Interactions of Realm Boundaries and End-to-End Network

Applications

Mike Fisk'
mfisk@lanl.gov

"Los Alamos National Laboratory *

Los Alamos, NM 87544

Abstract

One of the design principles of the Internet is
that the network is made more flexible, and
therefore useful, by placing functionality in end
applications rather than in network infrastruc-
ture. Network gateways that violate this princi-
ple are considered harmful. This paper demon-
strates that such upper-level gateways exist be-
cause of realm-specific performance, security,
and protocol needs of certain portions of the In-
ternet. Placing this functionality in end hosts
is, conversely, harmful to the flexibility of us-
ing the Internet to link disparate networks. Re-
quirements are developed for a protocol to allow
end-hosts and gateways to negotiate the func-
tionality of these gateways in terms of the needs
of both end applications and network realms.

1 End-to-End Arguments

In [28], arguments are made for placing func-
tionality close to the applications that use that
functionality. Because the end applications
have the most information regarding the given

*This work was supported by the U.S. Deptof En-
ergy’s Next Generation Internet - Earth Systems Grid
and Accelerated Strategic Computing Initiative - Dis-
tance and Distributed Computing and Communication
programs through Los Alamos National Laboratory con-
tract W-7405-ENG-36. This paper is Los Alamos Un-
classified Report (LAUR) 00-3631.

Wu-chun Feng'®
feng@lanl.gov

$Purdue University
West Lafayette, IN 47907

problem space, they are in the best position to
determine what functionality is required. Func-
tionality provided by lower-level or intermedi-
ate systems may be redundant or contradictory
with the needs of the application. With re-
gard to networked or distributed applications,
end-to-end design discourages the placement of
functionality in network infrastructure and in-
stead argues that functionality should be placed
in the application whenever possible.

In practical terms, this design leads to the cre-
ation of software libraries of system function-
ality that applications may use. Some of these
libraries may be implemented in an operating
system kernel (as is usually done with TCP),
while others may be implemented as user-space
libraries (such as SSL). End-to-end arguments
have played a key role in the design of the Inter-
net and have arguably contributed to its success
by keeping the network infrastructure relatively
simple and allowing applications to evolve with-
out the need for coordination with network in-
frastructure.

2 Boundary Gateways

As alluded to in its name, the end-to-end
paradigm is concerned with two-party commu-
nications. With regard to network protocols,
the network is treated as a passive, packet-
delivery system that may use lower-layer head-

Interactions of Realm Boundaries and End-to-End Network Applications

00-3631

ers in the packet for routing, but should never
change the upper-layer portions of end-to-end
packets.

Current trends in the Internet are leading to
the creation of many mechanisms that do not
fit within such a limited model of the network.
This notion of the Internet as a homogenous,
abstract cloud is not representative of its het-
erogeneous composition. Just as hosts on the
Internet are a varied lot, the component net-
works on the Internet also vary in dimensions
such as performance, link characteristics, and
security. As the size and population of the In-
ternet grows, further diversification can be ex-
pected.

Areas of similar network characteristics can be
considered a realm. Any given network applica-
tion may communicate across multiple realms.
Further, the dynamic nature of Internet rout-
ing and mobile hosts means that realms may
be added or removed from the path at any
time. End applications currently have very few
techniques for discovering the characteristics or
policies of the realms they traverse. As a re-
sult, end applications fail to cater their traffic
to most kinds of network conditions.

As a result, various types of upper-layer gate-
ways have been created and placed at the
boundaries between realms to manage the flow
of traffic across those boundaries. This occur-
rence has had significant effects on end-to-end
protocols. In an effort to generalize the func-
tions and side-effects of these gateways, the fol-
lowing sections examine some of these upper-
layer gateways that, in most cases, directly in-
terfere with end-to-end protocol design and op-
eration.

2.1 Network Address Translation

The Internet Protocol version 4 (IPv4)[24], pro-
vides a 32-bit address space for host addresses.
Between the explosive growth in Internet sys-

tems and the mechanics of allocating addresses,
it is now difficult for many institutions to get
enough addresses for every system at that insti-
tution. Many institutions have deployed Net-
work Address Translation (NAT) [8, 30] tech-
nology to allow hosts to share IPv4 addresses.
Version 6 of the Internet Protocol (IPv6)[6]
provides a 128-bit address space, but solutions
such as NAT or proxying are needed to allow
IPv6-only systems to be able to communicate
with IPv4-only systems.

