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Abstract 
 

Uncertainties about potential feedbacks in the terrestrial carbon cycle are a key driver of 

the uncertainty in carbon cycle and climate projections. Here we analyze how oceanic, 

atmospheric, and ice core carbon cycle observations improve key biogeochemical 

parameter estimates.  We calibrate the University of Victoria Earth System Climate 

Model using atmospheric CO2 concentration obtained from atmospheric and ice core 

measurements as well as estimates of decadal-scale oceanic carbon fluxes. We estimate 

the joint probability density function (PDF) of two key terrestrial feedback parameters 

quantifying carbon fertilization (Kc25) and the respiration-temperature sensitivity (Q10).  

To maximize computational efficiency, we use a relatively small ensemble of 48 model 

runs combined with a statistical emulation technique using principal component analysis.  

In the joint posterior PDF, there is a positive correlation between the two estimated 

parameters at low values of Kc25 which reverses to a negative correlation at high values 

of Kc25.  This is a result of the nonlinearity of terrestrial carbon cycle feedbacks.  CO2 

concentrations from Manua Loa are the most powerful constraint, and using a single CO2 

observation from the year 1999 can reproduce the general shape of the posterior PDF.   
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1.  Introduction 

 

Although terrestrial ecosystems currently absorb a considerable fraction of 

anthropogenic carbon emissions, the fate of this sink is highly uncertain.  This 

uncertainty is caused by insufficient knowledge about key terrestrial carbon cycle/climate 

feedbacks, in particular the sensitivity of soil respiration to increasing global temperature.  

Modeling studies agree that the respiration-temperature sensitivity and other positive 

feedbacks are present in the climate system, but disagree on the mechanisms, timing and 

magnitude (Cox et al., 1999; Dufresne et al., 2002; Govindasamy et al., 2005; Zeng et al., 

2004).  These feedbacks will play a large role in regulating terrestrial carbon fluxes as 

climate change effects become more pronounced during this century.  In the second half 

of the 21st century, models do not agree even on the sign of the net terrestrial carbon flux 

(Friedlingstein et al., 2006).     

Although a compilation of results from different models is a useful gauge of cross-

model uncertainty, there have been few studies of individual model uncertainty.   An 

ensemble of runs from a single model would be an invaluable supplement; for example, 

such ensembles in the field of numerical weather prediction have led to improved 

forecasts and added value to information from deterministic forecasts (Toth & Kalnay, 

1997; Molteni et al., 1996; Richardson, 2000).  Fully coupled general circulation 

(GCM)/carbon cycle models generally employ state-of the art physics and have been 

tuned to reproduce past climate and carbon cycle observations accurately.  However, in 

most terrestrial carbon cycle models, many key terrestrial processes are parameterized 

using empirical relationships because the underlying physical mechanisms are poorly 
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understood or too complex to model.  Parameters derived in this way have uncertainties 

that are often not considered in modeling studies because of computational limitations.  

Ensembles of GCMs have demonstrated significant uncertainty in the degree of warming 

due to greenhouse gases (Stainforth et al., 2005; Piani et al., 2005; Murphy et al., 2004), 

but studies with fully coupled GCM/carbon cycle models have been limited to parameter 

sensitivity tests with limited numbers of model evaluations (Huntingford et al., 2008; 

Jones et al., 2003).  While the cross-model uncertainty is well understood, most studies 

are silent on uncertainties within a single model.  

To solve this problem, formal statistical model calibration techniques can help 

identify optimal parameter sets and parameter uncertainties that can be used make 

probabilistic predictions based on past observations.  The computational cost of these 

complex models makes multidimensional parameter optimization extremely difficult, and 

this task is better suited for reduced complexity models.  Model complexity, although 

crucial for progress in understanding underlying physical mechanisms, can be a liability 

for the tasks of validation against limited observations and future prediction; for example, 

it has been shown that simple, calibrated terrestrial carbon cycle models are capable of 

outperforming more complex models that have not been formally calibrated by regional 

to global scale data (Heimann et al., 1998).  Earth System Models of Intermediate 

