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Abstract

The use of di�use x-ray scattering to characterize crystalline protein dynamics

is investigated. A method is developed for obtaining three-dimensional maps of dif-

fuse intensity from images of x-ray di�raction from protein crystals. Maps of di�use

scattering from Staphylococcal nuclease crystals have been obtained experimentally,

and a measure of internal consistency based upon symmetry constraints is de�ned.

The maps have the symmetry one would expect from the P41 space group of the

unit cell. The reproducibility of di�use scattering measurements is quanti�ed; the

di�erence between di�use maps obtained from nominally identical crystals is as low

as 20% in a resolution shell spanning 4:1 �A � 3:6 �A. A polar-coordinate shell im-

age graphing scheme, used to observe di�use features in three-dimensional reciprocal

space, is described. Di�erences are observed in di�use scattering from crystalline

Staph. nuclease with and without Ca++ and the substrate-analog pdTp (thymidine-

30,50-diphosphate) bound. These di�erences are interpreted as the observation of a

change in the dynamics of Staph. nuclease upon binding of Ca++ and pdTp.

Some models of di�use scattering are discussed, and a new model of di�use scat-

tering based upon independent rigid-body motions of crystalline protein molecules is

described. Simulated three-dimensional di�use maps of Staph. nuclease are gener-

ated, and these maps are compared to the maps obtained experimentally. By these

comparisons, it is shown that the nature of disorder which gives rise to di�use scatter-

ing in Staph. nuclease is most like both the liquid-like correlated motions described by

Caspar et. al. [Nature 332 (1988) 659], and the more traditional thermal excitation

of crystalline normal modes discussed in Glover et. al. [Acta Cryst B47 (1991) 960].

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1

1.1 The Dynamic Enzyme : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 Di�use X-ray Scattering : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.3 Historical Survey : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

1.3.1 Frauenfelder, Petsko and Tsernoglou : : : : : : : : : : : : : : 7

1.3.2 Sternberg, Grace and Phillips : : : : : : : : : : : : : : : : : : 8

1.3.3 Phillips, Fillers and Cohen : : : : : : : : : : : : : : : : : : : : 9

1.3.4 Doucet and Benoit : : : : : : : : : : : : : : : : : : : : : : : : 10

1.3.5 Caspar, Clarage, Salunke and Clarage : : : : : : : : : : : : : : 11

1.3.6 Glover, Harris, Helliwell and Moss : : : : : : : : : : : : : : : : 11

2 Experimental Methods 13

2.1 Data Collection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

v



Contents vi

2.1.1 Materials : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

2.1.2 Beamline issues : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2.2 Image Processing : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

2.2.1 Bragg peak indexing : : : : : : : : : : : : : : : : : : : : : : : 17

2.2.2 Polarization correction : : : : : : : : : : : : : : : : : : : : : : 18

2.2.3 Solid angle normalization : : : : : : : : : : : : : : : : : : : : : 19

2.2.4 Mode �ltering : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

2.2.5 Image scaling : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

2.3 Generating the Di�use Map : : : : : : : : : : : : : : : : : : : : : 32

3 Models of Di�use Scattering 36

3.1 Di�raction from an Imperfect Crystal : : : : : : : : : : : : : : : : : : 36

3.2 Classes of Di�use Scattering : : : : : : : : : : : : : : : : : : : : : : : 41

3.3 Independent Molecular Domains : : : : : : : : : : : : : : : : : : : : : 44

3.4 Independent Isomorphous Molecules : : : : : : : : : : : : : : : : : : : 46

3.5 Rigid-Body Translations : : : : : : : : : : : : : : : : : : : : : : : : : 49

3.6 Independent Atomic Fluctuations : : : : : : : : : : : : : : : : : : : : 54

3.7 Rigid-Body Rotations : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

3.8 Liquid-Like Correlated Motions : : : : : : : : : : : : : : : : : : : : : 61

3.9 Crystalline Normal Modes : : : : : : : : : : : : : : : : : : : : : : : : 67

4 Analysis Methods 74

4.1 Visualization Using EXPLORER : : : : : : : : : : : : : : : : : : : : 75

4.2 Visualization Using Shell Images : : : : : : : : : : : : : : : : : : : : : 75

4.3 Self-Consistency of Di�use Maps : : : : : : : : : : : : : : : : : : : : : 76

4.4 Reproducibility of Di�use Maps : : : : : : : : : : : : : : : : : : : : : 80

4.5 Simulation of Di�use Maps : : : : : : : : : : : : : : : : : : : : : : : : 82



Contents vii

5 Results 91

5.1 Staphylococcal Nuclease Di�use Maps : : : : : : : : : : : : : : : : : : 93

5.2 Di�erence Measurement. : : : : : : : : : : : : : : : : : : : : : : : : : 123

5.3 Modelling Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 132

6 Conclusions 145

A Supplemental Calculations 149

A.1 Di�raction from an Imperfect Crystal : : : : : : : : : : : : : : : : : : 149

A.2 Independent Molecular Domains : : : : : : : : : : : : : : : : : : : : : 150

A.3 Independent Isomorphous Molecules : : : : : : : : : : : : : : : : : : : 151

A.4 Rigid-Body Translations : : : : : : : : : : : : : : : : : : : : : : : : : 153

A.5 Rigid-Body Rotations : : : : : : : : : : : : : : : : : : : : : : : : : : : 155

A.6 Liquid-like Correlated Motions : : : : : : : : : : : : : : : : : : : : : : 158