NAT is usually used as a gateway between the
Internet and a private network of systems with
non-global IP addresses. The NAT gateway
translates between internal addresses and cor-
responding global addresses. Most commonly,
TCP and UDP ports are also mapped so that
multiple private addresses can be multiplexed
into one global address. Thus, a site with nu-
merous private addresses can survive with only
a few global addresses.

Simple address translation breaks many upper
layer protocols that transmit IP addresses (or
ports in the case of port translation). For ex-
ample, the FTP control connection communi-
cates the IP address and TCP port to use for a
data connection [26]. To work through a NAT
gateway, the gateway must also translate the
IP address and port within the FTP applica-
tion protocol.

Since NAT requires modifications to the packet
headers, packet security mechanisms such as
IPsec Authenticated Headers [19] cannot be
used. Encryption of the TCP headers and pay-
load also breaks port translation and any ap-
plications that transmit their own IP addreses
within the application layer.

While having obvious benefits, the use of NAT
violates end-to-end principles by limiting end
hosts to only using application protocols that
are supported by network gateways beyond
their control.

Interactions of Realm Boundaries and End-to-End Network Applications

00-3631

2.2 Performance Enchancing Proxies

Most Performance Enhancing Proxies|2]
(PEPs) or Protocol Boosters [9] are proxies
that, without the knowledge of end systems,
modify or buffer packet streams in order to
increase the performance of network protocols
over network links with special characteristics
such as satellite, cellular, and other wireless
links. Some proxies modify packet streams to
improve the behavior of transport protocols.
Other proxies actually split the end-to-end
connection into two separate connections that
may even use entirely different protocols.
Additional techniques include application-level
caching and compression. The following
sections describe some of the specific types
of performance enhancing proxies and their
interactions with end-to-end protocols.

2.2.1 Link Error Rates

Compared to copper and fiber-optic cables,
most wireless networks are prone to packet
loss or corruption. Internet protocols do not
currently differentiate between these kinds of
packet loss and losses due to congestion. TCP
[25] and TCP-friendly [13] protocols will treat
any packet loss as a sign of congestion and
will halve their transmission rates. Between
this throttling and the retransmissions, good-
put will be very poor. In [1] goodput dropped
84% as the Poisson distributed bit error rate
increased from 0 to 3.9 x 107% on a simulated
1.6Mbps link.

Consider the case of a gateway between a fiber-
optic ‘backbone’ and a lossy wireless network
such as a satellite link or cellular network. As-
sume that, like many wireless networks, this
network will quickly detect errors or packet loss
through mechanisms such as negative acknowl-
edgements or duplicate ACK responses from
the receiver.

To improve the performance of an end-to-end
TCP connection, a new signalling mechanism
could be created to allow the wireless network
to notify the sender that the packet was lost
due to reasons other than congestion. However,
the sender will not retransmit the packet for
at least the round-trip delay time of the Inter-
net connection. With any significant network
latency between the sender and the gateway,
performance may still suffer.

Alternatively, the gateway can buffer TCP con-
nections and handle retransmissions itself in
a timely manner. The Snoop [1] library does
this and also filters duplicate acknowledgement
replies to the sender that would trigger retrans-
missions. For error rates above 5 x 1077, the
traffic altered by Snoop performed between 1
and 20 times better than the unaltered, end-
to-end traffic of a standard TCP Reno imple-
mentation.

To function, however, these Performance En-
hancing Proxies must have access to the TCP
headers. When IPsec encryption is used, the
PEP will be of no beneift. Other end-to-end
transport protocols will also not benefit from
the proxy unless the PEP has implemented sim-
ilar techniques for that specific protocol.

