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Abstract

It is becoming increasingly common for network de-
vices to handle packets based on the contents of
packet payloads. Example applications include in-
trusion detection, firewalls, web proxies, and layer
seven switches. This paper analyzes the problem
of intrusion detection and its reliance on fast string
matching in packets. We show that the problem
can be restructured to allow the use of more ef-
ficient string matching algorithms that operate on
sets of patterns in parallel. We then introduce and
analyze a new string matching algorithm that has
average-case performance that is better than Aho-
Corasick, a popular linear-time algorithm and much
better than the iterative use of Boyer-Moore cur-
rently used in the popular intrusion detection platform
Snort. We then measure the actual performance
of several search algorithms on actual packet traces
and rulesets. Our results provide lessons on the
structuring of content-based handlers, string match-
ing algorithms in general, and the importance of
performance to security.

1 Introduction

While the ideal approach to securing a network is
to remove all security holes from individual hosts,
a less expensive and more feasible retrofit approach is
to add a security device at the edge of the net-
work that can do monitoring and filtering. The
simplest such device is a firewall [21] that, among
other things, can specify rules that specify which
combinations of packet headers are allowed through.
However, in order to allow connectivity to the ex-
ternal world, the firewall must still allow large classes
of packet headers because they can come from le-
gitimate users. Even with firewalls it is possible
for unauthorized users to mount attacks or even
for legitimate users to abuse their privileges. Ex-
ample attacks include unauthorized modification of
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files, or unauthorized use of system resources such
as accounts.
Network Intrusion Detection: To go beyond

firewalls while staying within the retrofit philosophy,
a relatively new area of security called network intrusion
detection has been developed. [23] and [9] contain
good summaries of the area. Intrusion detection
is based on the premise that an intruder’s behav-
ior will be significantly different from that of a legitimate
user; network based intrusion detection attempts to
infer such anomalous intruder behavior by detect-
ing and analyzing patterns of packets sent by an
intruder to the network. For example, all pack-
ets sent from the external world can be passively
monitored by the detector. If certain anomalous
patterns are detected, the detector could be com-
bined with a firewall function that denies access to
the intruder. Notice that unlike the pure firewall
approach, detection systems do not seek to prevent
all attacks, but only to detect them quickly and
notify a security officer.
While analyzing network traffic patterns in real-

time is difficult in its full generality (indeed many
systems use statistical [10] or rule-based AI approaches
to this problem), today’s commonly used systems
break up the problem into two parts: a signature
detection component and an analyzer. The signa-
ture detection component only seeks to prune the
space of all network traffic into a set of possibly
suspect traffic which is then sent to the analyzer
(either a security officer or a program). Ideally,
the signature detection component should operate in
real-time and prune a substantial fraction of the traffic.
While our paper concentrates on signature detec-

tion, we hasten to add that analyzer algorithms are also
very important and well worth solving. Events from the
signature detection device are sent, in real-time or
batches, to the analyzer (also known as a moni-
tor [3], director [29], manager [34], or controller
[17]) which may perform data fusion [15] to corre-
late events and use advanced logic and algorithms
to determine when an alert should be sent. These
alerts may be sent to people, to other analyzers
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as events [25], or to an automated response sys-
tem that may take actions such as modifying a firewall.

Signature Detection versus Packet Filtering:

Signature-based intrusion detection systems such as
the popular Snort program [28] and the Network
Flight Recorder [24] are typically configured with a set of
rules to detect popular attack patterns. These rules look
almost exactly like firewall rule sets [21] in that patterns
can be specified on packet header fields (e.g., all
packets from subnet X and sent to port 80) us-
ing the usual flexibility of specifying prefixes, wild-
carded fields, and port ranges. However, signa-
ture detection systems go one step beyond packet
filters in complexity by also allowing an arbitrary
string that can appear anywhere in the packet pay-
load. This is harder in some ways than firewall
rules because firewall rules specify packet headers that
are in well-defined portions of the packet. Thus
many firewall rules only have to examine roughly
128 bits within the first 40 bytes of a packet header. By
contrast, a signature system has to search for a
string that can be anywhere within the (say) 4500
bytes of packet payload for (say) an FDDI packet.

We note that the main topic of this paper, string
matching in packet content, is also of interest to
many applications that make use of content-based
forwarding. Some other examples include firewalls
scanning for viruses, web proxy filters, layer seven
switches doing web load balancing based on URLs
and even cookies [5], and content distribution in-
frastructure. Thus we believe that string matching
over packet content data is an important problem
which, despite possible disapproval from advocates
of network transparency, is here to stay.

Set String Searching: Since a signature based
system has several firewall style rules, each of which may
have an associated string pattern, signature systems
marry all the complexity of standard packet clas-
sification together with string matching. Today’s
systems such as Snort examine a rule at a time:
each time a rule matches, Snort does a fast string
search on the associated pattern using the Boyer-
Moore algorithm. While the Boyer-Moore algorithm
is very fast for a single string search, the prob-
lem is that a given packet can match several rules
with patterns (up to 300 rules in the sample Snort
database), forcing up to 300 Boyer-Moore searches.
Thus this technique does not scale with increasing
rule sizes; it even motivates an algorithmic attack
where an intruder could send worst-case packets that
slow down the search and cause dropped packets,
upon which the intruder could begin her attack.