A.7 Crystalline Normal Modes : : : : : : : : : : : : : : : : : : : : : : : : 159



List of Figures

2.1 Raw image of a still exposure of Staph. nuclease. : : : : : : : : : : : : 16

2.2 Experimental schematic. : : : : : : : : : : : : : : : : : : : : : : : : : 17

2.3 Determination of beam polarization. : : : : : : : : : : : : : : : : : : 18

2.4 Ewald sphere representation of scattering geometry. : : : : : : : : : : 20

2.5 Experimental scattering geometry. : : : : : : : : : : : : : : : : : : : : 21

2.6 Image of an exposure of Staph. nuclease after polarization correction,

solid angle correction and mode �ltering. : : : : : : : : : : : : : : : : 24

2.7 Simulated background pattern with noise. : : : : : : : : : : : : : : : 26

2.8 Simulated di�raction image with background pattern and noise. : : : 27

2.9 Mode-�ltered simulated di�raction image. : : : : : : : : : : : : : : : 28

2.10 Pixels in the di�erence image which are above the noise threshold. : : 29

2.11 Pixels in the di�erence image which are above half the background

amplitude. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

2.12 Scaling of images. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

2.13 Illustration of a subdivision of reciprocal space. : : : : : : : : : : : : 34

3.1 Representation of a disordered crystal. : : : : : : : : : : : : : : : : : 37

3.2 De�nition of parameters of elastic x-ray scattering. : : : : : : : : : : 38

viii



List of Figures ix

3.3 Illustration of an electron-density distribution composed of multiple,

independent, non-overlapping domains. : : : : : : : : : : : : : : : : : 44

3.4 Generation of an isomorphous distribution using a rotation Rj and a

translation Tj. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

3.5 Illustration of translation of a rigid body. : : : : : : : : : : : : : : : : 50

3.6 Illustration of a translational disorder ellipsoid. : : : : : : : : : : : : 52

3.7 Atomic electron densities contributing to the unit cell electron density. 56

3.8 Isotropic rigid-body rotations. : : : : : : : : : : : : : : : : : : : : : : 58

4.1 Shell images of the di�use map from Staph. nuclease crystal 1. : : : : 77

4.2 A measure of the self-consistency of di�use maps. : : : : : : : : : : : 79

4.3 Graphical representation of the reproducibility of di�use data. : : : : 80

4.4 E�ect of di�erential absorption on di�use maps. : : : : : : : : : : : : 85

5.1 Crystal 1 image scale factors : : : : : : : : : : : : : : : : : : : : : : : 94

5.2 Crystal 2 image scale factors. : : : : : : : : : : : : : : : : : : : : : : 95

5.3 Crystal 3 image scale factors. : : : : : : : : : : : : : : : : : : : : : : 96

5.4 Reciprocal-space volume sampled by experiments on crystal 1. : : : : 97

5.5 Reciprocal-space volume sampled by experiments on crystal 2. : : : : 98

5.6 Reciprocal-space volume sampled by experiments on crystal 3. : : : : 99

5.7 Veri�cation of scaling between di�use maps from crystal 1 and crystal 2.100

5.8 Spherically-averaged scattering from Staph. nuclease crystals. : : : : 101

5.9 Spherically-averaged scattering evaluated from scaled di�use maps. : 102

5.10 RMS intensity pro�les from di�use maps. : : : : : : : : : : : : : : : : 103

5.11 An interpolated isosurface in the 3D di�use map of Staph. nuclease

crystal 1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105



List of Figures x

5.12 An interpolated isosurface in the 3D di�use map of Staph. nuclease

crystal 2. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 106

5.13 An interpolated isosurface in the 3D di�use map of Staph. nuclease

crystal 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 107

5.14 A view of the symmetry-averaged di�use map from crystal 1. : : : : : 109

5.15 A view of the symmetry-averaged di�use map from crystal 2. : : : : : 110

5.16 A view of the symmetry-averaged di�use map from crystal 3. : : : : : 111

5.17 Stereo views of symmetry-averaged di�use maps. : : : : : : : : : : : : 112

5.18 Internal symmetry of Staph. nuclease di�use maps. : : : : : : : : : : 113

5.19 Low-resolution shell images obtained from the symmetrized di�use

maps of crystal 1 and crystal 2. : : : : : : : : : : : : : : : : : : : : : 114

5.20 Medium-resolution shell images obtained from the symmetrized di�use

maps of crystal 1 and crystal 2. : : : : : : : : : : : : : : : : : : : : : 115

5.21 High-resolution shell images obtained from the symmetrized di�use

maps of crystal 1 and crystal 2. : : : : : : : : : : : : : : : : : : : : : 116

5.22 Reproducibility of Staph. nuclease di�use maps at high detail. : : : : 117

5.23 Veri�cation of scaling between medium-detail di�use maps from crys-

tal 1 and crystal 2. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119

5.24 Reproducibility of Staph. nuclease di�use maps at medium detail. : : 120

5.25 Veri�cation of scaling between low-detail di�use maps from crystal 1

and crystal 2. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 121

5.26 Reproducibility of Staph. nuclease di�use maps at low detail. : : : : : 122

5.27 Low-resolution shell images obtained from the symmetrized di�use

maps of crystal 1, crystal 2 and crystal 3. : : : : : : : : : : : : : : : : 124

5.28 Medium-resolution shell images obtained from the symmetrized di�use

maps of crystal 1, crystal 2 and crystal 3. : : : : : : : : : : : : : : : : 125



List of Figures xi

5.29 High-resolution shell images obtained from the symmetrized di�use

maps of crystal 1, crystal 2 and crystal 3. : : : : : : : : : : : : : : : : 126

5.30 Veri�cation of scaling between di�use maps from crystal 1 and crystal 3.127

5.31 Di�erence between maps of Staph. nuclease with and without Ca++

and pdTp. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 128

5.32 Veri�cation of scaling between medium-detail di�use maps from crys-

tal 1 and crystal 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 129

5.33 Di�erence between medium-detail maps of Staph. nuclease with and

without Ca++ and pdTp. : : : : : : : : : : : : : : : : : : : : : : : : : 130

5.34 Structural model of Staph. nuclease. : : : : : : : : : : : : : : : : : : 133

5.35 Veri�cation of scaling between medium-detail di�use maps from crys-

tal 1 and the simulated unit cell. : : : : : : : : : : : : : : : : : : : : 135

5.36 Medium-resolution shell images obtained from the symmetrized di�use

map of crystal 1 and the unit-cell simulated map. : : : : : : : : : : : 136

5.37 Di�erence between medium-detail experimental and simulated maps of

Staph. nuclease di�use scattering. : : : : : : : : : : : : : : : : : : : : 137

5.38 Veri�cation of scaling between low-detail di�use maps from crystal 1

and the simulated unit cell. : : : : : : : : : : : : : : : : : : : : : : : 138

5.39 Low-resolution shell images obtained from the symmetrized di�use map

of crystal 1 and the unit-cell simulated map. : : : : : : : : : : : : : : 139

5.40 Di�erence between low-detail experimental and simulated maps of Staph.

nuclease di�use scattering. : : : : : : : : : : : : : : : : : : : : : : : : 140



List of Tables

5.1 Description of all crystals studied : : : : : : : : : : : : : : : : : : : : 93

xii



SYMBOLS AND ABBREVIATIONS

a;b; c, primitive lattice vectors

a�;b�; c�, primitive reciprocal lattice vectors

f(q), structure factor

k, incident x-ray momentum

k0, scattered x-ray momentum

q, k0 � k

s, q

2�
= scattering vector

I(q), scattering intensity

IB, Bragg intensity

ID, di�use intensity

Q, charge

R, lattice vector

V, variance matrix

�(x), electron-density distribution

ADU, analog-to-digital unit = 1 count

CHESS, Cornell High-Energy Synchrotron Source

NMR, nuclear magnetic resonance

RMS, root-mean-square

xiii



Chapter 1

Introduction

Knowledge of enzymatic structure encourages us to think of catalysis mechanically

as well as chemically. In modern papers o�ering a discussion of the nature of the

binding of a substrate to a protein, one will �nd a description of how the substrate

is meant to \sit" in the vicinity of the active site, the place where the key catalytic

groups are found. Accompanying this description will be an analysis of the prox-

imities of atoms on the substrate and protein which are thought to create favorable

conditions for binding, e.g., by presenting opposite charges or o�ering the correct

geometry for hydrogen bonds. In mechanical models, however, objects are allowed to

have moving parts, and a complete description of a mechanical system necessitates a

characterization of internal dynamics as well as kinetics.

Given the importance of understanding protein function in understanding disease

and improving rational drug design, there is still much debate about whether or not

the role of dynamics will be central or peripheral in describing how proteins work. A

characterization of internal dynamics may be necessary to understand the function

of proteins at even a primitive level: for example, meaningful dynamical parameters

may be necessary to quantify the relation between structure and enzymatic activity.

On the other hand, static structural models may prove to be adequate to usefully

characterize the problem.

1



1.1. The Dynamic Enzyme 2

In order to experimentally determine the role of internal dynamics in protein

function, it will be necessary to identify dynamical parameters of proteins which can

be systematically varied and measured in a controlled fashion. Such a parameter

may be something as speci�c as the amplitude of the displacement of a particular

domain of the protein, or as general as a measure of protein elasticity. The connection

with protein function must then be made experimentally by monitoring a measure of

activity while varying the observed dynamical parameters.

This work experimentally demonstrates that three-dimensional maps of di�use

x-ray scattering may be used to identify the nature of disorder in protein crystals.

It is shown that, in some cases, the disorder can be related to the internal dynamics

of the protein, in which case careful measurements of di�use scattering can provide

measurements of dynamical parameters. An extension of the methods described here

to a range of experimental systems may suggest new ways of quantitifying the relation

between protein dynamics and protein function, thereby assessing the signi�cance of

dynamical parameters in predicting protein activity.

1.1 The Dynamic Enzyme

There is little disagreement that proteins are intrinsically dynamic objects { a point

which has been asserted in the literature time and time again [1, 2]. There is am-

ple evidence for the existence of spontaneous uctuations in proteins. Lakowicz and

Weber [3] in 1973 found evidence for nanosecond structural uctuations using uo-

rescence quenching techniques. Experiments of Englander et et. al.[4] and Woodward

and Hilton [5] indicate that nearly all sterically \inaccessible" protons in native pro-

teins can be substituted in the presence of solvent, requiring transient openings of 4�A

channels in the structure [1]. The non-exponential recombination kinetics of cryogenic
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myoglobin and carbon monoxide observed by Austin et et. al.[6] imply the existence

of a distribution of functionally distinguishable conformations in an ensemble under

biological conditions.

In a 1976 note to PNAS[7], Alan Cooper reected on some remarkable aspects

of thermodynamic uctuations in protein molecules. The note was written to re-

solve a \paradox" observed in experimental data on proteins. By this time, there

was ample evidence for a rather uid structure for globular proteins, as given by

uorescence[3, 8, 9], phosphorescence[10] and NMR experiments[11, 12, 13]. In ap-

parent contrast to this were crystallographic studies, which revealed solid-like packing

densities in proteins, and measurements of the heat capacities of proteins, which at

0:30�0:35 cal=g=C� were larger than those of organic liquids but comparable to those

of crystalline amino acids (0:316 cal=g=C�) at 25�C.

Against this background, there were some incorrect thermodynamic arguments

being oated at the time, claiming that large uctuations in single proteins would

necessarily cause large uctuations in thermodynamic properties of protein ensem-

bles. It is in the course of resolving these issues that Cooper points out that the RMS

uctuations in both the internal energy and volume of a protein are comparable to

the changes in these parameters upon protein denaturation. There was a misunder-

standing that this implied that macroscopic measurements would be correspondingly

imprecise.

Cooper also points out that the third moment of the energy distribution of pro-

tein ensembles is high enough to make the distribution asymmetric, implying that

measured mean thermodynamic parameters, such as energy or volume, do not nec-

essarily represent the most likely value for the parameter in the ensemble. He points

out that the reason why measurements of thermodynamic parameters are so precise

is that there is no coherence in the uctuations of individual protein molecules in an
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ensemble. RMS uctuations scale like N� 1
2 , where N is the number of proteins in

the ensemble, and N is large enough to account for experimental precisions observed.

Even though the issue being resolved was quite trivial, he nevertheless brought up an

extremely important point in the process { even in a macroscopic sense, a complete

understanding of protein function requires a characterization of the distribution of

states in the ensemble. Measurements of mean thermodynamic parameters do not

su�ce.

1.2 Di�use X-ray Scattering

Recent experiments in x-ray di�raction from protein crystals suggest that the tech-

nique yields information about the distribution of protein conformational states[14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. For example, traditionally, measurements of

Bragg reections in x-ray di�raction from protein crystals have been used to obtain

atomic structural models of protein molecules. In the work of Frauenfelder et. al.[14]

on metmyoglobin, measurements of Bragg reections were used to measure indepen-

dent atomic B-factors, which which are related to rms uctuations of atomic positions

about equilibrium.

Early experiments by Sternberg et. al.[15] on lysozyme and later work by Kuriyan

and Weis[16] on a number of proteins showed a good correlation between independent

atomic B-factors obtained by Bragg reection measurements and the predictions of

a model where proteins independently execute rigid-body rotations and translations

in the crystal. Kuriyan reported remarkable consistency between B-factors simulated

using only ten independent free parameters of a rigid-body motion model and those

obtained experimentally by modelling atomic motions independently with orders of

magnitude more free parameters.
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In addition, di�racted x-ray intensity between Bragg peaks, termed di�use scatter-

ing, has been recognized as a source of information about protein dynamics. Images

of di�use scattering have been simulated using various models of molecular motion,

including crystal acoustical modes [21], coherent unit-cell subdomain motions[18],

protein subdomain motions[17], \liquid-like" motions correlated over a characteris-

tic length scale[19, 22, 23], and molecular dynamics and normal modes analysis of

isolated proteins[24]. In all cases, simulated images have been obtained which bear

common visual features with measured di�raction images.

Although previous di�use scattering studies have used single x-ray exposures as

the source of di�raction data, there is a great advantage to having a full three-

dimensional data set constructed from exposures taken at multiple crystal orienta-

tions. Firstly, the full three-dimensional data set can be checked for internal consis-

tency using symmetry constraints implied by the unit-cell space group. Secondly, one

ignores most of the available data by limiting the measurement to a slice of reciprocal

space probed by a single exposure. A full three-dimensional measurement provides

good discrimination between the various models in simulating the data; although the

various studies of di�use scattering have convincingly reproduced features observed

in single exposures, there is as yet no convincing argument in the literature for the

validity of one proposed model over another.

We initially measured three-dimensional maps of di�use x-ray scattering from

Staphylococcal nuclease, an extracellular protein which cleaves both DNA and RNA by

hydrolyzing P-O bonds[25], with both Ca++ and pdTp (thymidine-30,50-diphosphate)

bound, in order to quantify the internal consistency in the measured di�use scattering

and to determine the reproducibility of measurements of di�use scattering, both of

which are di�cult to do with only single x-ray exposures from a crystal. Since the

features we observed in these maps were seen to be reproducible, we obtained a map of
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di�use scattering from Staph. nuclease without Ca++ and pdTp bound, and observed

di�erences between this map and the original ones. These di�erences are interpreted

as evidence for changing dynamics in crystalline Staph. nuclease upon binding of

Ca++ and pdTp.

We chose Staph. nuclease for several reasons:

� Crystals of Staph. nuclease yield measurable di�use x-ray scattering.

� A high-resolution crystallographic structure of the protein had been previously

determined both with and without Ca++ and pdTp.[26, 27, 28, 29]

� The protein crystallizes in space group P41, providing many symmetry-related

measurements to check for the internal consistency of di�use scattering maps.

� The stability of the protein to denaturation has been mapped out in pressure[30],

providing a good background for further experiments.

In order to interpret our measured di�use maps in terms of protein dynamics, we

investigated the predictions of a range of models of di�use scattering. Included in

this work is a derivation of a new model of di�use scattering based upon independent

rigid-body rotations and translations of protein molecules in the crystal. No com-

parison was made with a normal-modes model of protein uctuations.1 In order to

compare the predictions of models with our data, simulated three-dimensional maps

were generated with the aid of the package XPLOR by Axel Brunger. Our simulations

show that our data best agrees with both the liquid-like motions model of Caspar et.

al.[19], and the crystalline acoustical modes model used by Glover et. al.[21]. The

equivalence of these models is discussed in section 3.9.

1See, e.g., Levitt et. al.[31] and Go et. al.[32] for a discussion of normal-modes models of protein
uctuations.
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1.3 Historical Survey

Probing protein dynamics with x-rays elastically scattered from protein crystals has

a relatively recent history, spanning only about the last �fteen years. What follows

is a survey of some studies of protein dynamics using this experimental technique.

The papers below discuss both B-factor analysis using Bragg reections, and anal-

ysis of di�use x-ray scattering exposures to reveal characteristics of the structural

uctuations of proteins in a crystalline state.