Complexity (EMICs) run much faster than fully coupled climate/carbon models, and 

therefore are ideal candidates for parameter optimization using large ensembles.  An 

intercomparison of EMICs demonstrates a similar range of predictions to the fully 

coupled GCM/carbon cycle models (Plattner et al., 2008).   EMICs have already been 

used in a number of parameter sensitivity studies to estimate key carbon cycle 
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uncertainties (Matthews et al., 2007; Eliseev & Mokhov, 2007).  We build on these 

analyses by introducing a formal statistical method for calibrating an EMIC using 

historical observations of CO2 and ocean fluxes.   We calibrate two terrestrial carbon 

parameters that control two key feedbacks, respiration-temperature sensitivity (Q10) and a 

parameter related to carbon fertilization (Kc) and test the following hypotheses:   

1.  The joint posterior PDF displays correlation because of the opposing effects of 

two key carbon terrestrial cycle feedbacks and the inability of observations to constrain 

them independently.  

2.  Including prior information about the distribution of Q10 significantly changes the 

shape of the posterior PDFs of both Q10 and Kc. 

 

2.  Methods 

2.1   Model 

 

We use the University of Victoria Earth System Climate Model version 2.8 (UVic 

ESCM), an intermediate complexity climate model comprised of general circulation 

ocean and dynamic/thermodynamic sea-ice components coupled to a vertically integrated 

energy/moisture balance atmosphere (Weaver et al., 2001).  The land surface scheme is 

the Hadley Centre Met Office Surface Exchange Scheme (MOSES) (Cox et al., 1999). 

Also included in UVic is the Hadley Centre dynamic vegetation and terrestrial carbon 

cycle model Top-down Representation of Interactive Foliage and Flora Including 

Dynamics (TRIFFID) (Meissner et al., 2003; Matthews et al., 2005; Cox et al., 2000; 

Cox, 2001), and an inorganic ocean carbon cycle based on the OCMIP abiotic protocol 

(Ewen et al., 2004).  Using an EMIC enables detailed studies of carbon cycle-climate 
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feedbacks with a much refined spatial resolution compared to simple box-models. The 

relative computational efficiency of EMICS combined with high-performance computing 

makes UViC an ideal candidate for data assimilation studies. This model has been used 

extensively in studies of terrestrial carbon cycle feedbacks (Matthews, 2007; Matthews & 

Keith, 2007; Matthews et al., 2005, 2007). 

In this study, we calibrate two parameters in the TRIFFID submodel of UVic.  

TRIFFID explicitly models five plant functional types: broadleaf trees, needleleaf trees, 

C3 grasses, C4 grasses and shrubs. The five vegetation types are represented as a 

fractional coverage of each gridcell, and compete amongst each other for dominance as a 

function of the model simulated climate.  In addition to simulating vegetation 

distributions, TRIFFID calculates terrestrial carbon stores and fluxes. The net terrestrial 

flux of carbon to the atmosphere can be calculated as the difference between soil 

respiration and net primary production (NPP). As nitrogen limitation on plant growth is 

fixed, terrestrial carbon uptake is determined primarily as a function of changing 

atmospheric carbon dioxide and climatic conditions. This global flux (kg m-2 s-1) is 

converted to or from ppmv using an atmospheric scale height of 8.5 km, which results in 

a conversion factor from GtC to ppmv of about 2.1. Carbon stores on land are represented 

by vegetation and soil carbon, and are updated by TRIFFID as a function of the flux of 

carbon to/from the atmosphere (a function of atmospheric CO2 and climate) and changes 

in vegetation distributions (a function of climate).  Atmospheric carbon dioxide is 

computed prognostically as a function of anthropogenic land use and fossil fuel 

emissions, ocean-atmosphere and land-atmosphere carbon fluxes. Anthropogenic 

emissions of carbon impose a perturbation to the equilibrium spin-up state, and the land 
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and ocean carbon pools and fluxes respond dynamically to the imposed increase in 

atmospheric carbon dioxide. The computed atmospheric carbon dioxide concentration is 

the resulting CO2 in the atmosphere after global carbon sinks have responded to 

anthropogenic emissions. 

