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Abstract— The state of the art in general purpose software systems for
large-scale traffic measurement has not progressed much past the vener-
able libpcap. In this paper we describe a new data analysis system that
provides a scalable, flexible system for composing ad-hoc analyses of high-
speed, streaming data. This agility allows researchers, network security
analysts, or network operators to easily compose new analysis functions. A
growing tool box of filtering, measurement, and statistical tools allows new
approaches to be tested with a minimum of software development. Further,
a dynamic type system allows polymorphic analysis modules to operate on
arbitrary forms of structured data, thus allowing easy integration of mul-
tiple data sources such as packet traces, netflow records, or security logs.
In this paper we present this system and demonstrate its capabilities while
performing several measurements, such as computing probability density
functions, detecting port-scans, and probabilistic counting of traffic traces.

|. INTRODUCTION

Many network measurements involve some sort of statistic,
reduction, or other computation on huge streams of network
data. Abstractly, this analysis could be expressed as a relational
database query, yet traditional databases are not amenable to
large traffic traces, much less real-time measurement of live traf-
fic. So instead, the process of analyzing network data is usually
performed by throw-away programs that input streams of raw
data and parse, extract, and calculate the desired information.

The venerable libpcap has greatly simplified the task of ac-
quiring network packets for measurement. But once a raw
packet has been given to the programmer, he or she is left to do
virtually everything else by hand. In many cases, parsing com-
plex data structures such as packets is a more complex task than
the measurement at hand. Worse, it is something that is repeated
over and over again by programmers. This overhead, especially
for operational analysts who are rarely systems programmers, is
one of the biggest barriers to exploring new ideas.

In evolving systems and research environments, system
agility is a key factor determining the ability of researchers and
engineers to explore new ideas quickly. Even network opera-
tors and security analysts frequently explore new measurements.
Thus it seems that measurement is an inherently dynamic field
full of ad-hoc analysis that may not be repeated.

During our own analysis of packet traces and audit logs for
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the purpose of intrusion detection research and operations, we
realized the need for a general-purpose data analysis platform.
While we had a specific application domain in mind, the statis-
tics we gather, and the context of the problem, are indeed quite
common.

The community needs a component-based platform for de-
veloping and using analysis functions, 1/0 functions, and data
manipulation. In this paper we present our System for Modu-
lar Analysis and Continuous Queries which allows users to as-
semble modules into an efficient system for analyzing multiple
types of streaming data. We believed that the power of this sort
of component system is, much like Metcalfe’s ‘network-effect,’
based on the square of the number of modules that can be com-
bined.

The system we have developed is unique for four reasons.
First, it is optimized for analyzing and filtering large streams of
data. Second we make extensive use of polymorphic compo-
nents that can perform common functions on new and unfore-
seen types of data without requiring any additional program-
ming. Third, we provide a scheduling infrastructure that can
both pipeline data flows and exploit data parallelism while main-
taining a simple, single-threaded API for component develop-
ment. Fourth and finally, we provide a user interface and set
of components that allow a non-programmer analyst to quickly
assemble and execute new kinds of ad-hoc analysis functions.

Il. RELATED WORK

Previous researchers have developed modular software archi-
tectures for extensible systems [1], [2], but few optimized for
churning through large amounts of data. Other researchers have
built extensible systems for streaming data through protocol lay-
ers [3] or routing functions [4], but have not provided an in-
frastructure that is particularly amenable to analyzing extremely
large or broad datasets. Windmill [5] provides a modular sys-
tem for monitoring network protocol events, but does not pro-
vide any significant infrastructure to aid in the analysis of those
events, or non-protocol events, once they are acquired. Contin-
uous Query systems [6], [7] from the database field share many
of the concerns of acquiring and filtering continuous streams of
data, but do not have extensible type systems or the ability to
easily add new functions over that data.

The Click [4] modular router provides a data-flow system de-
signed for a single data type, the packet, and for the specialized
purpose of building router-like systems. The mechanics of man-
aging data flow in our system are similar to Click, but our dy-
namic type system and support for polymorphic modules allow
the system be much more easily applied to new types of data.

The Knit [2] system supports arbitrary interfaces between
components and studies how systems can be statically assem-
bled and then optimized. Our system lacks some of this static
optimization, but the explicit data-flow graphs in our system cre-
ate opportunities for the system to utilize run-time pipelining



and parallelism.