1.3.1 Frauenfelder, Petsko and Tsernoglou

Frauenfelder et. al.[14] in 1979 reported the observation of protein structural dynamics

in x-ray di�raction from myoglobin. The RMS deviations of all nonhydrogen atoms

(1261 in all) were added as free parameters in a structural model re�ned against

measurements of Bragg intensities. The result was a map of RMS deviations for the

entire protein, in addition to a structural model, which was then analyzed to give

evidence for the existence of conformational substates of myoglobin in the crystal.

Indirect evidence for a distribution of conformational substates was given through

a temperature study whose results were used in conjunction with M�ossbauer spec-

troscopy results cited from Debruner et. al.[33]. After subtraction of a component

due to lattice disorder which was estimated by M�ossbauer measurements, an interest-

ing temperature pro�le for the remaining mean square deviation, hx2i, averaged over

all atoms in the crystal was observed. Below a critical temperature Tc, hx2i has a
more gentle slope than above Tc, which is interpreted in terms of the \freezing in" of

the distribution of conformational substates in the crystal, or the arrest of the large-

scale motions of the molecule. This is in accord with the putative glass transition in

myoglobin at cryogenic temperatures identi�ed by Austin et. al.[6].



1.3. Historical Survey 8

1.3.2 Sternberg, Grace and Phillips

About the same time as the Frauenfelder et. al.[14] myoglobin analysis was pub-

lished, Sternberg et. al.[15] published an analysis of the atomic temperature factors of

lysozyme. Based upon an as yet unpublished re�nement of individual isotropic atomic

temperature factors in a 2 �A structural model of tetragonal hen egg-white lysozyme,

they obtained a least-squares best estimate of the parameters for models of rigid-body

rotational and translational disorder, and for a couple of proposed breathing modes.

The rigid-body model used was based upon the so-called TLSmodel of Schomaker and

Trueblood[34], in which three 3x3 matrices are proposed to parametrize the disorder.

In the general model, the rotations are parametrized by six independent elements of

the symmetric librational matrix L, translations are parametrized by six independent

elements of the symmetric translational matrix T, and the coupling between transla-

tions and rotations are parametrized by eight independent elements of the matrix S,

which has an inde�nite trace. These matrices, combined with the position vector of

the atom in question, yield the anisotropic B-factor, from which the rms displacement

of the atom along any direction can be calculated. In the work of Sternberg et. al.[15],

the isotropic B-factors are obtained during re�nement, which only depend upon ten

of the twenty free parameters of the TLS model. It is these ten free parameters which

are re�ned against the 129 B-factors of the lysozyme model.

The model for breathing modes was a hinge-bending mode, where two lobes of

the molecule independently execute libration about an assumed hinge axis. In the

implemented model, there is only one free parameter once the hinge axis is given,

and that parameter is essentially the angular amplitude h of the librations of the two

lobes, which are assumed to be equal. The isotropic B-factors are determined solely

by h and the distance d from the atom in question to the hinge axis. It can be shown
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that the hinge-bending model produces the same B-factors as a model which uses

only T and L with a center of libration on the hinge axis, as is pointed out in the

paper.

One should note that without translational parameters, the B-factors are essen-

tially anisotropic for atoms �xes to a rigid rotator, since the motion is con�ned to

a plane perpendicular to the vector to the center of libration. Isotropic B-factors

describe a spherically symmetric distribution of atomic displacements, so that �tting

atomic displacements due to rigid-body rotational disorder using isotropic B-factors

may be a risky procedure. Nevertheless, Sternberg et. al.[15] report that the measured

isotropic B-factors are consistent with both the TLS and breathing/TL models, with

a slightly better �t using the TLS model, even accounting for the use of additional

free parameters. In the end, they suggest that di�use scattering measurements may

provide further evidence for the presence of rigid-body motions.

1.3.3 Phillips, Fillers and Cohen

In 1980, Phillips et. al.[17] reported observing di�use features in x-ray di�raction from

tropomyosin crystals, which they then interpreted in terms of transverse motions of

the �laments. By simulating di�raction data from a structural model undergoing 8 �A

uctuations in the long arm and 5 �A uctuations in the short arm of the protein,

they were able to qualitatively reproduce the streaks observed in the di�raction pat-

tern. These studies were later followed up by a more detailed analysis of the di�use

scattering, which characterized the motions to a greater extent[35]. These studies of

tropomyosin provide one of the �rst mentions of evidence for direct observation of

large-scale motions in a protein through identi�cation of di�use features.
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1.3.4 Doucet and Benoit

In 1987, an interpretation of x-ray di�use scattering from protein crystals came from

Doucet and Benoit[18]. They observed strong di�use streaks concentrated along two

families of Bragg planes in P212121 orthorhombic hen egg-white lysozyme. Using

these features, they argue for the existence of intermolecular rigid-body displacements

which are correlated along the a- and c-axes of the crystal.

To model the data, the scattering intensity was considered in three parts: the

Bragg intensity IB, giving rise to sharp di�raction peaks from the long-range periodic

order of the crystal; the thermal di�use scattering, ITDS, which comes from \collec-

tive modes" in the crystal and gives rise to the smoother intensity gradient in the

neighborhood of the peaks; and the di�use scattering ID, which is due to the mo-

tion of independent correlated \superunits" of electron density, and gives rise to the

larger scale features such as the streaks identi�ed in the data. The authors report the

best agreement between simulation and experiment when they assume that there are

four pairs of lysozyme molecules contributing to the di�use streaks: two pairs stacked

along the a-axis executing displacements along the a-axis, and two pairs stacked along

the b-axis executing displacements along the c-axis. The mean square amplitudes of

the displacements along each of these axes is \extracted" from the data, and is given

as hu2
ai = (5 � 3)10�4nm2 for a-axis displacements and hu2

ci = (7 � 3)10�4nm2 for

c-axis displacements.

In a recent review article[36], Benoit and Doucet present a broad summary of

di�use scattering in protein crystallography, in which they consider many di�erent

models of disorder, and cover many previous experiments. In the review, there is

an emphasis on simulating di�use scattering through normal modes analysis and

molecular dynamics simulations, neither of which is touched on in this work. In
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addition, there is a description of some of the experimental issues involved in collecting

di�use scattering data, providing useful suggestions for measurement procedures.

1.3.5 Caspar, Clarage, Salunke and Clarage

Caspar et. al.[19] in 1988 reported using a di�erent modelling scheme to interpret

di�use scattering from a R3 hexagonal 2Zn pig insulin crystal. They describe the

di�use features in terms of two kinds of motion: one in which lysozyme molecules

move rigidly, independent of all other molecules but nearest neighbors; and one in

which the entire crystal softens to atomic displacements which are correlated within a

6 �A sphere about any atom. The former kind of motion is meant to produce \haloes"

about Bragg peaks, and is analogous to the ITDS described in the work of Doucet

and Benoit. The latter kind of motion is proposed as the cause for the large-scale,

smoothly varying, asymmetric background.

Caspar et. al.[19], like Doucet and Benoit[18], demonstrate a qualitative agreement

between the results of simulations and the x-ray exposure.

1.3.6 Glover, Harris, Helliwell and Moss

In 1991, Glover et. al.[21] published the results of a survey of di�use scattering from

a variety of protein crystals. The theme of the paper is that macromolecules, being

large and complex in structure, will have complex motions which are likely to vary

depending upon the molecule under study. Furthermore, di�erent macromolecules

will give di�erent signatures in the di�use scattering due to the di�erent nature of

the motions.

Many examples of di�use scattering are given, including exposures from ribonu-

clease (RNAse), transferrin, -II crystallin and t-RNA(MET). They �nd a wide vari-
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ation in features from crystal to crystal, with a common feature of strong di�use

scattering in the \solvent" ring. They also observed the e�ects of chemically alter-

ing the gamma-II crystallin crystal by initiating crosslinking through the addition of

2.5% gluteraldehyde, and by preparing heavy-atom derivatives. Both modi�cations

suppress Bragg peaks at high resolution and enhance di�use features.

Two models are discussed as a means of interpreting the data. The �rst is an \Ein-

stein crystal" model, where each atom vibrates independently with the same mean-

squared displacement. Since each atom has an approximately spherically-symmetric

electron density distribution, the resulting di�use intensity has spherical symmetry in

such a model (see chapter 3 for a discussion of this model). This model is dismissed

by the authors on the grounds that simulated densitometered radial pro�les calcu-

lated using a wide range of parameters fail to reproduce the features of the pro�les

generated from di�raction images. One may also dismiss such a model by observ-

ing that there is signi�cant asymmetry in the di�use scattering, particularly in the

neighborhood of the solvent ring.

The second model discussed involves an analysis of the scattering in the neigh-

borhood of Bragg peaks. Bragg peak analysis reveals a q�2 dependence in the inten-

sity distribution, which is characteristic of scattering from thermally excited acoustic

modes in a crystal. The form of the scattered intensity that they suggest agrees with

that expected in scattering from an electron density distribution on a lattice with

thermally excited acoustic modes.

The paper succeeds in demonstrating the wide variety of di�use scattering which

is visible in x-ray scattering from macromolecular crystals. It also presents con-

vincing evidence for the presence of �rst-order thermally excited acoustic modes in

RNAse(MET), which shows q�2 tails in low-resolution Bragg peaks.



Chapter 2

Experimental Methods

Three-dimensional maps of di�use x-ray scattering were obtained experimentally from

three crystals described in this work. Procedures in obtaining these maps are cate-

gorized into data collection, image processing, and map generation. The discussion of

these procedures below de�nes what is meant by a di�use map, and provides a useful

background for discussing the models of chapter 3 and the analysis in chapter 4.

2.1 Data Collection

2.1.1 Materials

Di�use data was collected using two crystals of Staph. nuclease grown over 23% MPD

(2-methyl-2,4-pentanediol) 10.5 �M potassium phosphate with 1.1 M equivalent pdTp

(thymidine-30,50-diphosphate) and 2 M equivalent Ca++, and one crystal of Staph.

nuclease grown over 23% MPD 10.5 �M potassium phosphate. All crystals had a

tetragonal unit cell with space group P41. The �rst co-crystal measured 2:0 mm �
0:4 mm � 0:4 mm, with unit cell parameters a = b = 48:5 �A; c = 63:4 �A; � = � =

 = 90�, as determined by the program DENZO written by Zbyszek Otwinowski and

Wladek Minor. The second co-crystal measured 2:2 mm � 0:4 mm � 0:4 mm, with

unit cell parameters a = b = 48:3 �A; c = 63:4 �A; � = � =  = 90�. The bare Staph.

13
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nuclease crystal was selected from a batch of average size approximately 0:4 mm �
0:2 mm � 0:2 mm, and had unit cell parameters a = b = 48:2 �A; c = 63:9 �A; � =

� =  = 90�.

Co-crystals of Staph. nuclease were provided by Teresa Gamble of Genentek, who

mounted them in capillaries with mother liquor and shipped them on cold packs to

Princeton. The mother liquor was wicked away at the beamline and the capillary was

�xed to a goniometer head.