In recent years there have been several papers in the
literature (e.g., [21, 13]) that show that there are

more scalable approaches to firewall rule searching
than iterating through the rule set. The main idea is to
combine all the rules into a single data structure
that can be searched once to find the first matching
rule. Thus a natural question, which we pose in
this paper, is why the same approach cannot be
taken to signature systems. Is there, for example,
a way to combine all string searches into a single
string search? If so, how much faster is such an
integrated string search over separate string searches for
currently used and synthetic rule sets? Would de-
ploying such a new algorithm in say Snort reduce
the likelihood of an algorithmic attack succeeding?
Our paper attempts to answer all these questions.

Paper Contributions and Organization: Thus
the contributions of our paper are as follows. First,
we introduce an algorithmic aspect of Intrusion De-
tection as an important problem worth solving in
the same manner as IP lookups and packet classi-
fication. Our second contribution is an examina-
tion of a multiple-pattern search algorithm that com-
bines the one-pass approach of Aho-Corasick with
the skipping feature of Boyer-Moore as optimized
for the average case by Horspool. This sublinear
multiple-pattern algorithm is in the same class as
those by Commentz-Walter [7], Wu & Manber [35],
Gusfield [14], and Kim & Kim [19], but to the
best of our knowledge, after consulting the litera-
ture and algorithm experts, our setwise algorithm
is a new algorithm and may be of independent interest.

Third, we have implemented commonly used ver-
sions of BM, AC, and our new algorithm in a li-
brary that can easily be instantiated to choose at
will different string algorithms for use by a signa-
ture detection utility. Fourth, we have measured
the effects of replacing the string matching compo-
nent in Snort with the various algorithms in the
library; the real comparisons take into account the rela-
tive importance of string searching both over real
traces and benchmarks, and include artifacts due
to machine-dependent effects such as cache sizes. Fifth,
we introduce techniques of caching search results to
preserve the ordering of matching rules and vary-
ing case sensitivity. Finally, to improve the per-
formance of set-wise string searching algorithms, we also
explore different techniques for partitioning rulesets.

The rest of the paper is structured as follows.
In Section 2 we examine the popular intrusion de-
tection platform, the structure of a sample signa-
ture, and how Snort could benefit from the use
of better string matching algorithms. In Section
3, we explain the operation of the popular Boyer-
Moore and Aho-Corasick algorithms. In Section 4,
we present our set-wise Boyer-Moore-Horspool algo-
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alert tcp !$HOME_NET any -> $HOME_NET 80

(msg:"IDS219 - WEB-CGI-Perl access attempt";

flags:PA; content:"perl.exe"; nocase;)

Figure 1: Example Snort Rule

rithm for searching sets of strings simultaneously and
analyze its theoretical performance. In Section
5 we conduct numerous performance tests of all of
these algorithms and describe several key performance
characteristics. By carefully structuring the prob-
lem we are able to improve the performance of Snort by a
factor of 4.5. Finally, we conclude the paper in Section 6.

2 Snort and String Matching

In this section, we motivate and ground the solu-
tions found in the rest of the paper by examining a popu-
lar sample signature system (Snort). After briefly
introducing Snort in Section 2.1, we describe pro-
filing information that shows that string matching
is a bottleneck. We then describe why it is im-
portant to improve the performance of Snort as a
whole. Finally, in Section 2.4, we show two ways
to use set string matching within Snort to poten-
tially improve performance.

2.1 A Brief Introduction to Snort

Snort [28] is a freely available (under the GNU li-
cense), lightweight network intrusion detection sys-
tem that is configured with a list of rules that
each define a signature and a corresponding event
log description. Snort also has a plug-in architec-
ture that allows stateful analysis to be performed
and is currently used by preprocessors that avoid
some subterfuge attacks (as defined in [26]). Be-
cause of its free availability and efficiency, Snort
is quite commonly used and there are very large
and current databases of signatures maintained on
the Internet [32, 30].
In Figure 1 we present an example Snort rule. Each

rule contains an action (alert in this case), a protocol
(tcp), a source netmask, typically defined as anything
but the network being monitored, a source port (any),
and a destination netmask and port (80 ). Following
these standard fields can be a list of arbitrarily many
other options. The msg string is the alert to send if
this rule is matched. The optional flags field specifies
a set of TCP flags that must be set for a packet to
match. The content field specifies a string to match
in the packet and the nocase flag specifies that the search
should be case insensitive.
The alert message in our example refers to IDS219

which is a unique key assigned to this vulnerabil-
ity. Such keys aid in the correlation of alerts be-
tween different products, and lead response person-
nel to additional information. For example, the
arachNIDS web database [32] of these vulnerabili-
ties contains the following description:

An attempt was made to execute perl.exe. If
the Perl interpreter is available to web clients,
it can be used to execute arbitrary commands
on the web server. This can be used to break
into the server, obtain sensitive information,
and potentially to compromise the availability
of the web server and the machine it runs on.

Many web server administrators inadvertently
place copies of the Perl interpreter into
their web server script directories. If perl
is executable from the cgi directory, then
an attacker can execute arbitrary commands
on the web server. CERT Advisory CA-
96.11.interpreters in cgi bin dir1

Over 30 vendors and security organizations are
currently participating to create a Common Vul-
nerabilities and Exposures ‘dictionary’ of common
vulnerabilities[22]. This example rule is currently
a candidate for inclusion in the CVE, but has yet
to be vetted by the CVE editorial board of secu-
rity experts.
Most Snort signatures contain a payload byte string

(84% of the January 8, 2001 Snort.org full ruleset). In
this paper, we examine algorithms for improving the
performance of string matching for these rulesets. Some
other intrusion detection systems such as Bro [26] and
NFR [24] have specialized packet handling languages in
which inspection programs can be written. It is unlikely
that the same degree of optimization can be applied to
those systems. However, most commercial systems such
as those from Cisco use string matching rules like those
in Snort.