2.2.2 Delay-Bandwidth Product

With a windowing protocol such as TCP, full
performance can only be achieved when the
window is at least as large as the delay-
bandwidth product of the network. With RFC
1323 [18], TCP can support window sizes up
to 1 gigabyte (23° octets), but not all hosts
support this option. Further, clients that do
support the option must have it manually con-
figured. For many network connections, small
window sizes are adequate, so most implemen-
tations default to relatively small values be-
tween 8 and 64 kilobytes. [29] suggests that
the maximum possible window can always be
used while [12] examines methods for dynami-

Interactions of Realm Boundaries and End-to-End Network Applications

00-3631

cally adjusting windows. However, virutally no
systems actually use any of these mechanisms.

As a result, many operators of large delay-
bandwidth networks place a Performance En-
hancing Proxy at the entrance to that network.
This gateway effectively splits TCP connections
by acknowledging data entering the network
and taking responsibility for reliably transmit-
ting the data to the receiver. The sender re-
ceives the acknowledgements over the relatively
low delay network and continues to send more
data without filling its small window.

This kind of PEP does not require modifica-
tions to TCP packets, but must be able to ex-
amine TCP headers. Packet encryption tech-
niques such as IPsec therefore negate the value
of the proxy. Windowing protocols other than
TCP are generally not supported.

2.3 Authenticating Proxies

It is common practice for a site to have a fire-
wall that requires the authentication of incom-
ing network connections. This authentication is
frequently performed using an application layer
proxy that forces in-band authentication. In
many cases the proxy is transparent, meaning
that there is no prior knowledge of the existence
of a proxy. The end host initiates a connection
to the destination host. The proxy pretends to
be that destination host and, after authenticat-
ing, forwards data to the real destination.

2.4 Validating Proxies

While authentication can be used to identify
the source of the data as being a trusted user,
the user’s application or computer may be un-
der the control of somebody with malicious in-
tentions. For example, the user may unknow-
ingly send data that includes viruses or the ap-
plication’s network socket may be hijacked by

another user of the system [4]. As a result,
many firewalls include application layer prox-
ies that validate protocols and/or application
content. Like authenticating proxies, many of
these proxies are also transparent. As a simple
example, a validating proxy can filter out mali-
cious e-mail attachments such as those used by
the ‘Love Letter’ worm [5]. A more sophisti-
cated proxy could detect maliciously high rates
of certain packets such as pings used in some
distributed denial of service attacks [10].

2.5 Protocol Suites

While standard Internet protocols are quite
ubiquitous, there is still value in being able to
have application connectivity with other suites
of protocols. Perhaps the best example of cur-
rent alternative protocols is the the Wireless
Application Protocol (WAP) suite [14] for wire-
less handheld devices. This suite of protocols
has been optimized for cellular networks and
devices, but was also designed to translate eas-
ily into Internet protocols. The level of sup-
port from the cellular industry makes it appear
that WAP will be a widely used protocol suite.
Thus, there is a need for multi-layer gateways at
the boundary points between these WAP net-
works and the Internet.

3 Regaining End-to-End Con-
trol

In most of the previously described cases, the
functionality of these boundary gateways does
little to provide functionality (such as reliabil-
ity or encryption) to end-to-end applications.
Rather, they provide functionality to meet the
requirements of the network realm that the
traffic is traversing.

The end-to-end paradigm discourages such un-
requested functionality in the network. It is

Interactions of Realm Boundaries and End-to-End Network Applications

00-3631

clear that with many protocols built with the
expectation of end-to-end continuity, interme-
diate systems that violate that expectation are
likely to cause problems. As a result, the typi-
cal solution is to modify the end system to in-
clude support for the realm or the boundary.

In [2] it is argued that when Performance En-
hancing Proxies (PEPs) are used, they should
be under the control of the end user so that they
can be disabled when they interfere with end-
to-end protocols such as IPsec. The authors
know of no such control mechanisms for PEPs,
but there are solutions for some other boundary
gateways and realm-specific problems.

3.1 End-to-end Solutions

There are clear end-to-end solutions for some
realm-specific problems. For example, TCP has
been modified to include end-to-end support for
the large window sizes necessary on networks
with large delay-bandwidth products. Better
host or application security practices could also
remove the need for authenticating and validat-
ing proxies.