The crystal of bare Staph. nuclease were was grown by Jennifer Ekstrom in Pro-

fessor Steve Ealick's lab at Cornell University. It was transferred from a hanging drop

to a capillary shortly before experimentation at CHESS.

All crystals were mounted with the c�axis nearly parallel to the capillary.

2.1.2 Beamline issues

We used a CCD area x-ray detector designed at Princeton and installed on the F1

and A1 beamlines at the Cornell High Energy Synchrotron Source (CHESS) for data

collection. The detector was similar in design to the CCD detector described by Tate

et. al.[37]. It has a dynamic range of roughly 104 x-rays/pixel, and an active area

of about 80�80 mm2, subdivided into an array of 2048�2048 pixels. Pixels values

were binned both horizontally and vertically during readout, producing a 1024�1024
image; this was done to save disk space, decrease image-transfer times, and improve

statistics. Pixel values mapped to x-ray counts by a ratio of roughly one-to-one.

An \anti-blooming" procedure1, where overowing electrons from saturated wells

in the CCD are channelled o� the device during integration, was implemented to

improve the handling of strong Bragg reections, which can otherwise distort intensity

1Described in a personal communication by James Janesick of Pixel Vision, Huntington, CA
92649
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measurements in the neighborhood of the peak. The beam was tuned to 0.91 �A, had

a polarization of 0.8-0.93 perpendicular to the beam in the plane of the synchrotron

ring, and was collimated to a 100 �m diameter.

The data collection protocol for each crystal involved interleaving the collection

of two data sets, one being a set of two degree oscillation exposures to be used in

calculating the orientation of the crystal and in re�ning a structural model, and the

other being a set of stills spaced one degree apart in spindle rotation, from which

di�use intensity was obtained. Since we are not interested in studying variations in

di�use intensity on a smaller scale than the separation between Bragg peaks, the set

of stills adequately samples reciprocal space for our purposes.

All exposures were �ve seconds long. The data set for the �rst co-crystal spanned

94 degrees of spindle rotation, and the data set for the second co-crystal spanned

96 degrees of spindle rotation. The data set for the bare Staph. nuclease crystal

spanned 90 degrees of spindle rotation. Figure 2.1 shows a typical still exposure from

these data sets. Data was collected only at room temperature.

Great care was taken to minimize parasitic scattering in x-ray exposures (see

�gure 2.2 for a reference schematic). The beam stop was adjusted such that the tails of

the main beam were blocked as well as possible. A lead sheath with a 1mm hole at the

end was slipped over the collimator, which was a known source of parasitic scattering.

A large lead shield was placed before the collimator in order to eliminate static, hard x-

ray patterns which contaminated early exposures. In addition, to minimize systematic

asymmetries in the background, a rectangular mylar sheet was used in place of the

usual strip of kapton tape to hold the beam stop.
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Figure 2.1: Raw image of a still exposure of Staph. nuclease with Ca++ and pdTp.
Note the structure in the di�use scattering. Two strong features are indicated which
suggest that the symmetry in the di�use scattering may be consistent with the unit cell
space group P41. We wish to investigate the internal consistency and reproducibility
of such features in the absence of the Bragg peaks.
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Figure 2.2: Experimental schematic.

2.2 Image Processing

2.2.1 Bragg peak indexing

The intensities of Bragg reections were measured and assigned Miller indices from

oscillation exposures using the programs DENZO and SCALEPACK by Zbyszek

Otwinowski and Wladek Minor. Estimates of the sample-to-detector distance and

beam position were entered as inital parameters to DENZO for the �rst image in

each data set. After a suitable �t was found to the unit cell parameters, crystal ori-

entation, detector face rotation, and other parameters, these parameters were used

as a starting point for indexing the rest of the data set in batch mode. In this way, a

set of re�ned experimental parameters were produced for each exposure in the data

set.

SCALEPACK was used to assimilate the parameters from all data sets into a single

best-�t prediction for the unit cell parameters, the mosaicity, and the orientation of
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Figure 2.3: Determination of beam polarization for crystal 2. The azimuthal in-
tensity pro�le was obtained at a scattering angle of � = 16� from a mode-�ltered
di�raction image (see section 2.2.4). The least-squares best �t to the expression
a
2
(1 + cos2 2� � � cos 2(� � �0) sin

2 2�) is shown, with a �xed parameter � = 16�, and
variable parameters �0 = 0:0, a = 672, and polarization � = 0:93.

the crystal at the beginning of the data set. These parameters were fed into DENZO

for a second run, and for each data set the process was repeated until the �t did not

improve after several iterations. In this way, a list of measured Bragg reections was

obtained, along with the unit cell parameters, crystal orientation, and mosaicity.

2.2.2 Polarization correction

Images were corrected for synchrotron beam polarization using the formula2

I 0 =
2Ipixel

(1 + cos2 2� � � cos 2� sin2 2�)
; (2.1)

2See P. 304 Giacovazzo[38].
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where � parametrizes the polarization of the beam, � is the scattering angle to the

pixel, and � is the angle between the plane of the synchrotron ring and the vector in

an image from the beam �ducial mark to the pixel. The polarization � was determined

experimentally by analyzing the azimuthal variation of the background intensity at

a �xed scattering angle �. An azimuthal intensity pro�le was obtained from a mode-

�ltered di�raction image, and was modelled by the expression a
2
(1+cos2 2��� cos 2(��

�0) sin
2 2�), where the additional parameter �0 has been added to account for detector-

face rotation. Figure 2.3 shows the results of a �t obtained for crystal 2 at � = 16�,

where the best-�t polarization was � = 0:93.

2.2.3 Solid angle normalization

Pixel values were also normalized to the solid angle subtended by the pixel about

the specimen, in order to produce a map that, at every position in reciprocal space,

was simply proportional to I(q) = jF (q)j2, the square of the Fourier transform of the

electron density of the crystal. This yields a correction of the form

I 00 = I 0 cos3  ; (2.2)

where  = 2� is the angle between the scattered and incident beam (see �gure 2.4).

The correction comes about by an analysis of how to relate pixel values to the electron

density of the crystal, as is described in the following pages.

Our digitized images of x-ray di�raction consist of about one million 16-bit integers

which map to the number of x-rays incident on each of 1024 x 1024 pixels at the face

of an area x-ray detector. Each integer corresponds to a measurement I(x; y) of the
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Figure 2.4: Ewald sphere representation of scattering geometry. X-rays of momen-
tum k are scattered into a direction ( ; �) with probability I(q � R)n(k) k2 dk d
0,
where I(q �R) is the scattering intensity for a crystal at orientation R, and n(k) is the
momentum distribution of the incident x-rays, which is very sharply peaked in these
experiments, since we use monochromatic x-rays. The shaded area is the di�eren-
tial volume k2 dk d
0 pointed to by the scattered x-rays. The illustrated di�erential
spherical shell contains a family of Ewald spheres which de�ne the experimentally ac-
cessible region of reciprocal space for momentum k. Given a speci�ed incident beam
bandwidth �k and solid angle �
0 which accounts for crystal mosaicity and beam
divergence, the scattered intensity is proportional hI(q � R)i�k �
0 .
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Figure 2.5: Experimental scattering geometry.

x-rays scattered into the solid angle �
 spanned by pixel (x; y):

I(x; y) =
Z
�

d
 hI(q � R)i�k;�
0 ; (2.3)

where (x; y) is the position in cartesian coordinates of a pixel in the detector plane

referenced to the beam �ducial (see �gure 2.5). The distribution I(q) is averaged

over a spatial frequency bandwidth �k and solid angle �
0 in a neighborhood of q �R,
where R is a matrix representing the orientation of the crystal with respect to the

coordinate system in which I(q) is calculated. The solid angle �
0 parametrizes the

smearing due to beam divergence and crystal mosaicity (see �gure 2.4). If I(q) varies

su�ciently slowly over the reciprocal space region spanned by �k and �
0, we may

replace hI(q)i with I(q):
I(x; y) =

Z
�

d
 I(q � R); (2.4)
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which we take to be the case for the di�use scattering we are studying.

Figure 2.5 shows the scattering geometry for our di�raction experiments. The

scattering vector q can be expressed in terms of the experimental parameters as

follows:

qx = k sin sin�

qy = k sin cos�

qz = � k(1� cos ); (2.5)

where  = 2� is the angle between the incident and scattered beam (twice the scatter-

ing angle �), ẑ points along the incident beam, k is the spatial frequency of the x-rays,

and � is the azimuthal angle about the z-axis. We can express this transformation in

terms of the pixel coordinates (x; y) and the sample-detector distance d as follows:

qx =
kxp

x2 + y2 + d2

qy =
kyp

x2 + y2 + d2

qz = � k

 
1� dp

x2 + y2 + d2

!
: (2.6)

Assuming that I(q) varies slowly over the solid angle �
, equation 2.4 becomes

I(x; y) = �
 I(q � R): (2.7)

We refer to �gure 2.5 to determine �
, noting that a pixel area A at (x; y) subtends

a solid angle

�
 =
A

l2
cos : (2.8)
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The distance l is given in terms of the angle  and the sample-detector distance d:

l =
d

cos 
; (2.9)

so that

�
 =
A

d2
cos3  (2.10)

and

I(x; y) =
A

d2
I(q) cos3  ; (2.11)

which is what we were seeking to show. Using the fact that

cos = 1� 2 sin2
 

2
(2.12)

= 1� 1

2

q2

k2
; (2.13)

we can again rewrite I(x; y) in terms of q, so that

I(x; y) =
A

d2
I(q � R)

 
1� 1

2

q2

k2

!3

: (2.14)

Together with the transformation in 2.6, equation 2.14 gives us a simple expression

for converting our measured pixel values I(x; y) in di�raction images to physically

interpretable measurements of I(q).

2.2.4 Mode �ltering

Bragg peaks were suppressed in the stills in order to accurately measure the back-

ground di�use intensity. This was achieved using a mode �ltering image processing

technique, where pixels in a new image are given the value of the mode (most common
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Figure 2.6: Image of an exposure of Staph. nuclease after polarization correction,
solid angle normalization and mode �ltering to remove Bragg peaks.
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value) of the distribution of pixel values in a 15�15 patch about the pixel in the orig-
inal image. The �lter is often used to \de-star" astronomical sky images[39], where

one is interested in measuring background intensities in an image \contaminated" by

stars, which bears close resemblance to the problem of measuring di�use intensity.

Figure 2.6 shows the exposure in �gure 2.1 after polarization correction, solid-angle

normalization and mode �ltering.

An important question to ask is how close the mode-�ltered image is to the true

background scattering pattern. If the di�erences are at the level of the noise in the

di�raction image, the technique is adequate for our needs. If the di�erences are at

the level of the background intensity, the technique is no good.

To understand the mode �ltering process, an image of a simulated background

patten with noise was generated (see �gure 2.7). The length scale of the pattern was

chosen to match the length scale of di�use features in di�raction images. The ampli-

tude of the pattern was 100 counts, and the added noise was uniformly distributed

over the range (�30; 30) counts, chosen to match the noise in di�raction images.