2.2 Snort Performance Profile

In [28], it is asserted that string matching is the
most computationally expensive test that Snort com-
monly performs on packets. Profiling of a typical
Snort configuration supports this conclusion. Ac-
tual performance is clearly dependent on both the
ruleset used and the characteristics of the traffic be-
ing monitored. We ran Snort 1.6.3 on a dataset
of 8.7 million packets totalling more than 1 giga-
byte captured over a 25 minute period from the In-
ternet connection of a large enterprise with mixed

1ftp://ftp.cert.org/pub/cert advisories/CA-

96.11.interpreters in cgi bin dir
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Purpose Routine Portion

String match mSearch 31%
Packet classification EvalHeader 8.5%
Packet classification CheckSrcIPNotEq 6.7%
Other matching EvalOpts 5.8%

Figure 2: Profile of Snort

business and scientific users. Using the full rule-
set from Snort.org that accompanied this release of
Snort and the gprof [12] execution profiler, we show that
string searching is the most expensive part of the
execution and accounts for 31% of the total exe-
cution time. The top four routines are shown in
Figure 2. The second most run routine accounts
for less than 10% of total execution time.

One common optimization is to use a kernel or
hardware prefilter to exclude packets that are not
of interest to the detection system. Such prefilter-
ing would only increase the fraction of packets on
which string searches would be performed.

2.3 Algorithmic Performance Attacks

Who would benefit if Snort could be made faster? In
[26], Paxson presents a taxonomy of attacks including
the overload attack in which an attacker overloads an
intrusion detection system by flooding it with innocuous
packets until the system starts dropping packets. There
is then a high probability that the detection system will
not catch an attack that is interjected in this stream
of packets. To have strong assurance that a detection
system is not subject to such attacks, the system must
be able to support full utilization of the network that
it is monitoring.

An ideal target of such attacks is what we call an algo-
rithmic performance vulnerability in which the per-
formance of a system is dependent on the inputs
to certain algorithms. Thus, an attacker can in-
tentionally provide inputs, in the form of packets,
that will knowingly cause the worst-case performance of
an algorithm. A detection system that does not
support full network utilization with worst-case pack-
ets is vulnerable to an algorithmic performance at-
tack. Paxson suggests that the site-specific policies
provide the most opportunity for loading and that
these policies will not be known to an attacker.2

However, it cannot be safely assumed that detec-
tion platforms will not make use of common algo-
rithms and their associated worst-case performance
vulnerabilities.

The bottom line is that improving Snort performance

2The strength of such security through obscurity is subject to debate.

increases the likelihood of an attack being detected.

2.4 Set String Matching Options

Given that string matching is a bottleneck and per-
formance is important, we note that there are at
least two ways that an efficient set string match-
ing algorithm could be used to improve the per-
formance of Snort. These include:

1) Single Set of Strings: We can search for the
strings of all rules simultaneously. The results can
be used in two ways. First, we can immediately
exclude rules that have content strings which do
not match. Alternatively, we can cache the re-
sults and refer to them whenever a string match
is called for. A possible disadvantage is that a
given packet may match only a small subset of the rules,
while the single set string search (unnecessarily) in-
cludes in its search target strings that the packet
may not match. Such unnecessary inclusion may,
for example, make the data structure too large to
fit in cache

2) Multiple String Sets: It is common in Snort
to have several rules whose criteria differ only in
content string. Thus, we only group together such
rules into subsets and do efficient string matching
within each subset of rules, while still doing mul-
tiple string searching across the subsets. The cur-
rent Snort implementation uses subsets of size 1.
A possible disadvantage of this approach is that
we still have to iterate over subsets unlike in the
case of the Single Set Approach. A possible ad-
vantage is that we can specialize the search eas-
ily to do standard Boyer-Moore for a rule subset
if the size of the subset is below some threshold.

3 String Search Algorithms

Before we introduce our setwise Boyer-Moore-Horspool
string matching algorithm, we briefly review the string
matching problem, and the Boyer-Moore and Aho-
Corasick approaches. More information can be found in
Gusfield’s book [14] and a comprehensive review of
string matching [31]. We focus specially on un-
derstanding the main ideas behind standard Boyer-
Moore because they are essential to understanding
many of the multiple-pattern algorithms, including
our setwise Boyer-Moore-Horspool algorithm. We
also briefly describe Aho-Corasick because it is good
worst-case performance and is an important candi-
date for improving set string matching that is not
used currently in Snort.

Assume a text string T of length n and a pattern
string P of lengthm, each composed of an ordered set of
characters from an common alphabet A. The general

4



problem is to determine the location of P within T , or
that T does not contain P .
Let the characters of T and P be numbered se-

quentially from left to right starting with one. If,
for a given offset or shift s, every character Pi ∈ P1...Pm

matches the corresponding character Ti+s ∈ T1...Tn,
then P occurs at offset s in T . We write this
equality as follows:

Ti+s...Tm+s = Pi...Pm

3.1 Boyer-Moore

Current Snort implementations use the Boyer-Moore
string matching algorithm, which is widely regarded
as the providing the best average-case performance
of any known algorithm. The algorithm is based
on a few key observations that allow single pat-
terns to be found in sublinear time in the aver-
age case [4].
The first observation is that character comparisons

can be made from right to left starting at the end of the
pattern instead of the beginning. Let e be the endpoint
of the pattern and e = m initially. For j = 0...(m−1), we
compare Te−j and Pm−j . Shifts are logically performed
by incrementing e.
Bad Character Heuristic: Second, consider when a

character mismatch is found between Te−j and Pm−j , so
that j is the length of the matching suffix of P . If the last
occurrence in P of the character Te−j occurs q characters
from the end of P , then there is no point in trying new
endpoints less than e+q−j. This bad character heuristic
allows us to skip many of the comparisons of the naive
algorithm. The amount that we can shift the endpoint is
easily computed based on a function B(c) that computes
the distance from the end of P to the last occurrence
of character c:

B(c) = min {q | Pm−q = c}

For each character c that does not occur in the pattern
at all, B(c) = m. All values for B can be pre-computed
and stored in an array of length |A|.
If we find a character mismatch at Te−j , then we can

safely set the endpoint e to e+B(Te−j)− j and restart
the right to left comparison of Te−m+1...Te and P1...Pm.
Note that the last occurrence may not be to the left of

the current location e − j, and so B(Te−j) − j ≤ 0. In
this case the bad character heuristic provides no insight
and the endpoint must be shifted by just one additional
position.
Good Suffixes Heuristic: The good suffix heuris-

tic is the third key observation. If a mismatch is
found in the middle of the pattern at Pm−j , then
there is a suffix of 0 or more characters Pm−j+1...Pm

that do match. Thus, there is no point in test-
ing new endpoints e′ that do not cause that same
suffix string to match (Te′−j+1...Te′ 6= Pm−j+1...Pm).
A stronger version of the good suffix heuristic is

attributed to Kuipers. This version also skips over re-
occurrences of the suffix that are preceded by the
same character as Pm−j . There is no point in attempting
such shifts since it is known that Te−j 6= Pm−j .
This optimization does not significantly complicate
the preprocessing step, and allows the algorithm to
be provably linear even in the worst case [14].
The full Boyer-Moore algorithm shifts by the greater

of the values given by the bad-character and good-suffix
heuristics.
Examples of Boyer-Moore Operation: Let us

first consider the following example:
↓

acdecdacdacda

acdacda

Since the character e does not occur in the pat-
tern, the bad character heuristic tells us than we
can immediately shift the endpoint by 4 so that
the pattern starts after the current character. The
good suffix heuristic determines that the suffix cda

occurs 3 characters to the left of the current location.
acdecdacdacda

acdacda Good suffix recommendation
acdacda Bad character recommendation

We choose the larger of the two endpoint shifts, 4
characters.
We start comparing the end of the pattern at the new

endpoint and immediately find a mismatch. The bad
characteristic heuristic tells us to shift by two. The good
suffix heuristic has nothing to add since there is no good
suffix.

↓
acdecdacdacda

acdacda Bad character recommendation

So we shift by another two and eventually de-
termine that the string is correct. Note that over
the entire comparison, we never examined the first
three characters, but examined the seventh charac-
ter (the first mis-match point) twice.
Performance Analysis of BM: Clearly the perfor-

mance of the BM algorithm depends on the characters in
the text and pattern strings. Knuth showed that
the original Boyer-Moore algorithm performs O(n +
rm) comparisons, where r is the number of times
the pattern occurs in the text. For r = 0, 6n
comparisons are required [20, 31].
Cole showed that Boyer-Moore with the stronger

good suffix heuristic requires only 4n comparisons
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if the pattern does not occur in the text. When
the pattern occurs r times in the text, the number
of comparisons is Θ(rn) [14]. This complex anal-
ysis does not even include any advantages caused
by the bad character heuristic.

Galil developed a slight modification to Boyer-Moore
that allows a proof of O(n) performance regardless of the
number of occurrences [11, 14]. In 1986, Apos-
tolico and Giancarlo developed a variant of Boyer-
Moore algorithm that requires at most 2n compar-
isons, but requires O(m) additional space [2, 31, 14].
In 1996, Crochemore and Lecroq showed that the
Apostolico-Giancarlo algorithm has a tight bound of at
most 1.5n comparisons [8]. This bound is better
than the 2n of the KMP algorithm and encroaches
on Rivest’s lower bound of n − m + 1 comparisons
for any algorithm’s worst case performance[27].

Many performance studies of Boyer-Moore and its
variants have been performed. Despite worst-case
performance that is super-linear, the observed av-
erage case performance is typically much better. Hor-
spool studied a version of Boyer-Moore that does
not perform the good suffix comparisons. This version is
O(nm) in the worst case, but performs compara-
bly to the original Boyer-Moore algorithm in the
average case [31].

3.2 Aho-Corasick

The Aho-Corasick algorithm [1] is the classic algo-
rithm for searching for multiple patterns simultane-
ously. Roughly speaking, the Aho-Corasick algo-
rithm uses the structure of a finite automaton that
accepts all strings in the set. The automaton is
structured so that every prefix is represented by only one
state, even if the prefix begins multiple patterns.
When the next character in the text is not one
of the expected next characters in the pattern, a
failure link (an ε-transition) is taken to the state
representing the longest prefix of a pattern that is
also the proper suffix of the current state. The
Aho-Corasick algorithm is O(n) and the precompu-
tation is linear in the size of the pattern, O(m) [14].

4 Set-wise Boyer-Moore

In this section, we describe a newly developed al-
gorithm for matching sets of strings. We will discuss
previous work on the category of sub-linear time,
multiple-pattern algorithms, and describe the trade-
offs that led us to our new algorithm. This class
of algorithms, including our own, performs better
than Aho-Corasick in many cases by using concepts
from the Boyer-Moore family of algorithms.