Unfortunately, there are host management and
deployment issues that result in pragmatic rea-
sons why some of these end-to-end solutions
cannot be depended upon in the near future.
The sheer number of hosts on the network make
it unlikely that any feature will be deployed
widely in a reasonable amount of time. Al-
most eight years after the TCP window scaling
option was created, a March 2000 sampling of
115143 web servers showed that less than 41%
of them supported the option [31]. Worse yet,
while features are commonly bundled in new
software releases, operational practices require
cognizant change by the operator.

3.2 IP Tunneling Solutions

When the sender of a packet is aware of the
existence and requirements of a gateway, the
sender can encapsulate the end-to-end packet
with additional information for the gateway.
The gateway can perform its functions on this
additional information and then forward the
original, end-to-end packet. Tunneling mode
IPsec and Realm Specific IP use IP over IP en-
capsulation in this manner.

IPsec tunneling [19] can be used to replace
application-layer, authenticating proxies. Each
packet is wrapped in an additional layer of au-
thenticating TP headers. The gateway checks
these headers, strips them off, and forwards the
inner packet on to the destination.

Realm Specific IP (RSIP) [3] is a proprosed
standard protocol that allows a system to allo-
cate a global address from a local gateway sys-
tem. The internal system then uses that global
address for outside communications, but tun-
nels the global traffic inside local packets to the
gateway. The gateway strips the outer headers
and sends the tunneled traffic onto the Internet.
In the reverse direction, the gateway maintains
a table of allocated addresses and tunnels in-
coming traffic to the appropriate internal sys-
tem.

Tunneling solutions only work if the sender can
include all information that the gateway needs.
For authentication and address translation, this
has been demonstrated to be possible. For per-
formance enhancing proxies, validating proxies,
and protocol translation, however, it is still nec-
essary to examine upper-layer protocols. Wrap-
ping IP packets with an additional layer of IP
headers is practical, but duplicating TCP head-
ers or content into an outer layer is clearly in-
efficient.

Interactions of Realm Boundaries and End-to-End Network Applications

00-3631

3.3 Negative Side-effects of IP Tun-
neling

Transport layer protocols are designed to work
on real network links. Hiding those links by
tunneling between distant end-points can hin-
der the ability of those transports to optimize
themselves for that link. Consider a TCP con-
nection operating over an IPsec tunnel between
two gateways. It may be impossible for an in-
termediate router to apply normal traffic con-
trol and queing policies to that traffic. For ex-
ample, techniques are being developed for the
explicit notification of loss, corruption, or con-
gestion [27] of TCP packets. Over an IPsec tun-
nel, it may be impossible for the router to use
those tools since the transport layer has been
abstracted. In addition, local Performance En-
hancing Proxies may also not be able to benefit
those connections.

The end goal is end-to-end continuity for appli-
cations, not for IP or transport protocols. IP
over IP tunneling effectively promotes IP to a
transport protocol, but it lacks much of the flow
and congestion control infrastructure necessary
for such a task.

3.4 Application Tunneling Solutions

IP tunneling solutions can be described as a
push-down approach. Information for gate-
ways is pushed down into lower layer headers.
The result is multiple IP layers in the packet.
There exists an obvious corollary to this design.
Gateway information can be pushed up into an
upper-layer protocol. The result in this model
is multiple application layers.

The SOCKS [20] protocol does this by tun-
neling TCP and UDP connection setup, and
sometimes data, within the SOCKS application
protocol. Since SOCKS encapsulates distilled
TCP, UDP, and IP information rather than a
pre-formed IP packet, it does not provide the

same level of end-to-end continuity that tunnel-
ing provides and that is required for protocols
like IPsec.

4 Multi-party Dependencies

The core premise of the end-to-end design
paradigm is that functionality should be under
direct control of the application rather than be
a required part of an opaque, underlying com-
ponent. The primary reaons behind this design
are as follows:

Effective I'mplementation. The application
possesses the most knowledge about the re-
quirements of the current situation. It can
therefore make the best tradeoffs between
conflicting factors.

Agility. The network as a whole is more agile
if new functionality can be deployed solely
on the end systems without having depen-
dencies on functionality in the network it-
self.