A large number of simulated Gaussian peaks were added to the simulated back-

ground pattern in order simulate Bragg reections, thus forming the simulated di�rac-

tion image in �gure 2.8. The peaks are on a square lattice, spaced thirteen pixels

apart, similar to the spacing in Staph. nuclease di�raction images. From left to right,

the peaks increase in integrated intensity from 0 to 100; 000 counts, while from top to

bottom the full-width at half-maximum (FWHM) of the Gaussian increases from 0.1

to 2:6 pixels. Information in DENZO output �les indicates that real peak intensities

vary from 0 to 100; 000 and have a FWHM of one pixel.

The simulated di�raction image was then mode �ltered (see �gure 2.9), and the

simulated background image without noise was subtracted, yielding an image of the

residual. This image was displayed with a lower-cuto� threshold of 30 counts (see
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Figure 2.7: Simulated background pattern with noise. The background is sinusoidal in
two dimensions with an amplitude of 100 counts and a wavelength of 120 pixels. The
noise is uniformly distributed in the range (�30; 30). These parameters were chosen
to match the observed di�use scattering in di�raction images. The image is displayed
using a linear grey scale, with black corresponding to -100, and white corresponding
to 100.
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Figure 2.8: Simulated di�raction image with background pattern and noise. This is
the background pattern of �gure 2.7 with a superimposed array of Bragg peaks. The
Bragg peaks are ordered from left to right increasing in integrated intensity from 0
to 105. The peaks are Gaussian in pro�le, and their widths increase from 0.1 to 2.6
pixels from top to bottom. Experimentally obtained Bragg reection measurements
yield integrated intensities in the range (0; 105) with a Gaussian width of one pixel.
The background intensity should be recovered when this image is mode �ltered. The
image is displayed using a linear grey scale, with black corresponding to 0 and below,
and white corresponding to 1000 and above.
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Figure 2.9: Mode-�ltered simulated di�raction image. This is the image of �gure 2.8
after mode �ltering. The pixel mask used was 15�15, and pixel value bins spanned
ten counts. The technique breaks down in the lower right hand portion of the image.
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Figure 2.10: Pixels in the di�erence image which are above the noise threshold. All
pixels with pixel value greater than 30 are displayed as black, and all other pixels are
displayed as white. The axes label the peaks where they would occur in �gure 2.8,
w being the peak width in pixels and I being the integrated peak intensity. Our
experiments had peaks in the neighborhood of w = 1, which is marked on the w�axis.
This indicates that the mode �ltered image is the same as the background image to
within noise levels.
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Figure 2.11: Pixels in the di�erence image which are above half the background ampli-
tude. All pixels with pixel value greater than 50 are displayed as black, and all other
pixels are displayed as white. The axes label the peaks where they would occur in
�gure 2.8, w being the peak width in pixels and I being the integrated peak intensity.
Our experiments had peaks in the neighborhood of w = 1, which is marked on the
w�axis. The di�erence between the mode-�ltered image and the original background
image is less than half the amplitude of the background for w = 1, no matter how
large the Bragg peak.
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�gure 2.10) to compare it with the noise level, and and was displayed with a threshold

of 50 counts (see �gure 2.11) to compare it with the level of half of the background

signal amplitude. The results were positive: the di�erences are at the level of the

noise, indicating that the technique is useful for our purposes.

Unfortunately, saturated peaks can leave residual intensity in mode-�ltered im-

ages. In the case of the CCD detector used in the experiments described here, a

non-exponential tail in the point-spread function of the detector would be the cul-

prit. As is described in Tate et. al.[37], a similar detector showed that at a distance

of 450 �m from a peak, the pixel value was still 0.1% of the maximum. Assuming

that saturated peaks have 105 ADU maximum values, this amounts to a 100 ADU

e�ect, which is on the order of the measured intensity of di�use features.

Fortunately, 450 �m corresponds to less than 6 pixels on the detector, which has

a pixel size of 80 �m, while the 15� 15 mode-�lter mask extends between 7.5 pixels

(on a side) and 10.6 pixels (on a diagonal) from the center of the square. Even if the

mask is centered on a saturated peak, therefore, there is a good chance that the mode

will not contain signi�cant contributions from the tails of the peak. If there is any

observable e�ect at all, moreover, it would be expected only in the immediate neigh-

borhood of the saturated pixel, and would have a high likelihood of being eliminated

in the rejection of measurements too close to a Bragg peak (see section 2.3). Contam-

ination of di�use maps due to saturated Bragg peaks, therefore, is expected to be an

insigni�cant contribution to systematic errors in the measurements performed here,

although it may present problems in measuring di�use features which are weaker than

those observed in Staph. nuclease.
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2.2.5 Image scaling

In order to correct for beam intensity variations over time and for absorption as the

crystal is rotated, all images in a di�use data set are scaled to an arbitrary reference

image using a single multiplicative constant per image. For each pixel in an image,

the distance in pixels to the beam �ducial mark is calculated and rounded to the

nearest integer. All pixels with the same distance are binned together, and their

values are averaged. An average radial intensity pro�le for the image is generated by

plotting the average pixel value vs. distance from the �ducial mark (see �gure 2.12

for some sample pro�les).

One image is arbitrarily chosen as a reference image, and its pro�le is chosen as a

reference pro�le. For each image, a linear least-squares �t is used to �nd a multiplica-

tive constant which scales the intensity pro�le to the reference pro�le. Figure 2.12

shows some sample average radial intensity pro�les, and a plot of the scale factor vs.

image number in the data set. 3

2.3 Generating the Di�use Map

Based upon the scattering geometry, each pixel in each image is mapped to a scat-

tering vector (h0; k0; l0) which is oriented relative to the crystal lattice using both the

detector face rotation angles and the crystal orientation matrix elements calculated

using DENZO. The Bragg peak nearest to (h0; k0; l0) is identi�ed, associating the scat-

tering vector (h0; k0; l0) with miller indices (h; k; l). If a 1
2
� 1

2
�1

2
cube centered on the

Bragg peak (h; k; l) contains the point (h0; k0; l0), the pixel is rejected as measuring

3This procedure may be used as an alternative method for calculating image scale factors for a
standard crystallographic data set. Due to increased statistics, this method should provide a more
precise measurement of the scale factors than is obtained by sole analysis of the Bragg peaks, such
as is routinely done in crystallographic analysis.
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Figure 2.12: Image scaling. Top: An image's scale factor is found by scaling its
average radial intensity pro�le to that of a reference image (see text for a de�nition
of the pro�le). The reference pro�le for the �rst Staph. nuclease di�use data set is
shown, along with a typical image pro�le before and after scaling. Bottom: Scale
factors calculated for all exposures in the �rst Staph. nuclease di�use data set. All
pixels in an image are multiplied by the scale factor to correct for variations in beam
intensity and crystal absorption. The large dip between images �fty-eight and �fty-
nine is due to a beam intensity increase at a new \�ll," when electrons and positrons
are re-injected into the synchrotron ring at CHESS. The source of the other systematic
variations is unknown, but is attributed to uctuations in the beam intensity at the
F1 station.



2.3. Generating the Di�use Map 34

k

(h ,k, l )

(h,k,l)

, , ,

h

Figure 2.13: Illustration of a subdivision of reciprocal space into ignored regions around
Bragg peaks (shaded) and measured regions (white). The inset illustrates a situation
where (h0; k0; l0) falls within the 1

2
�1

2
� 1

2
box around (h; k; l), indicating a rejection. All

pixel values which measure di�use intensity in the white bordered region about (h; k; l)
are averaged together for a single measurement to generate a three-dimensional di�use
map.
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intensity too close to a Bragg peak (see �gure 2.13). All pixels from all images which

are not rejected are multiplied by a scale factor (see above) and are averaged together

as a measurement of the di�use intensity in the neighborhood of (h; k; l) in recip-

rocal space. The collection of values of di�use intensity for all coordinates (h; k; l)

which span the data set is stored as a three-dimensional lattice in a computer, and

represents a three-dimensional map of di�use scattering from Staph. nuclease. See

section 5.1 for a description of the maps which were experimentally obtained from

crystals of Staph. nuclease.

These three-dimensional maps are the objects which are compared and charac-

terized. Changes in the maps, representing changes in di�use scattering, indicate

possible changes in the dynamics of the crystalline protein. The symmetry in the

maps can be used to characterize the self-consistency of the di�use data. Simula-

tion of features in these maps will be used to provide insight into the nature of the

underlying disorder in the crystal which causes them.



Chapter 3

Models of Di�use Scattering

In this section, various disordered states of the crystal are de�ned, and scattering

theory is used to predict what di�use features arise from these states. Features of the

models are related to properties of di�use maps. After describing the models, we will

have some understanding of what distinguishing features can be used to identify the

nature of disorder in the crystal based upon measurements of di�use scattering.

3.1 Di�raction from an Imperfect Crystal

Figure 3.1 illustrates a two-dimensional representation of a disordered crystal. X-

ray di�raction theory describes what form the scattering amplitude from an electron

density distribution �(x; t) takes (see �gure 3.2)1

F (q; t) =
Z
d3xeiq�x�(x; t): (3.1)

1See, e.g., chapter 2 of Guinier [40] or chapter 3 of Giacovazzo [38], for an introduction to the
theory of x-ray di�raction.

36
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Figure 3.1: Representation of a disordered crystal. The crystal is composed of unit
cells n of electron density �n(x) at displacements Rn from the origin, so that the
crystal electron density is given by �(x) =

P
�n(x � Rn). Unit cells n and n0 are

separated by a displacement R�n = Rn0 � Rn. Note that the unit cells are not all
exactly the same.
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ρ(x)

θ2

scattered beam

k

q = k’ - k

π/λ= 2

q = 2ksinθ

k’ = k

k’

incident beam

Figure 3.2: De�nition of parameters of elastic x-ray scattering. Incident x-rays of
momentum k scatter from an electron density distribution �(x) through an angle of
2� to an outgoing momentum k0, yielding a scattering vector q = k0 � k.

For a crystal composed of unit cells n of electron density �n(x) located at positions

Rn with respect to the origin, the total distribution �(x) can be represented by

�(x; t) =
X
n

�n(x�Rn; t) (3.2)

so that

F (q; t) =
X
n

Z
d3xeiq�x�n(x�Rn; t) (3.3)

=
X
n

�Z
d3xeiq�x�n(x; t)

�
eiq�Rn (3.4)

=
X
n

fn(q; t)e
iq�Rn (3.5)

where the unit cell structure factor fn(q; t) has been de�ned as

fn(q; t) �
Z
d3xeiq�x�n(x; t): (3.6)
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The scattering intensity, given by

I(q; t) = jF (q; t)j2 (3.7)

is then

I(q; t) =
X
n;n0

fn(q; t)f
�
n0(q; t)e

iq�(Rn�Rn0); (3.8)

so that the scattering intensity at any time can be calculated exactly in the case where

all of the instantaneous structure factors fn(q) are known. For a perfect, �nite-sized

crystal, in which fn(q; t) = fn0(q; t) for all n and n0 in the crystal, this reduces to

I(q) = jf(q)j2X
n;n0

eiq�(Rn�Rn0); (3.9)

where f(q) is the structure factor of the common unit cell.