Snort currently uses a single-pattern Boyer-Moore

algorithm repeated separately for each pattern. Re-
peating the Apostolico-Giancarlo algorithm for each
of k patterns would result in at most 1.5nk com-
parisons. In the best case, at least n

m
compar-

isons would be required for a pattern of length m.
For k patterns all of length m, the total cost is
therefore between nk

m
and 1.5nk. When k > 2m,

then the Aho-Corasick algorithm is clearly superior
with its worst case performance of 2n.
However, the techniques of the Boyer-Moore family

of algorithms can be adapted to operate on sets
of patterns in a single pass rather than iteratively.
Commentz-Walter [7] introduced the first such al-
gorithm and Watson showed that the actual per-
formance of Commentz-Walter is much better than
Aho-Corasick, particularly with long patterns [33].
Gusfield argued for a simpler algorithm that uses
suffix trees to compute the good suffix heuristic [14]. Wu
and Manber developed other techniques for imple-
menting Boyer-Moore heuristics for multiple patterns
and achieved performance significantly better than
Aho-Corasick or Commentz-Walter for natural lan-
guage texts [35].
Many of these algorithms have increasingly good,

but complex algorithms for skipping. As evidenced
by Horspool’s variant of Boyer-Moore [16], simpler
search algorithms can often perform better than algo-
rithms which skip more characters per comparison,
but require much more work per skip. Horspool
uses only the bad character heuristic of Boyer and
Moore and not the good suffix heuristic, without
loss of average-case performance. In this section, we
introduce a new a multiple-pattern algorithm that
preserves the simplicity of Boyer-Moore-Horspool.
The basic procedure of the algorithm is as follows.

The initial position of the endpoint e is the length of
the shortest pattern. The set of patterns can quickly
be compared to any position in the text by storing the
reversed patterns in a trie. Comparisons continue from
right to left until a character is found in the text that
does not match a next character in the trie.
Recall that in our description of the Boyer-Moore

algorithm, the bad character heuristic merely depends
on knowing the distance from the end of the pat-
tern of the last occurrence of each possible charac-
ter. This same pre-computation can be performed
by finding the minimum of the shifts of each pat-
tern; let B(c) be the bad character function for
the set as a whole and Bl(c) be the bad charac-
ter functions for the k individual patterns such that:

B(c) = min {Bl(c), 1 ≤ l ≤ k}

Clearly this unified B(c) function is as conservative as
the most conservative of its component functions. Thus
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the correctness of the algorithm remains unchanged.
Note that we have carefully described the bad

character heuristic in this paper without referring
to a shift of the starting character of the pattern.
Most presentations of this material depend on the
starting character. By making this simple, but incon-
sequential translation in the description of Boyer-
Moore, we make it clear that the same heuristics
can be applied to searching a set of patterns in parallel.

4.1 Average Case Analysis

We now examine the average performance of this set-
wise Boyer-Moore-Horspool algorithm (SBMH) using a
probabilistic model. Performance is measured in terms
of the number of characters that must be examined per
character of shift. Let the size of the alphabet be a.
We assume uniform distributions of characters in both
the text and all k patterns:

pc = Pr[Any given character] =
1

a

The size of each shift is determined by B(c) and the size t
of the matching suffix:

Performance =
shifts

comparisons

=
max (1, B(Te−t)− t)

t+ 1

The probability that the matching suffix length t

equals some amount x is simply the probability of
x consecutive characters in the text matching one
or more of k corresponding characters in the pat-
terns and one final character not matching:

Pr[t = x] =

{

(1− kpc)(kpc)
x t < m′

(kpc)
x t = m′

Thus, the expected value of t is based on probabilities
of each value of t from 0 to the size of the longest pattern,
m′:

E[t] =

m′−1
∑

x=0

x(1− kpc)(kpc)
x +m′(kpc)

m′

It is clear that t is dominated by the likelihood that
the first character will not match. Given truly random
input, the probability of matching any given string in an
alphabet of significant size is clearly low.
The probability that the bad character function

B(c) = s, s < m′ is equal to the probability that each
the last s characters differs from the correspond-
ing k characters of the patterns and that at least
one of the patterns has the same character c at
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position e − j. B(c) = m′ is the only remain-
ing case and occurs when all m′ characters mismatch:

Pr[B(c) = s] =

{

kpc(1− kpc)
s s < m′

(1− kpc)
s s = m′

Therefore, the expected value of the bad character
function is as follows:

E[B(c)] =
m′−1
∑

s=0

skpc(1− kpc)
s +m′(1− kpc)

m′

We now have enough information to compute the total
shift size as follows:

Shift =

{

1 B(c) ≤ t

B(c)− t B(c) > t

Figure 3 shows the expected performance computed
for various lengths of patterns (m′) over multiple set
sizes. The alphabet is 256 possible values for a network
octet. For sets of size 1, performance improves quickly as
the pattern gets longer since each character mismatch is
likely to produce B(c) = m′ which is growing. However,
as the number of patterns in the set increases as well, it
becomes more likely that a bad character will occur late
in one of the patterns and the shift will be small. Thus
there is a sweet-spot for our algorithm that is dependent
on the size of the set as well as the characteristics of
the patterns in the set.
For 50 sets of 100 characters each, roughly 1.6

comparisons are made for each character shift of
progress. This value is unsurprising given the tight
bound of 1.5n found for other variants of Boyer-Moore.
In Figure 4, the progress has been divided by the

number of iterations necessary to compare a total
of 50 patterns. This normalization lets us com-
pare the performance of using batches of z patterns
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Figure 4: Performance amortized over 50 patterns

in 50

z
iterations for z = 1, 5, 10, 20, 50. The re-

sulting graph shows that no single set size is op-
timal for all scenarios. In general it is better to
do many iterations over small sets or one itera-
tion over large set sizes. A few iterations over
medium-sized sets is rarely preferable. Note that
for virtually all conditions, there is some combina-
tion that is preferable to the Aho-Corasick’s best
case performance of 1. Choosing the proper set
size, however is problematic.