 The key feedbacks examined in this study are heterotrophic 

respiration/temperature and carbon fertilization.  Heterotrophic respiration in TRIFFID is 

controlled by a single carbon pool.  The respiration rate depends on the size of this 

carbon pool, soil moisture and soil temperature.  Respiration is calculated as: 

 

  ( 25 )/10
10( )
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Where Cs is the soil carbon (kg m-2), κs is the respiration rate per unit soil carbon at 25C, 

f(θ) is a dimensionless function modifying respiration based on the soil moisture θ, Ts is 

the soil temperature and Q10 is a parameter controlling the temperature dependence of 

respiration.  The default value of Q10 in TRIFFID is 2.0, indicating a doubling of the 

respiration rate for every 10C increase in temperature.  In this study, we vary the value of 

Q10 from a value of 1.0 to 4.0, which is comparable to a range of values observed across a 

wide array of ecosystem types (Fierer et al., 2006). 

 TRIFFID employs a Farquhar photosynthesis model in which the rate of 

photosynthesis when light is not limiting is controlled by the maximum carboxylation 

rate of Rubisco.  This rate, Wc, is controlled by temperature, humidity, leaf nitrogen and 

atmospheric CO2 concentration through a Michaelis-Menten relationship: 
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where Vm, the maximum carboxylation rate of Rubisco, is a function of Tl, the leaf 

temperature and nl, the leaf nitrogen concentration.  ci is the internal leaf CO2 

concentration and Kc and Ko are the Michaelis-Menten constants for CO2 and O2 

respectively. Oa is the partial pressure of atmospheric oxygen.  ci is related to the external 

CO2 concentration cc through the following closure scheme: 

 

*
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       (3) 

Where D* is the humidity deficit at the leaf surface and F0 and Dc are PFT-specific 

parameters.  The photorespiration compensation point Γ is the value of ci at which 

photosynthesis balances photorespiration, and it is equal to 5.7 Pa at 25C.  Carbon 

fertilization is most strongly controlled by the Kc parameter, which is modified by air 

temperature using the following relationship: 

( 25)/10
25 *2.1 TKc Kc −=        (4) 

Where Kc25 is the value of Kc at 25oC, which is 30 Pa in the default version UVic 2.8.  

The actual rate of gross photosynthesis is determined by taking a smoothed minimum of 

three limiting rates, including Wc, Wl (light limitation) and We
 (transport limitation of 

photosynthetic products for C3 plants and PEP-carboxylase limitation for C4 plants. 

In this study, we calibrate the parameter Kc25.  Changing this parameter affects both 

the rate of gross photosynthesis and the dependence of this rate on atmospheric CO2 
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concentration.  At a given CO2 concentration, a higher value of Kc25 will result in lower 

photosynthesis rates; however, as CO2 increases, this higher value of Kc25 causes a larger 

carbon fertilization effect in which increased atmospheric CO2 concentrations will result 

in larger relative uptake.   

 

2.2 Observational Constraints 

 

 The model is constrained by observations of CO2 concentrations and estimates of 

global ocean carbon fluxes.  CO2 concentration constraints include data from the Law 

Dome ice core between 1850-1959 (Etheridge et al., 1996; MacFarling Meure et al., 

2006), and from the Mauna Loa Observatory from 1960-2004 (Keeling & Whorf, 2005).  

Both sites were chosen as proxies for the global average.  The Law Dome dataset is an 

irregular time-series in which data points represent different samples of air in the ice core 

with different ages.  We assume that the observational uncertainty of each estimate is 

independent and normally distributed with standard deviations of 8 ppm for the ice core 

data and 0.4 ppm for the Manua Loa data.  The mean air age of the sample was taken as 

the year of observation for the purpose of model evaluation. The annual Mauna Loa CO2 

used in the assimilation contains 40 annual data points (1960-1999).    

 Independent estimates of oceanic sink strength are also used to constrain our 

model.  The chlorofluorocarbon (CFC) dataset, which was combined with measured DIC 

to estimate average annual uptake over the decades of the 1980s and the 1990s.  McNeil 

et al. (2003) estimate an average annual ocean-wide uptake of 1.6 +/- 0.4 Gt C yr-1 over 

the 1980s, and 2.0 +/- 0.4 Gt C yr-1 over the 1990s.  To compare the model output to 
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these estimates, modeled annual ocean fluxes were averaged over each decade.  Because 

of the limited number of data points, we do not solve for process error or autocorrelation 

in the oceanic sink observations.  The total error of these observations is considered to be 

normally distributed with a standard deviation equal to the reported observational error. 

 

2.3  Experimental design 

 We use a 48-member ensemble of parameter sets of (Q10, Kc) in the fully coupled 

UVic model with increased sampling density near the maximum likelihood solution (Fig. 