There are two conflicting concerns at play:

First, end applications need the flexibility to
tailor network behavior to the needs of the ap-
plication. This flexibility is hindered by rigidity
in the network.

Second, the Internet is a dynamic and heteroge-
neous network. End applications are frequently
not prepared to operate well with all possible
networks and configurations. Gateways in the
network can remedy some of this rigidity in ap-
plications by adding functionality to the net-
work.

Interactions of Realm Boundaries and End-to-End Network Applications

00-3631

4.1 Dependence Inversion

The traditional solutions described earlier all
involve placing knowledge in the end applica-
tion about the requirements of the network. For
completeness, the end applications must be pre-
pared to handle the requirements of any realm
that might exist in the Internet.

In this case we have created the same kind of
interdependency that the end-to-end paradigm
seeks to avoid. Instead of the applications de-
pending on the network, the network now de-
pends on the applications. Given the ratio of
end systems to gateways, it is extremely diffi-
cult for a gateway to depend on specific func-
tionality to be deployed in all end systems. The
reason that these upper-layer gateways are used
in the first place is that they offer solutions that
do not depend on modifying the end applica-
tions.

To avoid creating this interdependency, we
must evaluate the placement of functionality
not in terms of a two-party, end-to-end con-
nection, but in terms of a multi-party, end-to-
end composition. In this model of a cooperative
network, the concerns of realms being transited
are given equal, first-class, stature with appli-
cation needs.

4.2 General Solutions

Adding functionality to the network can reduce
the flexibility that applications have in tailor-
ing network behavior. The resolution of this
conflict can best be made by allowing for func-
tionality to be added to the network, but let-
ting end applications tailor that functionality
to their needs.

Realm Specific IP, IPsec tunnels, and SOCKS
are point solutions for specific instances of this
problem. There is much friction involved with
designing and deploying a new control protocol,

so it is greatly desirable that a single protocol
be generic to all types of network functionality.
The following sections develop a description of
those generic requirements.

5 Layering Issues

As exhibited by RSIP and IPsec tunneling, IP
tunneling is a construct of general utility. How-
ever, it preserves the notion that everything
above the IP layer should be opaque to network
gateways. As shown earlier, this abstraction
has negative side-effects. To avoid these nega-
tive side-effects, the tunneling protocol should
send data over a transport protocol equivalent
to that requested by the application. For ex-
ample, if the end-to-end connection is TCP, the
lower layers should be TCP/IP as in Figure 2.

Application
TCP/UDP
P
P | MAC | | MAC
MAC |

[MAC
End | —Router— TXY_[Router— End
oute /NAT oute

Figure 1: Layering of IP Tunneling

Application
TCP/UDP
P

TCP/UDP

[MAC | [MAC
IP
MAC |

[MAC

Proxy
[End]—[Router /N ATHRouter]—[End]

Figure 2: Layering of IP over TCP/IP

Operating a TCP/IP connection within a
TCP/IP tunnel is redundant and competing
congestion control mechanisms may have un-
intended effects on each other. Further, the
lower layers establish a connection and appli-

Interactions of Realm Boundaries and End-to-End Network Applications

00-3631

cation data can be sent directly over that con-
nection without intermediate TCP/IP segmen-
tation. This arrangement of running applica-
tion data directly over a single TCP/IP layer
is shown in Figure 3. Packet-wise this con-
struction is deceivingly identical to a current
upper-layer gateway that destroys end-to-end
continuity.

There is, however, a semantic difference with
all of these methods that the end-to-end ap-
plication is cognizant of the upper-layer gate-
ways and explicitly establishes the lower-layer
connection to the gateway. There is effectively
a session layer protocol operating between the
application layer and the transport layer. This
session layer is responsible for setting up the
tunnel in the manner necessary to get connec-
tivity for the end application. The HTTP pro-
tocol [11] includes a crude version of this kind
of functionality for using HTTP proxies.