5 Experimental Performance

The complexity of implementing the Boyer-Moore al-
gorithm has been cited as one of the reasons why
it has not been used more. We therefore devel-
oped a general purpose library for matching a set
of strings using one of several algorithms. This library
is written in C and will be freely distributed for
use by other projects. The library currently im-
plements Boyer-Moore, Boyer-Moore-Horspool, Aho-
Corasick, and our SBMH algorithm. For more even com-
parison, the implementations of both Aho-Corasick
and our SBMH algorithm use the same trie data
structure implementation.

Over the course of our tests we repeatedly found
that subtle optimizations to the performance of an
algorithm’s implementation can have dramatic effects on
the relative performance of algorithms. Thus any
performance comparison of these algorithms should
not overlook the quality of the implementation. We
hope that other groups will make use of (and un-
doubtedly improve) our library in order to ensure
meaningful performance comparisons in the future.

Case Insensitivity: Roughly half of the strings in the
Snort ruleset are case insensitive. Given the large
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Figure 6: Software Library Performance

number of Internet applications that use case insensitive,
ASCII text-based protocols, this is not surprising.
Our string matching library has functions special-
ized for case sensitive and insensitive searches us-
ing Boyer-Moore and Boyer-Moore-Horspool. Our
implementations of Aho-Corasick and Setwise Boyer-
Moore-Horspool are always insensitive to case. This
is done at precomputation time by making redun-
dant entries for both upper and lower case in the
tables used for trie branches and the Boyer-Moore
bad character heuristic. At run time, if there is
a case-insensitive match, but the pattern is case-
sensitive, then we double-check the byte-strings to
ensure an exact, case-sensitive match. Since matches are
relatively infrequent, this extra cost is only occa-
sionally incurred.
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5.1 Library Benchmarks

To compare the actual running time of the four
algorithms, we pick sets of words from an English
dictionary and search for them in randomly generated
binary strings. Figure 5 shows a log-scale repre-
sentation of the time required for each of the al-
gorithms to perform case sensitive searches through
sets of sizes 1 through 500. Times are measured
using Pentium hardware counters accumulated over
1000 runs. The two variants of the standard Boyer-
Moore algorithm perform similarly and for most set
sizes are much worse than both of the set-search
algorithms. Figure 6 is a more detailed plot of
only the set algorithms.
There are several interesting points regarding the rel-

ative performance of Aho-Corasick and our SBMH
algorithm. First, we see that for sets with fewer
than roughly 100 members, the character skipping
heuristics of SBMH allow it to perform significantly bet-
ter than Aho-Corasick. As described in our theo-
retical analysis, the advantage of the bad character
heuristic degrades as the number of overall charac-
ters in the pattern set increases. As this num-
ber rises, so does the probability that a character
will occur near the end of a pattern. Thus, the
performance of SBMH degrades until, at set sizes
of around 100 elements, it begins performing worse
than Aho-Corasick.
A second point of interest is that Aho-Corasick,

which has proven linear performance, also experi-
ences a noticeable (but constant) performance degra-
dation for sets of roughly 100 or more elements.
We believe that this crossover is due to capacity
misses in the cache. The average length of the
patterns in this experiment is 7.26 characters. For
the set-wise algorithms, the size of the data struc-
tures used by the library is roughly 260 bytes per
character. Out test program would therefore re-
quire roughly 139 words to fill the 256KB on-chip cache.

5.2 Integration with Snort

The following measurements were made on a 733MHz
Pentium III (Coppermine) system with 256KB of
on-chip cache and running Linux 2.2.18. We used
Snort version 1.6.3-p2 modified to use our string
matching library. The Snort ruleset used was the
full ruleset from the Snort 1.6.3-p2 distribution with
the “ping” and “backdoor” rules disabled (a com-
mon configuration). Timing information was ac-
quired with the gprof [12] execution profiler.
Snort uses libpcap [18] for capturing and filter-

ing packets. As a result, Snort can read packet
traces stored by programs like tcpdump. We used
this capability to replay fixed traces with determin-

istic results. Operating on live traffic would make
any results inconclusive due to potential variations
in traffic between tests.
The pcap library uses a callback to run the appli-

cation’s packet handler on each packet. The timing mea-
surements shown below exclude the costs of pcap
itself since our experiments read packets from disk
rather the network. Optimizing the performance
of libpcap is an area of our current research. In
particular, the use of ring buffers shared by the
kernel and the application improve performance sig-
nificantly by removing system call overhead.
Decision Structure: Snort rules are categorized by

which protocol (TCP, UDP, or ICMP) they apply to.
Since any given rule may only apply to one of these
protocols, they form mutually exclusive sets of rules.
Rules are then grouped by their action Pass, Alert, and
Log, with each group being processed separately in a
configurable order.
In order to minimize the amount of time spent

performing expensive string matching, Snort searches
for strings only after comparing header attributes.
For each group (Pass, Alert, Log) of each proto-
col (TCP, UDP, or ICMP) rules are stored in an
unordered, two-dimension linked list. The first di-
mension contains a list of the different filters used
by rules. We use the term filters to refer to tra-
ditional packet classification criteria such as IP ad-
dresses and TCP or UDP ports. Each filter on
this first list contains a list of every rule that is
predicated on that filter. Each of these rules may
then define other criteria such as TCP flags and
payload contents.
We chose to modify this structure as little as

possible in order to make it a controlled variable
in our experiments. Thus we employed the tech-
nique of lazily performing a set-wise string search
the first time any element of that set is tested.
However, we cache the results of this set search so
that subsequent tests of other elements of the set
need only check to see whether or not that ele-
ment was flagged as found during the set search.