If the crystal is su�ciently large, the scattering intensity I(q; t) becomes e�ec-

tively time-independent even in the disordered crystal. As long as the experimental

resolution of �q for scattering vectors q is such that

�q � 2�

L
; (3.10)

where L is the size of the crystal, it is shown in appendix A.1 that the scattered

intensity I(q; t) can be expressed as

I(q; t) = I(q) =
X
n;n0

hfn(q)f �
n0(q)ifn;fn0e

iq�(Rn�Rn0); (3.11)
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where the average is over all possible values of fn(q)f
�
n0(q) for a given pair (n; n0):

hfn(q)f �
n0(q)i =

Z
�fn

Z
�fn0Pnn0(fn; fn0)fn(q)f

�
n0(q); (3.12)

Pnn0(fn; fn0) being the joint probability of �nding structure factors fn and fn0 in unit

cells n and n0. An important result here is that the exact distribution of electron

density in each unit cell in the entire crystal is not needed to calculate the scattered

intensity. It su�ces to know the distribution of states of unit cell pairs (n; n0) which

are separated by a common displacement vector R�n.

How do the numbers work out for a real crystal, where the e�ective size is that of a

mosaic block? Using the pixel size of the detector in the experiments described in this

thesis to determine the angular resolution �� of scattered x-rays at typical sample-to-

detector distances, the estimate is �� = 10�3. The estimated error in measurements

of q due to error in � is

�q = 2k��; (3.13)

which is gives �q � 10�2 �A
�1

for a beam wavelength of 1 �A. By the relation in

equation 3.10, this leads to

L� 2��102 �A; (3.14)

or, assuming a roughly 50 �A unit cell, which is the case for Staph. nuclease,

N � 10; (3.15)

where N is the number of unit cells on a side in a mosaic block, which describes

the e�ective size of the crystal due to defects which disturb the long-range order in

the crystal. This relation is satis�ed in protein crystals, where mosaic blocks are
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unusually large due to plasticity in the unit cell structure, which acts to relieve the

stresses which would ordinarily create defects.

The scattered intensity can be calculated at any time using any snapshot of the

crystalline electron density. At the same time, crystal dynamics cannot be resolved

in real-time, since the scattered intensity is time-independent. This necessitates the

study of, e.g., temperature variations in order to truly distinguish between x-ray

signatures of dynamic and static disorder.

3.2 Classes of Di�use Scattering

Models of di�use scattering can broadly be sorted into two classes: those in which

the distribution of individual unit-cell electron densities are independent, and those

in which there are correlations among unit-cell electron-density distributions. For

models in the former class, the problem can be simpli�ed by isolating the term due

to di�use scattering from the term due Bragg scattering. Returning to equation 3.11,

I =
X
n;n0

hfnf �
n0in;n0eiq�(Rn�Rn0); (3.16)

where the functional dependence of fn and I on q is now assumed in the notation,

and the average is now over all unit cell pairs (n; n0). Independent unit-cell electron-

density distributions imply independent unit-cell structure factors fn, so that, from

the fact that

hfnin = hfn0in0; (3.17)

it follows that

hfnf �
n0in;n0 =

8>><
>>:
hjfnj2in n = n0

jhfninj2 n 6= n0
(3.18)
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or

hfnf �
n0in;n0 = (hjfnj2in � jhfninj2)�nn0 + jhfninj2 (3.19)

where �nn0 is the Kronecker delta distribution

�nn0 =

8>><
>>:

1 n = n0

0 n 6= n0
:

Substituting this expression for hfnf �
n0in;n0 into equation 3.16,

I =
X
n;n0

h
(hjfnj2in � jhfninj2)�nn0 + jhfninj2

i
eiq�(Rn�Rn0 ) (3.20)

= N(hjfnj2in � jhfninj2) + jhfninj2
X
n;n0

eiq�(Rn�Rn0) (3.21)

= ID + IB (3.22)

where N is the number of unit cells in the crystal. The di�use component ID has

been de�ned as

ID = N(hjfnj2in � jhfninj2); (3.23)

which is equivalent to Guinier's expression for di�use scattering in his discussion of

the scattering intensity from a crystal with no correlations in uctuations from unit

cell to unit cell.2 This is the expression used in many of the recent interpretations

of data in di�use scattering experiments discussed in the introduction[17, 18, 19, 21,

20, 23, 22, 24].

The Bragg component IB is de�ned as

IB = jhfninj2
X
n;n0

eiq�(Rn�Rn0); (3.24)

2See pp.163-166, chapter 6 of Guinier[40].
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which gives rise to the usual sharp peaks characteristic of x-ray di�raction from three-

dimensional crystals.

In the class of models where the unit-cell electron densities are independent, we

can predict that, since all unit cell structure factors fn refer to distributions smaller

than one unit cell in size, the length scale of variations in di�use features in reciprocal

space must be greater than or equal to the spacing between Bragg peaks. In order

to look for signatures of uctuations within a unit cell, therefore, features in the

di�raction pattern which vary on a length scale greater than the distance between

Bragg peaks should be studied. This observation provided partial motivation for the

chosen method of mapping di�use features in three dimensions, which ignores features

on length scales smaller than Bragg peak spacings.

Of the more general class of models, where correlations among unit-cell electron

densities are allowed, two will be discussed. One is the liquid-like motions model of

Caspar et. al.[19], which associates a correlation length with atomic displacements,

while the other is a model based on the excitation of normal modes in the crystal, as

described in Glover et. al.[21]. It is also shown that the liquid-like motions model is

a special case of the model of normal modes in the crystal, so that they describe the

same type of disorder using di�erent mathematical expressions.

A feature of the models of Caspar et. al.[19] and the normal modes model is

that they both use the unit-cell structure factor f(q) in their expressions for di�use

scattering. The fact that the experimental di�use maps show a high correlation with

jf(q)j2, as is shown in section 5.3, favors these models, as well as any other general

models which use jf(q)j2, over the class of models where unit cells have independent
electron-density distributions, which generally contain structure factors from unit-cell

subdomains. Correlations with a handful of subdomains were sought, but none did

nearly as well at mimicking the data as the jf(q)j2 map.
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What follows is �rst a discussion of models of di�use scattering with independent

unit-cell uctuations. Included among these is a new model describing rigid-body

motions of arbitrary structural units. Then, the two more general di�use scattering

models will be discussed: �rst the liquid-like motions model of Caspar et. al.[19], and

then the crystalline normal modes model described by Glover et. al.[21].

3.3 Independent Molecular Domains

As was discussed in the introduction, proteins are likely to exhibit signi�cant internal

uctuations under biological conditions. There is ample evidence that these uctu-

ations occur within the protein crystalline state as well. One way to model these

internal motions is to identify atomic clusters in the unit cell and assume that the

internal motions can be subdivided into the independent motions of these domains.

If �nj(x) represents the electron density of a domain j in unit cell n, then the unit

cell electron density �n(x) is given by (see �gure 3.3)

�n(x) =
X
j

�nj(x); (3.25)

and the corresponding unit cell structure factor fn(q) is given by

fn(q) =
X
j

fnj(q); (3.26)

where fnj(q) is the structure factor corresponding to the electron density of domain

j in unit cell n. As is derived in appendix A.2, it follows that the di�use intensity ID
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Figure 3.3: Illustration of a distribution �n composed of multiple, independent, non-
overlapping domains �nj.
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is given by

ID = N
X
j

(hjfnjj2in � jhfnjinj2) (3.27)

=
X
j

IDj: (3.28)

The di�use intensity ID due to multiple independent domains is equal to the sum

of the di�use intensities IDj due to each domain j considered independently. Each

domain contributes incoherently to the di�use intensity.

What if there is some correlation among the domains? In this case, the di�use

intensity ID becomes

ID = N
X
j

(hjfnjj2in � jhfnjinj2) +N
X
j 6=j0

hfnjinhf �
nj0in�jj0; (3.29)

where the correlation coe�cient �jj0 is de�ned by

�jj0 �
hfnjf �

nj0i
hfnjihfnj0i � 1: (3.30)

This would be the case, for instance, if there were a signi�cant e�ect on the uctua-

tions of neighboring proteins due to excluded volume e�ects. In general, correlations

among domains are di�cult cases to parametrize analytically, but may be tractable by

molecular dynamics simulations. If the correlation coe�cients �jj0 are small enough,

the e�ect of correlations can be ignored.

Regardless of the signi�cance of the correlations among domains, the Bragg in-

tensity is given by

IB = jhfninj2
X
nn0

eiq�(Rn�Rn0 ) (3.31)
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Figure 3.4: Generation of a distribution �j(xj) isomorphous to a distribution �0(x0)
using a rotation Rj and a translation Tj. The dashed line illustrates the distribution
�0 after rotation but before translation.

= jX
j

hfnjinj2
X
nn0

eiq�(Rn�Rn0); (3.32)

so that each independent domain contributes coherently to the Bragg scattering.

In analogy with the arguments presented in section 3.1, we can comment on the

length scale of variations in di�use scattering images. Here, we note that the smallest

variations will come from the largest independent domain in the unit cell, so that if

one can identify the smallest visible di�use features in a map, the size of the largest

coherent, mobile structural unit can be identi�ed.

3.4 Independent Isomorphous Molecules

A special case of independently uctuating domains is the case where the unit cell

contains a number of isomorphous molecules which are related by simple rotations

and translations, which is the case for most protein crystals, including Staph. nu-
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clease. The e�ect on Bragg reections of introducing these copies of the reference

structure into the unit cell is described, for example, in chapter 3 of Giacovazzo[38],

but it is di�cult to �nd a description of the e�ect on di�use scattering. Here, some

expressions will be derived for both Bragg scattering and di�use scattering when there

are independently uctuating, isomorphous molecules.

In each unit cell n, an isomorphous copy �j(xj) of an electron density distribution

�0(x0) can be generated by a rotation Rj and a translation Tj (see �gure 3.4):

�j(xj) = �0(x0) (3.33)

where

xj = Rj � x0 +Tj: (3.34)

The structure factor of each molecule j is then

fj(q) =
Z
d3xje

iq�xj�j(xj) (3.35)

=
Z
d3x0e

iq�(Rj �x0+Tj)�0(x0) (3.36)

= eiq�Tjf0(q � Rj) (3.37)

where f0(q � Rj) is the structure factor of the reference molecule evaluated at the

scattering vector q � Rj. Using this equation, expressions for the Bragg intensity IB

and the di�use intensity ID can be derived as in appendix A.3. The Bragg intensity

IB is given by

IB = jhfninj2
X
n;n0

eiq�(Rn�Rn0) (3.38)

= jX
j

eiq�Tjhfn0(q � Rj)inj2
X
n;n0

eiq�(Rn�Rn0); (3.39)
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where fn0 is the structure factor of the reference molecule in unit cell n, while the

di�use intensity ID is given by

ID = N(hjfnj2in � jhfninj2) (3.40)

=
X
j

ID0(q � Rj); (3.41)

where ID0 is the di�use intensity evaluated from the reference structure.

These results can be used to comment on the symmetry of di�use maps. Consider

the case of Staph. nuclease, which has four molecules per unit cell in space group P41.