Application
TCP/UDP TCP/UDP
P P

| MAC MAC |

MAC | [MAC

Proxy
[End HRouteH /N ATHRouteH End]

Figure 3: Layering of a Consecutive Composite

5.1 Consecutive Composition of

Lower Layers

It is hard to argue that existing applications
are strictly layered on top of TCP/IP. As men-
tioned earlier, FTP includes IP addresses and
TCP ports in application data. Access control
decisions are frequently based on port numbers,
IP addresses, or IPsec information. In all of
these cases, information about a lower layer is
propagated up to higher layers.

There is a symbiotic relationship between end-
to-end designs and fuzzy layering of the IP and
TCP or UDP layers. With the assumption that

these layers are end-to-end, end-to-end applica-
tion data can safely use information from lower
layers. However, when it is not true that IP
and TCP are end-to-end, applications that use
lower layer information can cause problems for
themselves.

However, there is one layer boundary that is
strictly honored. Information from within the
Medium Access Control (MAC) layer is not
used for normal applications. Most applica-
tions have no knowledge of what kind of lo-
cal network link is being used, much less what
MAC addresses are being used.! This strict in-
sulation is necessary since the MAC headers on
a packet must change many times as a packet
proceeds across a typical connection.

The strict separation at this layer gives evi-
dence that it is not unreasonable to compose
an application connection out of multiple, con-
secutive transport connections. Just as the
MAC header is limited in scope to two adja-
cent routers, the IP and TCP/UDP layers may
also be limited in scope to adjacent applications
or upper-layer gateways.

6 A Session Signalling Proto-
col

In the process of describing the composition of
multiple, consecutive transport protocols, the
existence of a session layer protocol was men-
tioned. In summary, it is necessary to have a
generic, extensible protocol that is applicable
to all types of upper-layer gateways. The ba-
sic functionality should be provided at a higher
level than the transport protocols (TCP, UDP,
etc), but as a layer of functionality that appli-

Upper-layer protocols do exchange information
about the MAC layer’s path MTU (Maximum Trans-
mission Unit) size. The MTU, however, is a part of the
defined interface to the MAC layer rather than a pri-
vate component of that layer. Layer 2 packets do not
transmit MTU information.

Interactions of Realm Boundaries and End-to-End Network Applications

00-3631

cations can depend on. This functionality is
consistent with a session-layer protocol. Below
are the basic features of what we refer to as a
Session Signalling Protocol.

6.1 Gateway Location and Negotia-
tion

SOCKS, IPsec tunneling, and Realm Specific
IP (RSIP) are all existing mechanisms for in-
teracting with network gateways. Of the three,
however, only RSIP addresses how end appli-
cations discover these gateways. In the case of
RSIP, the Service Location Protocol (SLP) [16]
is used. SLP, however, does not scale to finding
intermediate gateways on wide-area networks
under multiple domains of control.

To proceed with the model of composing con-
secutive transport and IP instances, it is neces-
sary to have an automatic way to discover the
gateways between two end hosts. All parties in-
volved must then negotiate the necessary trans-
port connections that will make-up the com-
position. To support alternate protocol suites
such as WAP, the negotiation should focus on
characteristics of the connection rather than
specific protocols. As described below, there
are multiple security aspects that must be in-
cluded in this negotiation.

During the lifetime of a session, routing changes
or movement of mobile agents may change the
path through the network. The protocol must
therefore determine when gateways are added
or removed from the path. These changes to
the gateway environment may also result in
changes to the existing transport connections.

6.2 Encryption

Gateways that perform auditing or validation
of application-layer data will most likely not
allow end-to-end encryption. Performance En-

hancing Proxies may request unencrypted data
as well, but should be willing to accept data
that is encrypted from end-to-end. If the appli-
cation is willing to operate without end-to-end
encryption, it may still require that all traffic
between validating gateways and/or end-hosts
be encrypted.

End-to-end encryption of application data can
be handled by a higher layer, but may possibly
be conveniently provided by the session layer
implementation on the end systems.

6.3 Authentication

The originator and authenticity of all data (in
both directions) must be verifiable. Not all
gateways may require this authentication, but
the functionality must be present to support
authenticating proxies. To support end-user
authentication, the end-system implementation
must be able to authenticate the user, either di-
rectly or through the calling application.