5.3 Average Traffic

We ran our modified Snort on a dataset of the
full contents of 8.7 million packets totalling more
than 1 gigabyte captured over a 25 minute period
from the Internet connection of a large enterprise
with mixed business and scientific users. We con-
ducted several experiments involving different ways
of constructing sets.
First, we built a small number of sets based on

Snort’s initial decision criterion, the protocol. Thus we
build 3 sets of strings for TCP, UDP, and ICMP
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Method Min Set Size Total Time Set Search Singleton Search

(seconds) (seconds) (seconds)
Boyer-Moore — 136.16 0 136.16
Horspool — 102.83 0 102.83
Aho-Corasick 1 132.73 132.73 0
SBMH 1 104.65 104.65 0
Aho-Corasick 2 93.95 84.36 9.59
SBMH 2 91.66 82.60 9.06
Aho-Corasick 3 101.21 87.78 10.69
SBMH 3 96.42 83.69 9.96
SBMH/Aho-Corasick 2 89.76

Figure 8: Search times with one set for each filter

Method Min Set Size Total Time Set Search Singleton Search

(seconds) (seconds) (seconds)
Boyer-Moore — 21.25 0 21.25
Horspool — 22.47 0 22.47
Aho-Corasick 2 4.76 3.19 0
Aho-Corasick 2 4.36 3.22 0
Aho-Corasick 2 4.74 3.50 0
SBMH 2 4.63 3.66 0
SBMH 2 4.98 3.97 0
SBMH 2 4.73 3.51 0

Figure 9: Search times for worst-case traffic

Method Total Search Time

(seconds)
Boyer-Moore 136.16
Horspool 102.83
Aho-Corasick 235.76
Setwise Horspool 1246.83

Figure 7: Search time with all-encompassing sets

with sizes 490, 60, and 9, respectively. The break-
down of traffic in this packet trace as 98.199% TCP,
1.499% UDP, and 0.257% ICMP. Figure 7 compares
the total amount of time spent performing string
searches using Aho-Corasick and our Setwise Hor-
spool algorithm to the time required with Snort’s
traditional method of running Boyer-Moore separately
for each rule being checked. Overall performance
actually suffers if setwise algorithms are employed
in this manner. The first-order conclusion is that
set-wise string searching must be carefully applied
to this problem. The results of library tests pre-
sented in section 5.1 show that very large sets can
be much more expensive. Thus, we examine the
tradeoff of having larger numbers of smaller sets.

For each monitored packet, the optimal solution
is to have a set that contains every pattern string
for every rule that matches that packet, but no
additional strings. Unfortunately, the number of
permutations of overlapping rules makes this pro-
hibitively expensive. Thus, we employ heuristics
to approach this optimum.

Given Snort’s decision structure described in sec-
tion 5.2, it is natural to build one set per filter.
There are two limitations to this approach. First
the additional criteria expressed by each rule may
mean that only a small portion of the set gets
used for any particular packet. Second, a packet
may match multiple filters requiring multiple sets
to be searched. The result of this structuring is
that strings are now partitioned in 64 sets instead of 3.

For singleton sets, the set-wise algorithms have
a higher overhead and are slower compared to the tra-
ditional Boyer-Moore and Boyer-Moore-Horspool al-
gorithms. Of the 64 sets, 24 of them are single-
tons. Thus, we create a set size threshold under
which the traditional algorithms are always used.

Figure 8 shows the results of this set of exper-
iments. The first two entries, the single pattern
search algorithms, are the same as before. The
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next two entries show the performance of the set-
wise algorithms when there is one set for each fil-
ter (a total of 64 sets). Performance is better
than in Figure 7, but not significantly better than
Snort currently is.
For the fifth and sixth entries, the threshold for

using the set-wise algorithm has been raised to two
so that all singleton sets will be processed with
the Boyer-Moore-Horspool algorithm rather than a
set-wise algorithm. The right-hand column shows
that for the setwise algorithms, the vast majority
(roughly 90%) of the time is still spent perform-
ing setwise searches. Yet, the overall performance
is now as much as 1.5 times faster than Snort’s
current algorithm, Boyer-Moore.
The next two entries show the effect of raising

the threshold for using the set-wise algorithms to
three. This proves to be counter-productive since
it results in more searches per packet by splitting
sets of two into two separate searches. Thus, the
best performance is achieved by making one set for
each filter and reserving the use of the set-wise algo-
rithms to sets with more than one element. The
result of using this technique rather than Snort’s
current algorithm is a speed-up of 1.49. Note that in
all cases studied in this series of experiments, our
SBMH algorithm performed marginally better than
Aho-Corasick.
Section 5.1 demonstrated that in practice, there

is cross-over point in set size where our SBMH al-
gorithm performs best below this point, but be-
yond this point, Aho-Corasick performs better. We
therefore modify our set construction algorithm in
Snort to handle three different classes of sets. For
singleton sets we use Boyer-Moore-Horspool which
has the best performance for single strings. For
sets of size two through 100, we use our SBMH
algorithm, and for sets of more than 100, we use
Aho-Corasick. The results of this technique are
shown in the final entry of Figure 8. The speed-
up over Snort’s current algorithm increases to 1.52.
We note that the threshold of 100 is dependent upon

the implementation and platform being used. However,
the sets in our experiments skip from a size of 31 to 310.
Thus, we have been unable to determine the optimum
threshold for our implementation.