Event-based systems such as Bro [8], Glish [9], listeners in
Java, and callbacks in X-Windows, allow components to gen-
erate events that are then delivered to any components that have
registered an interest in those events. Event-based systems share
our goal of allowing users to assemble components in unfore-
seen ways. But instead of routing messages (events) by their
type, we route them based on the data-flow graph that was con-
structed (with a linear pipeline being a simple form of graph).
Components in our system can have any number of output chan-
nels that they produce messages on. These channels can be used
to separate different types of messages (events), but can also
be used to divide messages of the same type between different
consumers based on criteria such as load-sharing or connection
state. Most event-based systems do not support this type of load
distribution. Thus we can assemble the same flows of informa-
tion as an event-based system, but provide lower-level routing
that can be used in ways that most event-based systems cannot.

Special purpose programming languages have been created
for the network analysis domain. The network intrusion detec-
tion sensors Bro [8] and NFR [10] both let a programmer de-
fine small program segments to perform arbitrary analysis on
network packets. Our type system also provides similarly high-
level access to complex data types like packets. In contrast, we
provide this interface in both C and Python [11] and operate on
data types other than packets.

The Unix environment provides powerful abstractions and
conventions for assembling ad-hoc data processing pipelines us-
ing small, single-purpose utilities such as grep, awk, sed, uniq,
sort, head, tail, etc. However, these utilities all operate on lines
of text assembled into byte streams. This adds marshaling and
parsing overhead to each function and makes it difficult to op-
erate on complex data types. A performance limitation of this
set of tools is that data is passed between elements of a pipeline
through system calls and system libraries that repeatedly buffer
and copy data.

Similarly, libpcap [12] packet trace files are a commonly used
stream format for storing and passing packets between utilities
such as tcpdump [13], tcpslice [14], Snort [15], etc. However,
each of these programs must marshal binary data types to and
from byte streams. This prevents general purpose tools like
grep, sort, and uniq from being used on these files. Further, it is
non-trivial to extend systems like tcpdump to work on similar,
but different data types.

I1l. SYSTEM DESIGN

We have built an infrastructure for efficiently passing struc-
tured data between software components. Like traditional Unix
tools, these components should be single-purpose and require
no prior knowledge of each other. But unlike these tools, we
should be able to preserve and utilize structure within the data.

The system is implemented as a thread-safe C library that can
be embedded in other applications. We provide two command-
line interfaces that use the library to accept Unix-like pipeline
syntax or queries in a subset of SQL. The library is also being
used in an immersive visualization environment written in C++.

As shown in Figure 1, our system is composed of two run-
time environments. One is an extensible dynamic type system
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that supports polymorphic analysis, and the other is a data-flow
and scheduling environment for passing data objects. The dy-
namic type system can be instantiated and used separately, or as
shown in the figure, it can be used to share data between multi-
ple instantiations of the data-flow runtime. Figure 2 shows the
programming environment and the two APIs for writing type
modules and analysis modules. In the remainder of this section,
we will describe these two runtime systems further.

A. Dynamic Type System

A key portion of the system is a dynamic type system imple-
mented in C. All data that flows through the system is typed.
Data records are reference-counted objects with meta-data such
as type information. Types are dynamically loaded modules that
provide access to an atomic value, such as an int, or a structure,
like a packet, of any number of named, typed data fields. A type
may provide a header file that exports the internal storage struc-
ture so that modules can access data directly and efficiently. This
is particularly important for modules that interface with existing
software that operates only on structures (such as libpcap-based
programs).

We have exported this type system (including the annotations
described below) to Python [11], a dynamically-typed scripting
language. This allows analysis modules to be written in Python
and utilize its native object syntax for accessing fields of data
objects.



A.1 Polymorphism

It is particularly important to us that general purpose analy-
sis modules be polymorphic so that they may operate on any
type of structured data that might be used in the system. This
is implemented by allowing types to provide a list of named
fields of the type. A polymorphic module can request any of
these fields by name. This enables the creation of modules that
perform general-purpose operations such as comparison, sum-
mation, averaging, and display of named fields requested by the
user. However, modules than understand a data type can access
that type directly without using function calls to named fields.
This allows type-specific modules to have more efficient access
to data.

A type can register named fields either by location within a
structure, or with a callback function that must be used to access
that field. This is necessary for fields with variable locations or
sizes that can only be determined by further inquisition of the
data record. For instance, the location of fields of a TCP header
of an IP packet are determined by the variable size of the IP
header. However, a polymorphic module that accesses fields by
name is unaware of this difference.