Applications may also wish to know the iden-
tity of a gateway before agreeing to pass unen-
crypted data through it. The application would
presumably have some out-of-band mechanism
for assigning a level of trust to the identified
gateway.

6.4 Multiple Connections

There are certain applications that, like FTP,
set-up secondary network connections. The ses-
sion layer must allow these applications to re-
fer to and identify these connections in an end-
to-end manner. Further the session layer can
signal to authenticating proxies that the sec-
ondary connection is part of the same session.

Interactions of Realm Boundaries and End-to-End Network Applications

00-3631

7 Additional Uses

In addition to allowing the different types of
boundary gateways that were identified earlier,
there are other uses for composing transport
layer protocols with a Session Signalling Proto-
col. These other applications are those that are
pursuing some of the same tunneling and prox-
ying techniques to solve other problems such as
IP mobility.

The Mobile IP protocol [23] takes application
traffic using a canonical address and tunnels
that traffic to a gateway on the home network.
Different tunneling paths may have drastically
different congestion and flow control character-
istics, but with Mobile IP, the transport con-
nection remains established. For example, if a
mobile system moves from a high-bandwidth
LAN to a low-bandwidth wireless link, the
transport protocol may immediately flood the
network with trafficc. Most TCP implemen-
tations will only discover the loss in available
bandwidth after congestion occurs.

In addition to solving the IP tunneling side ef-
fects mentioned in section 3.3, a session sig-
nalling protocol would cause mobile end sys-
tems to establish new transport protocols when
the system changes local IP addresses. These
transport protocols would use their normal
mechanisms for discovering link characteristics
in a friendly manner. Removing these trans-
port connections from IP tunnels also allows
them to benefit from any Performance Enhanc-
ing Proxies that are present.

8 Conclusions

The authors believe that the genericity of the
concept of composing consecutive transport
connections, together with a session layer pro-
tocol for building those compositions, would
bring the Internet closer to the goals expressed

in the end-to-end arguments. It is true that
networks absent of upper-layer gateways are
more pure in end-to-end terms. However, it
is not clear that it is practical to implement
the functionality of those gateways on end sys-
tems. The fact that there are realms in the
Internet, and the networks connecting to it,
that are owned, operated, and legislated by di-
verse groups with differing environments has
created inter-realm boundaries. Those bound-
aries affect end-to-end protocols and must be
addressed. The concepts outlined in this paper
form an infrastructure for making that multi-
party negotiation possible.

The creation and deployment of a Session Sig-
nalling Protocol is not trivial. However, it
could replace the implementation and deploy-
ment of several point solutions such as Realm
Specific IP, SOCKS, Mobile IP, and other so-
lutions not yet created. The authors intend
to implement a Session Signalling Protocol and
experiment with its use in the Globus middle-
ware infrastructure [15] for grid computing. In
the process, existing protocols will be leveraged
whenever possible. Specifically, many of the
features of such a protocol are already provided
by protocols such as SOCKS, IPsec, Transport
Layer Security (TLS) [7], Group Secure As-
sociation Key Management Protocol [17] and
authentication frameworks such as the Simple
Authentication and Security Layer [22] and the
Generic Security Service Application Program
Interface [21].

References

[1] Hari Balakrishnan, Srinivasan Seshan, and
Randy H. Katz. Improving reliable trans-
port and handoff performance in cellu-
lar wireless networks. Wireless Networks,
1(4):469-481, 1995.

[2] J. Border, M. Kojo, Jim Griner, and
G. Montenegro. IETF draft-ietf-pilc-pep-

Interactions of Realm Boundaries and End-to-End Network Applications

00-3631

[10]

[11]

[13]

02.txt: Performance Enhancing Proxies,
March 2000.

M. Borella and J. Lo. IETF draft-ietf-nat-
rsip-framework-04.txt: Realm specific IP:
Framework, March 2000.

CERT. CERT advisory CA-95:01: IP
spoofing attacks and hijacked terminal
connections, January 1995.

CERT. CERT advisory CA-2000-04: Love
letter worm, May 2000.