5.4 Worst-case Traffic

In terms of effect on load, the worst-case traffic
is that which requires many string searches. The
largest single component of commonly distributed Snort
rulesets is rules that search web requests for well-
known implementation vulnerabilities such as CGI
scripts. Our ruleset contains 310 such strings that

apply to TCP port 80 packets. Packets that match
this filter are the the worst-case load for a detec-
tion system which must check each packet against
all 310 rules. However, it is this sort of work-
load that best exposes the benefits of the setwise
string matching algorithms.
We filtered our original dataset to extract only

the packets that match these filters. The result is
a dataset of 13084 such web request packets.3 It
is worth noting that such traffic may in fact dom-
inate the workload of many e-commerce networks’
incoming packets. In addition, an adept attacker
wishing to overload a detection system would want
to generate this sort of hard to handle traffic, so
it is important that Snort can process it efficiently.
For the next experiment, we tested the perfor-

mance of Aho-Corasick and SBMH on this worst-
case traffic.4 The results are shown in Figure 9.
Because of the closeness of some of the figures, we
present results from three different runs for the set-
wise algorithms. The improvement over Snort’s cur-
rent Boyer-Moore algorithm is much more striking
for this experiment. Switching from the currently
used algorithm (Boyer-Moore) to our SBMH algo-
rithm (with an average search time of 4.78 seconds)
results in an average speedup factor of 4.6. Be-
cause this experiment is dominated by a very large
set (310 members), it is not surprising that Aho-
Corasick performs slightly better with an average
search time of 4.62 seconds. For this experiment,
the difference between SBMH and Aho-Corasick is
inconclusively small.

5.5 Performance Summary

As more and more vulnerabilities are discovered for
a protocol or application, the number of rules that
share a common filter for that protocol or appli-
cation will grow. For example, the web already
accounts for 310 nearly identical rules that apply
to HTTP traffic. We can only expect that this
number will continue to grow, as will the number
of rules that apply to other existing applications.
With regard to this problem, setwise algorithms

scale much better than algorithms that search each
rule individually. The results presented in the pre-
vious section deal with packets that involve fewer
rules on average than this benchmark. The in-

3Most of these rules only look at TCP packets with the push bit set.

While most legitimate web requests will end in a packet with the push bit,

a wily attacker would certainly choose to hide their attacks by ensuring

that the push bit is not set. To catch such attacks, string searches would

have to be run on a larger fraction of packets, thus increasing the relevance of

this benchmark even further.
4The tri-modal algorithm presented at the end of the previous section

would use Aho-Corasick in this case since the data only exercises a single,

large set
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creased speedup between the two benchmarks, 4.6
compared to 1.5, demonstrates that the setwise al-
gorithms scale better as the number of rules per
filter grows.

Figures 5 and 6 demonstrate this difference in
scalability. While the SBMH algorithm that we
present in this paper performs slightly worse than
Aho-Corasick for very large sets, SBMH performs
better for sets with less than 100 members. Fi-
nally, our best construction adaptively makes use
of Boyer-Moore-Horspool, Aho-Corasick, and SBMH
to pick the best of these algorithms for each set.

We presented the idea of an algorithmic perfor-
mance attack in Section 2.3. A load of incoming
web requests would be an attractive way to per-
form such an attack on most Snort systems. How-
ever, by improving our performance for these rules
by a factor of 4.6, we have made it that much
harder for such an attack to succeed.

6 Conclusions

We have described a broad class of content-based
packet handling applications (such as intrusion de-
tection, Layer 7 switching, and virus detection) and
their dependence on searching for sets of strings in
packet data. Thus, while our paper focuses on
network based intrusion detection in order to allow
concrete evaluation, our library routines and new
Setwise Boyer-Moore-Horspool algorithm should be
useful in all these applications. Further, the SBMH algo-
rithm is of interest to applications in other prob-
lem domains that currently uses Aho-Corasick for
somewhat small sets.

Much of the paper focused on signature based sys-
tems and on improving the performance of a pop-
ular open-source signature detection system called
Snort. On packet traces, we found that replacing
the Snort Boyer-Moore algorithm with a set algo-
rithm (either Aho-Corasick or our new algorithm)
improved performance only slightly unless additional
measures were taken to intelligently build the pat-
tern sets. After this additional structuring of the
problem we were able to improve performance on
average by 50% and related work to improve the
performance of the search algorithms themselves should
improve this figure further. More impressively, we found
that for packet traces of web traffic, which dom-
inates many networks, the set algorithms improve
the performance of standard Snort by a factor of
5. This large improvement weakens an attacker’s
ability to overload the system by generating traf-
fic that much be checked against a large number
of filters. We also found that our setwise Boyer-

Moore-Horspool outperforms Aho-Corasick for sizes
up to say 100, upon which the Aho-Corasick al-
gorithm does better. A combined algorithm that
switches from standard Boyer-Moore-Horspool (for sets
of size 1) to Setwise Boyer-Moore-Horspool (for sets
of sizes between 2 and 100) and finally to Aho-
Corasick (for sizes > 100) seems to outperform all
other variants.

We found that there were a number of implemen-
tation artifacts that suggest that optimizing these
algorithms for the particular architecture and cache
size could provide further improvements. Even our
choice of thresholds to switch between algorithms
is likely to be machine dependent. Also, once the string
matching component is no longer a bottleneck, it
may pay to improve the performance of other as-
pects of Snort. We leave all these aspects to future work.
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