A.2 Annotation

In addition, we value the ability to annotate data types with
new fields that are not part of a pre-defined type. This form
of mix-in inheritance [16], [17] is important when creating and
propagating meta-data such as probabilities, counts, or alerts to
data. Annotations can be made either directly to a known record
or addressed to sets of records.

Direct annotations are useful when adding meta-data or inter-
pretations of data. For example, an intrusion detection system
might want to annotate a packet with an alert that was caused
by that packet. Or a measurement system might want to anno-
tate a packet with the fraction of bandwidth that its source was
consuming.

However, it may be more useful to address an annotation to a
set of records. For instance, it might be more useful to address
an intrusion alert to all other packets from the same source ad-
dress. Annotation addressing is expressed as one or more field
criteria. Each criterion is a field name (such as srcip), an opera-
tor (such as equality or existence), and a value (for comparison
operators such as equality).

Criteria are evaluated lazily when a module asks for a named
field of a record. If the type of that record does not have a field
by that name, pending messages are checked to see if they match
this record. Messages can be delivered once (an anycast) or as
many times as they match (a multicast). An anycast message
will be held in the system until it matches once and will then
be thrown away. Multicast messages will be held in the system
indefinitely. In the future we plan to add the ability to cancel
multicast messages in order to prevent them from consuming
too much memory.

We use the terms anycast and multicast, but it may be eas-
ier to think of these messages as being posted to a white-board
that other analysis modules can look at in the future. Because
messages are published to the system rather than held privately
by a module, the system can optimize when these messages are

bound to new records. In particular, we can apply aggressive
pre-fetching of messages when transferring a datum to a remote
cluster node.

B. Data-Flow System

The data-flow runtime handles flow-control between mod-
ules. Data-handling efficiency is important to processing large
streams of data quickly. As a result, our system uses zero-copy
passing of data records through callbacks that we require mod-
ules to register for production, consumption, initialization, and
shutdown.

Data is provided to a module through the consume callback.
The consume function indicates through its return value whether
the data it was given should be filtered out or passed on to chil-
dren in the flow graph. If it is to be passed, the module can also
specify which output channel the data should exit on, or that the
record should be broadcast to all channels. The flow graph can
have different children associated with each output channel.

In addition, the consume call can indicate whether the mod-
ule has any new records to produce. If it does, then the system
must call the produce callback when it is ready for new data, but
before passing any new data to the consume call.

Because a given data record may be destined for multiple
modules, modules are not allowed to modify records directly.
Instead they must request a modifiable copy?® that they can
change. The module must indicate that the original data should
be filtered out and then produce the new record.

C. Scheduling and Parallelism

Our system has a modular scheduler design and currently has
three implemented schedulers. One uses a recursive, depth-first
graph traversal, another uses an iterative breadth-first traversal,
and the third uses a multi-threaded model.

For small per-module workloads, the single-threaded sched-
ulers perform better. However, multi-threading is useful for
pipelining modules on multi-processor systems and to accom-
modate modules that process at different, sometimes bursty,
rates and can benefit from asynchronous scheduling buffering
between modules. An input queue, in the form of a FIFO ring
of record pointers, is associated with each module. Individual
queue sizes can be changed to allow for different amounts of
buffering and asynchrony. Mutual exclusion locks on the queue
allow multiple producers to add to the same queue. Condition
variables allow consumers to sleep until there is something in
the queue as well as allowing producers to sleep while the queue
is full. The host operating system’s POSIX thread implementa-
tion handles the scheduling of runnable threads. In the future we
will provide more control over threading so that specific mod-
ules can be run in separate threads while other modules share
a thread and avoid the performance penalty of passing data be-
tween threads.

D. Dynamic Instantiation

Data-flow graphs need not be static. The system allows new
modules to be added and removed dynamically. In particu-

L As an optimization, if the record is not in any other queues, then the original
record is returned rather than a copy



lar, we allow a module to create a new instantiation of one of
its children, and optionally all of that child’s children (recur-
sively). This allows us create a new instance of a whole sub-
graph of modules. A user may want to calculate a per-host or
per-connection statistic. While our system library provides rou-
tines that allow modules to keep a table indexed by one or more
named fields, we would rather not require that every statistic
module know how to keep such a table. Instead, our split mod-
ule can keep a single table, create new instantiations when nec-
essary, and route the record to the appropriate instantiation.