1).  For each ensemble member, we perform an equilibration run for 1,000 years using 

atmospheric CO2 concentrations, solar forcing and land use data from the year 1800.  At 

the end of the equilibration run, annual net primary productivity (NPP) and heterotrophic 

respiration (Rh) are approximately in balance, and annual global ocean carbon fluxes are 

near zero.  Transient model runs are then performed from the year 1800 to 2000.  Forcing 

for transient model runs included solar and orbital forcing (Berger, 1978), anthropogenic 

greenhouse gas emissions from fossil fuel burning, cement production  and land use 

change.  The land use change emissions are based on a maximum likelihood weighting of 

three land use change emissions estimates (Jain & Yang, 2005; Houghton, 2003) using a 

simple carbon cycle model constrained by CO2 concentration and ocean flux observations 

(Miltich et al., in review).   

 

2.4  Optimization technique   

 The aim of this study is to calibrate probabilistically the UVic model parameters 

Kc and Q10, assigning higher probabilities to parameters for which the model output 
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better matches the observational constraints.  We use a Bayesian data assimilation 

method to estimate the joint posterior PDF of these parameters.  A Bayesian approach 

combines prior information about model parameters with the information contained in 

observations to derive this PDF.  Markov Chain Monte Carlo (MCMC) is a powerful  

method for estimating PDFs that makes no structural assumptions about posterior PDFs 

and has been used with simple global-scale earth-system models to estimate parameters 

(Hargreaves & Annan, 2002; Ricciuto et al., 2008; Urban & Keller, 2008). 

 The usual MCMC approach to Bayesian inversion requires a dense sampling of 

the posterior density function.  In our case, model output can be generated for only a 

small ensemble of runs at a limited number of parameter settings, making a direct 

application of the MCMC method infeasible.  In order to apply MCMC assimilation 

techniques we construct a fast approximation, or emulator, of the UVic model.  An 

emulator predicts what UVic output would be at a parameter setting at which the model 

was not run.  Its prediction is an interpolation of the output from other ensemble members 

at related parameter values.   

 Our Gaussian process statistical emulator (Kennedy & O'Hagan, 2001; 

Rasmussen & C. Williams, 2006) is a generalization of the geostatistical interpolation 

method known as kriging (Cressie, 1993; Banerjee et al., 2003).  Instead of the usual 

kriging practice of interpolating a measured quantity over physical space, a statistical 

emulator interpolates model output over parameter space.  The main advantages of 

statistical emulators over other interpolation methods (e.g., linear interpolation, splines, 

parametric regression, neural networks) are that (i) emulators provide an estimate of the 

uncertainty in their predictions, and (ii) they make no strong assumptions about the 
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functional form of the model output.  For data assimilation, statistical emulators which 

estimate their own errors are thus preferable to non-statistical emulators which do not.  If 

emulator uncertainty is ignored, the resulting parameter estimates can be overconfident.  

Overconfident estimates can be produced if the assimilation erroneously excludes 

parameter settings for which the model fits the data but the emulator does not.  Other 

statistical approaches such as parametric regression can also estimate their own 

prediction errors, but at the expense of making strong assumptions about what form the 

model output can take (e.g., smooth polynomial behavior). Gaussian process emulators 

do not make parametric assumptions and can fit model output with irregular local 

structure. 

 We construct independent emulators for atmospheric CO2 concentrations and air-

sea CO2 fluxes, trained on the 48-member ensemble of UVic output in Q10/Kc25 space.  

To simplify the emulator, we first reduce the dimensionality of the CO2 time series.  By 

taking the leading four principal components of the time series, we reduce the emulated 

output from 57 data points (corresponding to 40 instrumental and 17 ice core 

measurements) to 4 data points.  We use six emulators in total, each of which predicts a 

single scalar quantity as a function of Q10 and Kc25.  Four of the emulators predict the 

loadings of the four leading principal components of the atmospheric CO2 time series.  

The other two emulators predict the decadally averaged ocean CO2 flux in the 1980s and 

1990s.  Details of the emulator construction and inversion may be found in the Appendix. 