Each molecule j is related to the asymmetric unit by a rotation Rj and a translation

Tj along the screw axis c. If each molecule moves independently, the di�use scattering

is given by

ID =
X
j

ID0(q � Rj) (3.42)

= ID0(q � R0) + ID0(q � R1) + ID0(q � R2) + ID0(q � R3); (3.43)

where R0;R1;R2; and R3 correspond to rotations of 0�; 90�; 180� and 270� about the

screw axis. This expression is invariant under 90� rotations R about the c�-axis, since

ID(q � R) = ID0(q � R � R0) + ID0(q � R � R1) + ID0(q � R � R2) + ID0(q � R � R3)

= ID0(q � R1) + ID0(q � R2) + ID0(q � R3) + ID0(q � R0)

= ID(q); (3.44)

where the relation R � Rj = Rj+1 has been used, with R4 � R0. This implies that

the di�use map from Staph. nuclease is four-fold symmetric about the c�-axis in
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un

xmn

rm

Figure 3.5: Illustration of a translation by a vector un of a rigid body. Vectors rm
to atoms m on the reference distribution are mapped to vectors xmn on the shifted
distribution.

reciprocal space. In addition, the inherent Friedel symmetry

ID(q) = ID(�q) (3.45)

combined with the four-fold c�-axis implies that the a�b�-plane is a mirror plane.

These are symmetries which one would expect to see in di�use maps of Staph. nucle-

ase.

3.5 Rigid-Body Translations

So far, I have discussed expressions of di�use scattering in terms of the distributions

hjfnj2in and jhfninj2 without introducing any parameters of disorder. It is possible

to use these expressions in concert with molecular dynamics simulations in order to

simulate di�use scattering, as is done in Faur�e et. al.[24]. Using some assumptions

about the nature of the dynamics in the unit cell, however, it is possible to derive

some expressions of di�use scattering which contain explicit parameters of disorder.

One of the simplest such expressions is for the case where structural domains in
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the unit cell execute independent rigid-body translations, which, along with rigid-

body rotations, has been used to interpret B-factors from real protein crystals (see

the discussion of Kuriyan and Weis[16] and Sternberg et. al.[15] in the introduction).

The mathematics is similar to that found in derivations of anisotropic B-factors for

crystallographic structural models, but here the tools are used to derive expressions for

di�use scattering. By assuming that the entire unit-cell electron-density distribution

undergoes rigid translations, expressions for di�use scattering from a single structural

unit will be derived. Using the equations derived in sections 3.3 and 3.4, it is possible

to extend the results to multiple structural units moving independently, as would be

the case in a real protein crystal, where multiple molecules can move in the unit cell.

Consider a crystal whose unit cell electron density varies like a rigid body dis-

placed by a translation vector un (hunin = 0) which shifts the origin of the density

distribution �(x) (see �gure 3.5):

�n(x) = �(x� un): (3.46)

Such a translation of the unit-cell electron-density distribution will multiply the unit

cell structure factor by a phase factor:

fn(q) = eiq�unf(q); (3.47)

where f(q) is the unperturbed structure factor of each unit cell.

If the displacements un are su�ciently small, the Bragg intensity IB and the

di�use intensity ID can be derived as in appendix A.4. The Bragg intensity IB is
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Figure 3.6: Illustration of a translational disorder ellipsoid. Axes of the ellipsoid are
û1; û2; û3, with lengths of �1; �2; �3. The projection of any displacement un along an
axis ûi is Gaussian distributed with width �i.

given by

IB = jhfninj2
X
n;n0

eiq�(Rn�Rn0) (3.48)

= e�q�V�qjf j2X
n;n0

eiq�(Rn�Rn0 ); (3.49)

where the variance matrix V is de�ned by the relation

V � hununin: (3.50)

The di�use intensity ID is given by

ID = N(hjfnj2in � jhfninj2) (3.51)

= N(1� e�q�V�q)jf j2: (3.52)

Some original notation can be used for convenience: the symmetric matrix S can



3.5. Rigid-Body Translations 53

be de�ned such that

V = S � S (3.53)

so that the Bragg intensity IB becomes

IB = e�jq�Sj2jf j2X
n;n0

eiq�(Rn�Rn0 ); (3.54)

while the di�use intensity ID becomes

ID = N(1� e�jq�Sj2)jf j2: (3.55)

S parametrizes an ellipsoid which represents the width of the translational motions

along an arbitrary direction (see �gure 3.6). Represented diagonally in terms of the

ellipsoid axes,

S = �u1û1û1 + �u2û2û2 + �u3û3û3; (3.56)

where �ui are the Gaussian widths of the displacement distributions along axes ûi. S is

the three-dimensional tensor analog of the standard deviation, so that the projection

of any displacement un along an axis ûi is Gaussian distributed with width �i.

In the case of isotropically distributed displacements, the sigma matrix S is pro-

portional to the identity matrix I

S = �uI (3.57)

so that

jq � Sj2 = q2�2u; (3.58)

leaving

ID = N(1� e�q
2�2u)jf j2 (3.59)
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and

IB = e�q
2�2ujf j2X

n;n0

eiq�(Rn�Rn0 ): (3.60)

This can be compared with the usual crystallographic isotropic B-factor notation,

IB = e�2B sin2 �

�2 jf j2X
n;n0

eiq�(Rn�Rn0) (3.61)

by which

B = 8�2�2u: (3.62)

In the case where there are multiple structural domains in the unit cell which

are translating independently, the methods outlined in sections 3.3 and 3.4 can be

used to augment the expression for di�use scattering. Each independent unit j will

contribute a component IDj of the form

IDj = N(1� e�q�Vj �q)jfjj2; (3.63)

where Vj is the variance matrix for displacements of structural domain j with struc-

ture factor fj(q). If single proteins are translating independently, then j will index

the copies of the protein in the unit cell, and the di�use map will be a superposition

of the maps due to each protein's translational disorder. In this case, the di�use scat-

tering would have a high correlation with a properly symmetrized map of jf0(q)j2, the
square of the structure factor of an individual protein. If, on the other hand, all of

the proteins in a unit cell move as a coherent unit, the di�use scattering would have

a high correlation with jf(q)j2, the squared structure factor of the entire unit cell,

making discrimination between these two cases possible on the basis of comparison

of the di�use scattering with simulated maps of jf0(q)j2 and jf(q)j2. Note that the
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Bragg scattering would be identical in the two cases, so long as the variance matri-

ces were equivalent, making them indistinguishable on the basis of measurements of

Bragg reections alone.

3.6 Independent Atomic Fluctuations

In standard crystallographic re�nement of structural models of proteins, individual

atomic B-factors enter as free parameters in the model. The B-factors are related

to the rms displacements of independently uctuating atoms. Here is a derivation of

the di�use scattering from a crystal where all atoms execute independent uctuations

about their equilibrium positions.

Consider the case where each atom m in the unit cell undergoes independent

position uctuations described by a variance matrix Vm, as de�ned in Equation 3.50.

Considering each atom to be an independent rigid body, the results of section 3.3 can

be drawn upon, using equation 3.32:

IB = jX
m

hfmeiq�rmninj2
X
n;n0

eiq�(Rn�Rn0) (3.64)

and equation 3.27:

ID = N
X
m

(hjfmeiq�rmnnj2i � jhfmeiq�rmninj2); (3.65)

where fm is the structure factor of atom m, eiq�rmn is the phase factor due to the

displacement rm of atom m from the origin in unit-cell n, and N is the number of

unit cells in the crystal.

The phase factors can be handled in a manner analogous to that in section 3.5,
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so that

IB =
X
m;m0

fmf
�
m0e�

1
2
q�(Vm+Vm0 )�qeiq�(rm�rm0 )

X
n;n0

eiq�(Rn�Rn0 ) (3.66)

and

ID = N
X
m

jfmj2(1� e�
1
2
q�(Vm+Vm0 )�q): (3.67)

In the case where all of the variance matrices Vm are identical, so that

Vm = Vm0 = V; (3.68)

the expressions for the Bragg scattering IB and di�use scattering ID simplify, so that

IB = e�q�V�q
X
m;m0

fmf
�
m0

X
n;n0

eiq�(Rn�Rn0) (3.69)

and

ID = N(1� e�q�V�q)
X
m

jfmj2: (3.70)

The Bragg scattering IB is identical in form to that in equation 3.49 for rigid-body

translations. The di�use scattering ID di�ers, however: in the case where atoms

execute independent uctuations, the di�use scattering has much less structure than

the case where larger domains move coherently. As is seen in equation 3.70, in this

case the structure in di�use scattering comes from the atomic structure factors and

the factor (1 � e�q�V�q). Both of these vary on very long length scales in reciprocal

space compared with the higher-frequency variations which appear when larger units

are moving coherently. The broadness of di�use features in this model makes it a

poor candidate for describing the di�use scattering observed from Staph. nuclease,

which shows a great deal of structure on length scales on the order of the size of the

reciprocal unit cell.
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Figure 3.7: Atomic electron densities contributing to the unit cell electron density.
Individual atomic electron densities contribute �m(x�xmn) to the n

th unit cell electron
density �n. xmn is the atomic position of atom m in unit cell n with respect to the
origin of unit cell n.

3.7 Rigid-Body Rotations

To fully understand what signatures of rigid-body motion are visible in di�use scatter-

ing from protein crystals, it is necessary to consider the case of rigid-body rotations.

Using a combination of translational and rotational disorder models, one can begin

to look for features in di�use scattering which would be expected if protein molecules

in a crystal behave in the way suggested by experiments of Kuriyan and Weis[16] and

Sternberg[15], where individual molecules execute independent rigid-body motions.

Rigid-body rotation models, as described in Sternberg[15] for the case of lysozyme,

can be useful in understanding large-scale motions of proteins by describing them in

terms of independently moving structural domains. In order to further understand

the e�ects of rigid-body motions on di�use scattering, a model of rigid-body rotations,

where proteins rotate about a center of libration, was derived.
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Consider the case where there are rigid-body translations and rotations in the unit

cell, with a single molecule per unit cell.3 The unit-cell electron density �n(x) is the

sum of the electron densities �m(x) of all atoms m in the unit cell. The center of

atomic distribution �m is located at xmn, which is the position with respect to the

unit cell origin of atom m in unit cell n (see �gure 3.7), so that

�n(x) =
X
m

�m(x� xmn) (3.71)

and the unit cell structure factor becomes

fn(q) =
X
m

Z
d3xeiq�x�m(x� xmn) (3.72)

=
X
m

�Z
d3xeiq�x�m(x)

�
eiq�xmn (3.73)

=
X
m

fm(q)e
iq�xmn (3.74)

where the atomic structure factor fm(q) has been de�ned as

fm(q) �
Z
d3xeiq�x�m(x): (3.75)

The squared structure factor jfn(q)j2 is given by

jfn(q)j2 =
X
m;m0

fm(q)fm0(q)eiq�(xmn�xm0n0 ): (3.76)

In the case where the protein executes a rotation about a center of libration, (see

�gure 3.8)

xmn = r0 + Rn � r0m + un; (3.77)

3See, e.g., p.150, chapter 3 of Giacovazzo[38] for a description of scattering by a molecule.