S. Deering and R. Hinden. RFC 2460: In-
ternet Protocol, Version 6 (IPv6) specifi-
cation, December 1998.

0. T. Dierks and C. Allen. RFC 2246: The
TLS protocol version 1, January 1999. Sta-
tus: PROPOSED STANDARD.

K. Egevang and P. Francis. RFC
1631: The IP Network Address Translator
(NAT), May 1994.

D.C. Feldmeier, A.J. McAuley, J.M.
Smith, D.S. Bakin, W.S. Marcus, and
T.M. Raleigh. Protocol boosters. IEEFE
Journal on Selected Areas of Communica-
tions, April 1998.

P. Ferguson and D. Senie. RFC 2267: Net-
work ingress filtering: Defeating denial of
service attacks which employ IP source ad-

dress spoofing, January 1998. Status: IN-
FORMATIONAL.

R. Fielding, J. Gettys, J. Mogul,

H. Frystyk, and T. Berners-Lee. RFC
2068: Hypertext Transfer Protocol
— HTTP/1.1, January 1997. Status:

PROPOSED STANDARD.

Mike Fisk and Wu chun Feng. Dynamic
adjustment of tcp window sizes. Technical
Report LAUR 00-3321, Los Alamos Na-
tional Laboratory, July 2000.

Sally Floyd, Mark Handley, Jitendra Pad-
hye, and Joerg Widmer. Equation-based

congestion control for unicast applications.
In SIGCOMM, August 2000.

11

[14]

[15]

[16]

[17]

[24]

[25]

[26]

Wireless Application Protocol Forum.

Wireless Application Ar-
chitecture Specification, 1998.
http://www.wapforum.org/.

Protocol
April

I. Foster and C. Kesselman. Globus:
A metacomputing infrastructure toolkit.
The International Journal of Supercom-
puter Applications and High Performance
Computing, 11(2):115-128, Summer 1997.

E. Guttman, C. Perkins, J. Veizades, and
M. Day. RFC 2608: Service Location Pro-
tocol, version 2, June 1999.

H. Harney, A. Colegrove, E. Harder,
U. Meth, and R. Fleischer. IETF draft-
harney-sparta-gsakmp-sec-01.txt: Group
Secure Association Key Management Pro-
tocol, May 2000.

V. Jacobson, R. Braden, and D. Borman.
RFC 1323: TCP extensions for high per-
formance, May 1992.

S. Kent and R. Atkinson. RFC 2401: Secu-
rity architecture for the Internet Protocol,
November 1998.

M. Leech, M. Ganis, Y. Lee, R. Kuris,
D. Koblas, and L. Jones. RFC 1928:
SOCKS protocol version 5, April 1996.
Status: PROPOSED STANDARD.

J. Linn. RFC 2078: Generic Security Ser-
vice Application Program Interface, ver-
sion 2, January 1997.

J. Myers. RFC 2222: Simple Authentica-
tion and Security Layer (SASL), October
1997.

C. Perkins. RFC 2002: TP mobility sup-
port, October 1996.

J. Postel. RFC 791:
September 1981.

Internet Protocol,

J. Postel. RFC 793: Transmission Control
Protocol, September 1981.

J. Postel and J. K. Reynolds. RFC 959:
File Transfer Protocol, October 1985.

Interactions of Realm Boundaries and End-to-End Network Applications

00-3631

[27]

[28]

31]

K. Ramakrishnan and S. Floyd. RFC 2481:
A proposal to add Explicit Congestion No-
tification (ECN) to IP, January 1999.

J. H. Saltzer, D. P. Reed, and D. D. Clark.
End-to-end arguments in system design.
TOCS, 2(4):277-288, November 1984. Re-
vised version of a paper from the Second
International Conference on Distributed
Computing Systems, Paris, France, April
8-10, 1981, pp. 509-512.

J. Semke, J. Mahdavi, and M. Mathis. Au-
tomatic TCP buffer tuning. In Proceedings
of ACM SIGCOMM ’98, pages 315-323.
ACM Press, 1998.

P. Srisuresh and M. Holdrege. RFC 2663:
IP Network Address Translator (NAT)
terminology and considerations, August
1999.

Richard Wendland. A question about the
deployment of SACK and NewReno TCP,
March 2000. E-mail to IETF end2end-
interest@isi.edu list.

12