 Bayesian inversion combines the emulator predictions with observations to 

estimate the model parameters.  The observations are assumed to be a sum of the model 

output plus process and observation error, giving a likelihood function for the data 
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conditioned on the model parameters.  The observation errors are described in Section 

2.2.  The process error for the CO2 time series is assumed to be a normal first-order 

autoregressive AR(1) process of unknown variance and autocorrelation.  The process 

error for the fluxes is ignored since the observation errors are large.  The CO2 

concentration and flux errors are assumed independent of each other. 

  The inversion jointly estimates the posterior PDF of 10 parameters:  the two 

model parameters (Q10 and Kc25), the variance and autocorrelation of the AR(1) process, 

the variance in emulator output for each of the four CO2 principal component loadings, 

and the variance of the two flux emulators.  To produce a posterior PDF for the two 

model parameters, we integrate the posterior distribution over the other eight "nuisance" 

parameters.  This integration, known as marginalization, gives the reduced joint posterior 

for Q10 and Kc25.  We also obtain one-dimensional marginal posteriors for Q10 and Kc25 

individually. 

 

3.  Results and discussion 

 

The 48 UVic ensemble members produce a wide variation in predictions of CO2 

concentrations and ocean fluxes (Fig. 2).  Most of the ensemble members fall within the 

range of uncertainty of the two separate ocean flux estimates (Figs 2b, 2c), but most of 

the members are out of the range of uncertainty of measured CO2 concentrations, 

especially during the period of the Mauna Loa record when uncertainties are smaller (Fig 

2a).  The observations therefore add significant information about these carbon cycle 

parameters. 
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3.1  Posterior probability density functions 

 The joint probability surface (Fig. 3) and marginal PDFs for each parameter (Fig. 

4) are heavily influenced by the choice of prior distribution for the Q10 parameter.  When 

a uniform prior is used, the most likely values of Kc25 and Q10 are their lowest allowable 

values of 7.5 Pa and 1.0 respectively.  Observational studies of soil carbon efflux suggest 

that values of Q10 at study sites across many ecosystem types range from 2.2 to 4.6 

(Fierer et al., 2006).  We compile the 77 observed Q10 values into a PDF to be used as an 

informative prior distribution to compare to the base case of a uniform prior distribution 

(Fig. 4a).  Using this informative Q10 prior shifts the maximum likelihood values for both 

Kc25 and Q10 upwards to 37.5 Pa and 2.75 respectively.   It is unknown whether these 

site-based studies can actually be useful to infer to a single value of Q10 or whether using 

a global value of Q10 can produce meaningful results.  We use this example to stress the 

importance of prior information on the final result. 

Kc25 and Q10 display a strong correlation regardless of the Q10 prior distribution 

(Fig. 3), although this correlation is more apparent when the uniform Q10 prior is used.  

At values of Kc25 less than 30 Pa and values of Q10 less than 2.5, we observe a linear 

correlation in the joint posterior PDF with a slope of roughly 15 Pa Kc25 per unit of Q10 

(Fig. 3a).  The correlation represents the inability of the observational constraints to 

determine the relative strengths of terrestrial carbon cycle feedbacks.  If estimates of 

anthropogenic emissions are reliable, the strength of the terrestrial carbon sink is 

relatively well constrained by the atmospheric CO2 record and ocean flux estimates.  

Because carbon fertilization and the respiration – temperature feedbacks oppose each 
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other, their relative strengths are not well constrained; for example, Kc25 of 10 Pa a Q10 of 

1.0 produces similar output to that from a Kc25 of 25 Pa and a Q10 of 2.0.   

At values of Kc25 greater than 30 Pa, we observe a “hook” effect in which the 

maximum likelihood Q10 decreases (Fig. 3).  This is because at high values of Kc25, 

carbon fertilization saturates and then begins to decrease.  This is evident when we 

examine effective values of the carbon fertilization parameter β as a function of Kc25 and 

Q10 using the following relationship: 

 

0

2

2 0

1

[ ]log
[ ]
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−

=
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        (5) 

 

Where NPP is the net primary productivity in the year 1999, NPP0 is the net primary 

productivity in the year 1800, [CO2] is the atmospheric CO2 concentration in 1999 and 

[CO2]0 is the atmospheric CO2 concentration in 1800.  Values of β range from 0.35 to 0.6 

(Fig. 5), which is similar to values observed in other terrestrial carbon cycle models 

(Kicklighter et al., 1999).  In UVic, NPP is also affected by autotrophic respiration, 

temperature, precipitation and vegetation distribution changes so that this effective β 

value is not purely driven by CO2 fertilization.  Although increasing Kc25 increases the 

instantaneous carbon fertilization rate of gross photosynthesis as described by equation 

(2), other factors limit the increase in NPP over long timescales at high values of Kc25. 