E. Distributed Flow

Some data-flow problems require extensive computation. A
multi-threaded engine can execute different portions of the
pipeline in parallel. To scale beyond what can be performed
on a single SMP, distributed data-flow is essential. We already
have a SOCKET module can be used to join data-flow pipelines
on different systems. In the near future we plan to build a more
tightly clustered system as well.

F. Iterative Programming Interface

Scheduling of analysis modules is inherently tied to the flow
of data through the system. The low-level programming in-
terface for module authors is therefore based on producer-
consumer callbacks, much like libpcap callbacks. This is how-
ever a clumsy interface, especially for analysts that lack sys-
tems programming expertise. For example, local variables are
not preserved between invocations and modules should support
poly-instantiation, which precludes the use of global variables.
Thus, state has to be explicitly stored in a persistent data struc-
ture that is passed to each invocation.

To remove this limitation, we have provided a POSIX-thread
shim that allows modules to be written as a single loop that per-
forms blocking reads of new data items and signals when it is
done with each item. This provides programmers with a simple
iterative model where local variables persist across data objects.

We expect to have large numbers of modules that often per-
form very quick operations. For example, one may instantiate
a reassembly module for each new connection that is seen. Be-
cause of the large number and quick operation of modules, we
plan to investigate more efficient closure and coroutine mecha-
nisms in the future.

1V. MODULE TOOLBOX

Our system currently contains 23 modules, an additional 16
type modules, and is growing rapidly. Some of the more widely
used modules are summarized in this section. We organize them
by I/0 or analysis functionality, but the system does not make
this distinction itself.

INPUT/OUTPUT MODULES

TABULARINPUT. Read records from STDIN. Field names
(specified as arguments, or column number by default) are
assigned to columns. Field types can be specified by ap-
pending a colon and the type name to the end of the field
name. If no type is specified for a field, it is treated as a
double if possible, or a string otherwise.

PRINT. Display specified fields of a data record

PCAPFILE. This module reads or write records of type
‘packet’ to/from a tcpdump-style output file. Multiple in-
put files can be specified and each can be compressed. Out-
put files can be rotated after a specified number of bytes.

PCAPLIVE. Sniff packets from a network using libpcap.

SOCKET. Supports distributed pipelines. A receiver can op-
erate in daemon mode and multiplex data from multiple
simultaneous or consecutive clients. Type systems in dif-
ferent pipelines are translated across network connections.

ANALYSIS MODULES

COUNT. Count the number of records or, if one or more
fields are specified, the number of occurrences of each
value of the tuple of those fields. Annotate the record with
acount field accordingly.

PDF. Consume a stream of records with count fields.
When the data stream ends or a refresh record is
received, compute the total count for all records, an-
notate each record with its fraction of the total as a
pr obabi | i ty field, and produce each of those records.

TOP. Given a set of named fields, pass only those records for
which the tuple of fields has occurred more than some con-
stant factor above average. An optional limit to the amount
of memory to be used can be specified. This causes a hash
of counters to be used which passes some probabilistically
small number of extra records.

ENTROPY. Assemble a vector of probabilities from all
records that have a probability field. When the last record
is received, or a refresh record is received, generate a
record with the Shannon entropy annotated to it.

DERIVATIVE. Given named fields for = and y, compute
dy/dx for each pair of consecutive records. Annotate the
result to the latter record.

FILTER. Filter records that do not match a list of named field
criteria including existence, equality and inequality.

UNIQ. Given a tuple of named fields, pass only the records
where the tuple containing those fields is unique. Unlike
the Unix uni g program, data need not be pre-sorted.

ENCRYPT. Encrypt a named field based on a hash of any
number of other named fields.

INTERVALS. Record the time of the first and last records of
each value of the specified tuple of fields.

LAST. Filter out all but the last record of each value of the
specified tuple of fields.

HEAD. Terminate the system after n packets have been pro-
cessed.

PYTHON. Runs a specified Python script on each record.
Global variables are preserved across records.

REASSEMBLE. Use Snort’s reassembly preprocessor to gen-
erate reassembled packets.

V. EXAMPLE APPLICATIONS

In this section we present some example analyses performed
with the system. These analyses all use straight-forward combi-
nations of these modules to generate meaningful results. While
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we present graphical results, the system itself currently only
generates tabular data.

