
agation angle for the proton Bernstein instability. The left-hand panel (a) illustrates v/, of
the fundamental with w,/€Q, ~ 1.0, whereas the right-hand panel (b) shows 7/, of the first
harmonic with w, /€, ~ 2.0. The asterisk in panel (a) marks the maximum growth rate ,,/Q, =
0.038 at kv, /Q, = 3.10 and 0 = 86.75°. The asterisk in panel (b) indicates the maximum growth
rate of the first harmonic with ~,,/€, = 0.036 at kv, /€, = 5.52 and 6 = 87.90°. The solid lines

indicate the contours of v/, = 0.03.

Figure 6. Linear theory properties of the fundamental proton Bernstein instability at maximum
growth rate as functions of 3. (a) Maximum growth rate, (b) wavenumber at maximum growth

rate, (c) propagation angle at maximum growth rate, and (d) magnetic compressibility C} =

6B, */16BJ*.

Figure 7. Linear theory of the fundamental proton Bernstein instability: maximum growth

rate as a function of T, /T;.

Figure 8. Linear theory growth rates of the fundamental and first seven harmonics of the
proton Bernstein instability as functions of wavenumber for n,/n, = 6.8 and ny/n, = 5.8. The
angles of propagation for the modes shown here are = 86.35%, 87.65%, 88.30°, 88.60°, 88.90°,

89.00°, 89.10°, and 89.15° for the fundamental and successive harmonics.
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