Because at high Kc25, the carbon fertilization feedback decreases with increasing Kc25, 
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lower values of Q10 are required to balance the carbon cycle in a way that matches 

observations. 

 This nonlinearity is compounded by differences in the equilibrium distributions 

of vegetation and soil carbon caused by differences Q10 and Kc25 (Fig. 6).  Equilibrium 

vegetation carbon decreases linearly with Kc25 while equilibrium soil carbon increases 

with Q10 and decreases with Kc25.  Large values of Q10 and low values of Kc25 are 

therefore associated with high rates of carbon efflux, resulting in unrealistic solutions of a 

terrestrial carbon source in 1999 and atmospheric CO2 concentrations above 420 ppm.  

Equilibrium soil carbon at high values of Q10 is higher because the turnover rates of soil 

carbon in northern high latitudes are much lower, leading to an increased respiration-

temperature feedback because a) high latitudes experience earlier and stronger warming, 

b) more soil carbon is available to respire, and c) the sensitivity to increased temperature 

is higher.  Increasing values of Q10 above 2.5 result in increased soil respiration that 

cannot be balanced by a corresponding increase in carbon fertilization (Kc) in a way that 

in consistent with the observational records.  Conversely, low values of Q10 and moderate 

to high values of Kc25 are associated with low equilibrium soil carbon and too much 

terrestrial uptake.  Given the model structure of UVic and observational constraints, we 

conclude that high values of Q10 are unlikely because there is not enough carbon 

fertilization in the model, regardless of the Kc25 value, to balance this level of respiration-

temperature sensitivity.  

 

3.2  Effect of individual constraints 
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 Atmospheric CO2 concentrations provide most of the constraint on the joint 

posterior PDF of Kc25 and Q10 (Fig 7).  The last year of the Manua Loa record used in 

this study, 1999, provides enough information alone to reproduce the general shape of the 

joint posterior PDF.  The ice core CO2 concentrations (Fig. 7c) and decadal annual 

average air-sea fluxes (Fig. 7d) provide a much weaker constraint that only excludes 

combinations of low Q10 and high Kc25.   

 

4. Conclusions 

We present a statistically sound and computationally feasible methodology for the 

assimilation of observations into Earth system models of intermediate complexity.  Using 

an ensemble of 48 model evaluations, we estimate the joint probability density function 

of two key carbon cycle feedback parameters constrained by observations of globally 

averaged atmospheric CO2 concentrations and estimates of global ocean CO2 fluxes.  The 

respiration temperature sensitivity parameter Q10 and carbon fertilization parameter Kc25 

are positively correlated at low values of Kc25 and negatively correlated at high values of 

Kc25.  This behavior is a result of nonlinearities in the response of carbon fertilization to 

CO2 and the response of respiration to temperature as well as differences in the 

equilibrium distributions of vegetation and soil carbon resulting from difference in Kc25 

and Q10.  Given the model structure, forcing data, constraints and uniform priors, high 

values of Q10 are excluded but no value of Kc25 can be ruled out.  If an observationally 

based prior of Q10 is used, low values of Q10 and Kc25 can also be excluded.  CO2 

concentrations provide the best constraint on the joint posterior PDF.  The acceptable 
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parameter combinations produce a similar response of the terrestrial carbon cycle during 

the year 1800-1999, but are expected to produce widely divergent future predictions. 
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Figure Captions 
 

Figure 1:  Design of the ensemble in Q10/Kcmult parameter space.  Depicted are the 48 

ensemble members. 

 

Figure 2:  UVic model predictions for all of (a) atmospheric CO2 concentrations and (b) 

annual average ocean carbon uptake.  Red circles with error bars indicate observations.  

Predictions for all ensemble members are shown. 

 

Figure 3:  Joint posterior probability distribution of Q10 and Kcmult.  Left:  Uniform 

prior for Q10.  Right:  Informative prior for Q10 based on laboratory experiments. 