A. Field Distribution

Consider a large set of captured network packets and the fol-
lowing question: ‘What is the distribution of TCP sequence
numbers?” This is an interesting question to ask given the hy-
pothesis that although operating systems should pick initial se-
quence numbers at random, older operating systems may not,
and packets generated by hacker tools may use non-random se-
quence numbers and could thus be detected.

We compose a data-flow graph in the form of a pipeline that
prints out the final probability of each sequence number in our
trace. To avoid over-counts due to retransmits, we filter out du-
plicates of the same sequence number in the same connection
tuple (source IP, destination IP, source port, destination port).
The cOUNT module annotates each packet with a running count.
This is useful for monitoring the real-time status of live traffic,
but for a finite trace we use LAST to filter out all but the last
count for each sequence number.

pcapfile - | uniq seq srcip dstip srcport dstport
| count seq | last seq | pdf | print seq probability

The discrete probability density function computed over a
trace of 1 million packets is shown in Figure 3. The bulk of the
large values are at the low end of the sequence space, as shown
in Figure 4. Clearly, the distribution is not uniform and a few
values are used much more often than average. This discovery
deserves follow-up that is beyond the scope of this paper.

B. Port Scans

Port scan detection is a common task for intrusion detection
systems. In order to analyze the complexity of this task or apply
probabilistic algorithms, we need to model the frequency and
size of port scans. The following pipeline computes the proba-
bility density function of spreads, where the spread of a source
is the number of unique destinations (measured as host/port
combinations) that it has communicated with. In this example
we count the spread for each host and then count the frequency
of each spread value and build a PDF from that. The resulting
Figure 5 shows that spread has a Pareto distribution [18], [19].

pcapfile - | filter srcmac=00:01:02:03:04:05

| uniq srcip dstip dstport

| count -f spread srcip | last srcip | count spread
| last spread | pdf | print spread probability

Our packet trace includes traffic traveling in both directions
on the Internet connection of a site. If no distinction was made

based on who talked first, a popular web server would exhibit
a large spread, even though it is merely responding to external
queries. Since our focus is on the behavior of external hosts
towards our network, we use the FILTER module to restrict traffic
to that coming from the external router interface.

V1. PROBABILISTIC METHODS

One of the unique contributions of this system is the use
of probabilistic algorithms designed to enable statistical mea-
surement of very large traces. For large traces, per-host or
per-sequence-number counting consumes prohibitively large
amounts of memory. As a result, we resort to probabilistic al-
gorithms and filters that enable us to answer the same questions
with high probabilities of correctness.

Unique Filter: One fundamental tool is the Bloom summary
[20], which creates a bit vector that summaries the contents of
a set. Our UNIQ module has two modes of operation: a pre-
cise mode in which elements of the set are placed in a chained
hash table and a probabilistic mode in which a Bloom summary
is used. The Bloom summary will never allow a duplicate to
pass to the next module, but can, with low probability, over-
aggressively filter new records. The result in our previous ex-
amples would be slight under-counting of events.

Top Talkers Filter: The ToP module can also operate in ei-
ther a precise or probabilistic mode. Probabilistic mode involves
a hash of counters in which each entry contributes to multiple
counters. The result is an algorithm that, with low probability,
may falsely think some sources have large counts. Rather than
setting some absolute threshold value, the ToP module filters
based on the deviation from an average count. Additional work
in this area by our group is presented in [21] and we will con-
tinue to add new forms of probabilistic counters and filters to the
system.

VII. AVAILABILITY

The software distribution for this System for Modular Anal-
ysis and Continuous Queries is available on the web at
smacq.sourceforge.net. We invite community feedback and par-
ticipation on the project.
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IX. CONCLUSIONS

In this paper we have presented a general purpose software
platform for analyzing large quantities of streaming data. The
system can transparently operate on multiple types such as
packet traces, netflow data, or logs. Using this system we were
able to perform several ad-hoc analyses using a simple syntax
and no additional programming. This agility makes the system
attractive to a wide audience from researchers and engineers to
network operators and security analysts.

Data flow graphs, including simple pipelines, provide a clean
abstraction between simple to write modules and the underlying
flow of data. This allows the system to be implemented in a vari-
ety of ways that improve performance, including zero-copy data
passing, multi-threading, and even parallelism across clusters.
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