 

Figure 4:  Marginal posterior probability distributions of Q10 (left) and Kcmult (right).  

Depicted are posteriors based on a uniform Q10 prior (black) and the informative Q10 

prior (blue).  The blue dashed curve is the informative prior. 

 

Figure 5:  Effective logarithmic beta fertilization factor relating changes in net primary 

productivity from the year 1800-1999 to the change in CO2 concentrations from the years 

1800-1999. 

 

Figure 6:  Equilibrium total terrestrial carbon pool including vegetation and soil carbon 

(a), change in terrestrial carbon pool size from 1800-1999 (b), equilibrium vegetation 

carbon (c), change in vegetation carbon from 1800-1999, (d), equilibrium soil carbon (e) 

and change in soil carbon from 1800-1999 (f); contours represent values in GtC.   
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Figure 7:  Joint posterior probability distributions of Q10 and Kcmult from assimilations 

of subsets of the observational constraints.  Uniform priors are assumed.  Upper left:  all 

constraints (same as Fig. 2, left panel).  Upper right:  instrumental atmospheric CO2 

concentrations.  Lower left:  ice core atmospheric CO2 concentrations.  Lower right:  air-

sea CO2 fluxes. 
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Appendix 

To find the posterior distribution of the calibration parameters given the field 

measurements Z and the computer model ( )η ⋅ , we must posit a relationship between 

them. We use the framework described in Kennedy and O’Hagan (2001), namely that   

     ( )Z η θ δ ε= + +  . 

Here Z represents the vector of observations, both CO2 readings and flux measurements. 

We assume that the observations are equal to the model ( )η ⋅  run at its ‘best’ input θ̂ , 

plus an error term δ ε+ . We split the error term into two parts: (i) measurement error 
( ,..., )1 Tε ε ε= and natural interannual variability δ  

 

The measurement error is assumed to be heteroskedastic zero-mean Gaussian noise with 

known variance (see Section 2.2).  We model the natural variability of atmospheric CO2 

as a first-order autoregressive (AR(1)) process, with ( ) ( 1)t t Uδ δ= − + , where 
2~ (0, )U N σδ .  Our prior estimate of the correlation time 1/ln( )τ ρ=−  is 15 ± 10 years, 

i.e. with a 
2(15,10 )N  prior, to account for decadal-scale fluctuations in CO2 

concentration.  The process variance 2σδ  has a Gamma(4,0.6) prior distribution. 

 

We use a Gaussian process emulator to describe our prior beliefs about the model ( )η ⋅  

(O'Hagan, 2006; Sacks et al., 1989; Santner et al., 2003).  We update these beliefs in light 

of the ensemble of model runs {( ; ( ))} 1,...,48Y yi i i iθ η θ= = = , so that our posterior belief 

about the model, ( )|Yη θ , interpolates the ensemble values. 

 

The model output is multi-dimensional, and considered here to contain two parts.  The 

first part is a time series of global atmospheric CO2 concentration, and the second part 

contains two air-sea CO2 flux predictions.  We use independent emulators for both parts 

of the output.  We apply principal component analysis to reduce the dimension of the 

output and build emulators from the input space to this reduced output space.  The 

emulator assumes the UVic model is a map : Yη Θ→ , where { , }
10

Q KcmultΘ =  is the 

two-parameter input space and Y  is the n-dimensional output space.  (Here n=57 for the 

concentration emulator, comprising 17 ice core CO2 measurements and 40 instrumental 

measurements (1960-1999); and n=2 for the flux emulator, with two decadal fluxes.)  Our 
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emulator approach can then be described in three parts: (i) Dimension reduction, (ii) 

Emulation, and (iii) Reconstruction to the full space.  These parts are detailed below. 

 

Dimension reduction 

We follow Higdon et al. (2008) and use principal component analysis (PCA) to project 

Y  onto a lower dimensional space Y ′  of dimension m, where m≪n. We emulate the m 

leading principal components (PCs).  Relying on diagnostic plots, we found m=4 PCs 

(accounting for 98.2% of the variance) to be sufficient for the time series of CO2 output.  

We rotate the flux data onto their principal components, but do not discard any PCs, so 

m=n=2.  The PC rotation is performed to decrease the correlation between the two flux 

outputs, allowing us to use independent emulators for each output. 

 

Emulation 

Gaussian process emulators are used to model the output of UVic, i.e., the map from Θ  

to Y ′ .  We build independent emulators to model each principal component score, with 

1( ) ( ( ),..., ( ))pc pc T
mη η η⋅ = ⋅ ⋅ .  There are four concentration emulators and two flux 

emulators.  The form of each emulator is a regression component plus a residual term  

     ( ) ( ) ( )pc h ui iiη θ β θ θ= +  

where 2( ) ~ (0, , ( , ))i i iu GP cθ σ ⋅ ⋅  and i=1…m.  Here ( )h θ  is a vector of regression 

functions common to each emulator.  Each iβ  is a vector of regression coefficients 

specific to emulator i. We follow Rougier (2008) and use Legendre function regressors 

shifted onto the range of the two input parameters, as these are orthonormal on parameter 

space Θ . We model up to third order terms with the sum of powers restricted to be four 

or less (described by the triplet (4,4,3) in the notation of An and Owen (2001)), giving a 

collection of 13 regressors. We give the regression parameters { }iβ  flat improper priors 

and analytically integrate them out of the posterior. 

 

The residual ( )u ⋅  between the model output and the regression surface is characterized 

by a Gaussian process with a covariance function ( , )c ⋅ ⋅ .  We take the covariance 

function to be squared-exponential, ( , ) exp[ ( ) ( )]Tc Bi iθ θ θ θ θ θ′ ′ ′= − − − , and separable, so 
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that Bi  is a diagonal matrix of roughness parameters (inverse squared correlation length 

scales).  There are two roughness parameters corresponding to the two UVic model 

parameters, so Bi  is 2×2.  We take an empirical Bayes approach for the elements of 

matrix Bi , estimating their values and holding them constant in the subsequent analysis.  

In order to estimate the roughnesses Bi , we use Adler’s theorem to estimate the length 

scale of ( )u ⋅  from the number of its upcrossings (Rasmussen and Williams, 2006; Sec. 

4.1).  We give the emulator variance parameters improper Jeffreys prior ( 21/σ ) 

distributions.  Separate roughness and variance parameters are used for each emulator.  

 

Details of how to update these beliefs in light of the ensemble Y, along with discussion of 

some of these modeling choices, can be found in Santner et al. (2003). We took the 

approach advocated in Rougier et al. (2008) and used extensive diagnostic plots, such as 

leave-one-out and one-step-ahead plots, to refine and test our choices for ( )h ⋅ , B , and 
( , )c ⋅ ⋅ . 

 

Reconstruction 

The reconstruction from the emulator prediction in Y ′  (principal component space) to a 

prediction in the original (time series) space Y  is a two-part process.  The time series is a 

linear combination of the PC eigenvectors with coefficients given by the emulated PC 

scores.  This gives an overconfident prediction for the emulated time series, because 

some information is lost in the PCA projection when higher PCs are discarded, and we 

are thereby uncertain about what the reconstruction would be if all PCs had been 

included.  To account for this, we add small random multiples of the discarded (non-

emulated) PCs to the time series. We model the non-emulated PC scores as zero-mean 

Gaussian noise with variance equal to the sample variance of the scores for that 

component in the ensemble.  Strictly speaking this second step is not necessary since the 

discarded PCs only account for 2% of the variance in model output.  It was developed as 

a prototype for circumstances where the PC reconstruction may be less accurate. 

 

Calibration 
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The framework of Kennedy and O’Hagan (2001) gives the likelihood function for the 

data, 
2 2ˆ( | , , , )Zπ θ σ ρ ση δ , given the regression, covariance, and prior parameter 

assumptions described above.  We simulate the posterior distribution for the unknown 

model and statistical parameters using Markov chain Monte Carlo (MCMC). Ten 

parameters are estimated via MCMC (2 UVic model parameters, 2 AR(1) parameters, 4 

PC emulator variances for the CO2 time series, and 2 decadal flux emulator variances).  In 

addition, for each of the six emulators, we analytically integrate out 13 regression 

coefficients and estimate two roughness parameters as described in the Emulation 

section.  We use a Metropolis-within-Gibbs algorithm, with Metropolis updates for θ̂ , 
ρ , 2σδ , and a conditional Gibbs update for the emulator variances 

2 2ˆ( | , , , )Zπ σ θ ρ ση δ . 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