3.7. Rigid-Body Rotations 59

ω

α

^

r0

r’m r’m

xmn

Rn

Rm n r’m.

xmn r0 Rn r’m.= +

n

n

r

Figure 3.8: An illustration of a rotation Rn by an angle �n about a direction !̂n for
an object with a rotationally invariant moment of inertia tensor in unit cell n. The
vector r0 from the unit cell origin to the center of libration and the vector rm from
the origin to the reference position of atom m resolve the vector r0m, the average
displacement of the atom m from the center of libration. Rn rotates the vector r0m
about the center of libration to Rn � r0m, translating the atomic position rm to the
position xmn = r0 + Rn � r0m.
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where r0 is the vector to the center of libration,

r0m = rm � r0 (3.78)

is the vector from the center of libration r0 to atom m at average position rm in the

unit cell, Rn is the rotation matrix for unit cell n, and un is a unit cell translation

vector of the form introduced in section 3.5. Thus,

fn =
X
m

fme
iq�xmn (3.79)

=
X
m

fme
iq�r0eiq�(Rn�r

0

m+un): (3.80)

As is derived in appendix A.5, the Bragg intensity IB in this case is given by

IB =
X
m;m0

fmfm0eiq�(rm�rm0)e�
1
2
(jq�r0mj2+jq�r0

m0
j2)�2�e�q�Vu�q; (3.81)

�X
n;n0

eiq�(Rn�Rn0 ) (3.82)

where �� is the half-width of the Gaussian distribution of small angular displacements

�, and Vu is the variance matrix of the translations. Using the relation

jA�Bj2 = jAj2jBj2 � jA �Bj2; (3.83)

and de�ning Vm by

Vm � (rm � rm � rmrm)�
2
�; (3.84)

this can be rewritten as

IB =
X
m;m0

fmf
�
m0e�

1
2
q�(Vm+Vm0 )�qeiq�(rm�rm0)

X
n;n0

eiq�(Rn�Rn0); (3.85)
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which is identical to equation 3.66 for independent atomic uctuations.

The di�use intensity ID is given by

ID = N
X
m;m0

fmfm0eiq�(rm�rm0 )

�(e� 1
2
jq�(r0m�r0

m0
)j2�2� � e�

1
2
(jq�r0mj2+jq�r0

m0
j2)�2�e�q�Vu�q): (3.86)

In order to make this expression more suitable for simulations, it would be good to re-

express it in terms of the unit-cell structure factor f(q). Expanding the exponentials

in equation 3.86, it follows that

(e�
1
2
jq�(r0m�r0

m0
)j2�2��e� 1

2
(jq�r0mj2+jq�r0

m0
j2)�2�e�q�Vu�q) � (q�r0m) � (q�r0m0)�2�+q �Vu �q

(3.87)

giving

ID = N(1� e�q�Vu�q)jf(q)j2 +N
X
m;m0

fmfm0eiq�(rm�rm0)(q�r0m) � (q�r0m0)�2�; (3.88)

from which the translational component

IDT � N(1� e�q�Vu�q)jf(q)j2 (3.89)

and the rotational component

IDR � N
X
m;m0

fmfm0eiq�(rm�rm0)(q�r0m) � (q�r0m0)�2� (3.90)

are identi�ed. The rotational component IDR can be rewritten as

IDR = N jq�X
m

fmr
0
me

iq�rmj2�2� (3.91)
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= N jq�[X
m

fmrme
iq�rm � r0

X
m

fme
iq�rm]j2�2� (3.92)

= N jq�[rqf(q)� ir0f(q)]j2�2� (3.93)

Thus, ID can be expressed as

ID = IDT + IDR (3.94)

= N(1� e�q�Vu�q)jf(q)j2 +N jq�[rqf(q)� ir0f(q)]j2�2� (3.95)

The e�ect of adding a small amount of rotational disorder is to introduce a term

of the form of IDR above to the di�use scattering. Although the above expressions

have been derived for the case where the entire unit cell is moving as a rigid body, the

results of sections 3.3 and 3.4 can be used to extend the results to multiple molecules

or structural domains in the unit cell. Thus, the case where individual proteins in

the unit cell are moving like rigid bodies can be studied, in order to look for di�use

features to complement studies like those performed by Sternberg et. al.[15] and

Kuriyan and Weis[16]. In addition, the internal dynamics of multiple, isomorphous

molecules in the unit cell can be modelled by subdividing the reference molecule into

independently moving, rigid domains and applying symmetry operations as discussed

in section 3.4.

3.8 Liquid-Like Correlated Motions

In the more general class of models of di�use scattering, correlations are allowed

among unit-cell electron-density distributions. The most noticeable e�ect of this on

the di�use scattering is the fact that it introduces features which can vary on length

scales smaller than the dimensions of the reciprocal unit cell. As will be shown, to �rst
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order, these large-scale motions in the crystal produce features whose intensities are

closely tied to the intensity of the neighboring Bragg peak, and thus, like the Bragg

peaks, show correlations with the map of jf(q)j2, the squared Fourier-transform of

the unit cell.

In the case where the correlations in uctuations are solely determined by the

displacement r between the points in consideration, Caspar et. al.[19] have derived

an expression for modelling the di�use intensity, which was used to measure param-

eters of disorder in the crystal. A more detailed derivation of the expression is given

in Clarage et. al.[22]. This model allows for correlations between unit-cell electron

densities, since correlations between any two atoms in the crystal are solely deter-

mined by the vector distance between them. As is described in the introduction, their

measurements come about by visually comparing simulated di�raction images with

a single image of x-ray di�raction from an insulin crystal. Extending their measure-

ments into three dimensions is possible with the techniques developed in this thesis.

A modi�ed derivation of their expression for di�use scattering is presented here.

One can model the electron density of the crystal as

�(x) = �point(x) =
X
m

Qm�(x� xm); (3.96)

where xm = rm+um(t), rm being the average position of atom m; um being its time-

dependent displacement, and m indexing all atoms in the crystal. Qm is the charge

of atom m as seen by the x-rays. It follows that

I(q) = hI(q)i =
*X
m;m0

QmQm0eiq�(rm�rm0 )�eiq�(um�um0 )

+
t

(3.97)

=
X
m;m0

QmQm0eiq�(rm�rm0 )�heiq�(um�um0 )it; (3.98)
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which, for small displacements um, becomes

I(q) � X
m;m0

QmQm0eiq�(rm�rm0 )�e� 1
2
h[q�(um�um0 )]2it: (3.99)

The last exponent in equation 3.99 can be expanded to give

e�
1
2
h[q�(um�um0 )]2it = e�

1
2
q�Vm�q� 1

2
q�Vm0 �q+hq�umum0 �qit; (3.100)

where the individual atomic variance matrices Vm are de�ned as in section 3.6. It is

further assumed that each atom has identical RMS displacements:

Vm = Vm0 = V: (3.101)

Then, a correlation matrix Cmm0 is de�ned such that

e�
1
2
h[q�(um�um0 )]2it = e�q�(V�Cmm0 )�q; (3.102)

so that

Cmm0 = humum0it (3.103)

It is assumed that the correlation matrices Cmm0 solely depend upon the average

displacement rm � rm0 between atoms:

Cmm0 = C(rm � rm0) (3.104)

so that

I(q) =
X
m;m0

QmQm0eiq�(rm�rm0)�e�q�[V�C(rm�rm0 )]�q: (3.105)
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Making use of the Dirac delta function, this can be rewritten as:

I(q) =
Z
d3reiq�re�q�[V�C(r)]�q

X
m;m0

QmQm0�(r� rm + rm0)

=
Z
d3reiq�re�q�[V�C(r)]�qP0(r)

where

P0(x) �
X
m;m0

QmQm0�(x + rm � rm0) (3.106)

is the Patterson function for the unperturbed crystal. For q � C � q� 1,

I(q) � e�q�V�q
Z
d3reiq�r(1 + q � C(r) � q)P0(r)

= e�q�V�q
Z
d3 reiq�r P0(r)

+ e�q�V�qq �
�Z

d3 reiq�r C(r)P0(r)
�
� q (3.107)

= e�q�V�qI0(q)

+ e�q�V�qq � [I0(q) � c(q)] � q; (3.108)

where the scattering intensity I0(q) from the unperturbed crystal is given by

I0(q) =
Z
d3reiq�rP0(r); (3.109)

and the correlation matrix c(q) is de�ned as

c(q) �
Z
d3reiq�rC(r): (3.110)

Finally, separating the Bragg component IB and the di�use component ID,

IB = e�q�V�qI0(q) (3.111)
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and

ID = e�q�V�qq � [I0(q) � c(q)] � q: (3.112)

The above expression for ID is valid in the case where both

1. The displacements of all of the atoms in the crystal can be described by a single

variance matrix V, and

2. The correlation Cmm0 between any two atoms m and m0 only depends upon the

vector displacement between them.

If the atomic displacements are isotropic, so that

q � V � q = q2�2; (3.113)

and the correlation Cmm0 between any two atoms is only dependent upon the distance

between them, so that

q � c(q) � q = q2c(q); (3.114)

the di�use scattering ID can be rewritten as

ID = e�q
2�2q2�2I0(q) � �(q); (3.115)

where �(q) has been de�ned as

�(q) � c(q)

�2
: (3.116)

As a check, it is shown in appendix A.6 that this expression correctly predicts the dif-

fuse scattering in the case of independent atomic uctuations discussed in section 3.6.

Clarage et. al.[22] used an equation analogous to equation 3.115 to model disorder
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in lysozyme crystals. They assumed that the correlations in the crystal were such

that the di�use scattering took on the form:

ID(q) = e�q
2[�21+�

2
2 ]q2�I0(q) � [�21�1(q) + �22�2(q)]; (3.117)

where �1(q) and �2(q) are distributions of the form

�(g) =
8�3

(1 + g22)2
; (3.118)

which is the Fourier representation of a simple exponential decay function with widths

1 and 2 respectively. By simulating an image of x-ray di�raction from tetragonal

lysozyme and visually comparing it to an experimentally obtained di�raction image,

they obtained the values �1 = 0:11 �A, �2 = 0:5 �A, 1 = 50 �A and 2 = 6 �A. The

correlation function �1 was associated with small, long-range correlated motions,

while �2 was associated with larger, short-range correlated motions, as are seen in a

liquid. Although the simulations are only of single two-dimensional di�raction images,

reciprocal space is sampled at a �ner resolution in these simulations than is done in

the techniques outlined in this thesis, enabling comparison of Bragg peak pro�les to

estimate the correlation length of the long-range motions.

Using the three-dimensional maps obtained from Staph. nuclease, a comparison

can be made between the predictions of short-range correlated motions and experi-

mental data. Maps of I0(q) in equation 3.115 will have the form

I0(q) = jf(q)j2X
hkl

�(q� 2�[a�h+ b�k + c�l]); (3.119)

where jf(q)j2 is the squared Fourier transform of the unit cell, (h; k; l) are Miller

index coordinates for Bragg reections, and a�;b� and c� are basis vectors for the
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reciprocal unit cell. Experimental di�use maps in this model, therefore, will show a

high correlation with smoothed maps of predicted squared structure factors jf(q)j2 of
the unit cell, where discrete peaks at positions 2�[a�h+b�k+c�l] are broadened by an

amount de�ned by the width of the function �(q). Section 4.5 describes how smoothed

experimental di�use maps of Staph. nuclease were compared with smoothed simulated

maps of jf(q)j2 to demonstrate a correlation between them, providing evidence for

the type of disorder described by this model.

3.9 Crystalline Normal Modes

The standard way to deal with thermally-induced disorder in a crystal is to expand

the perturbations about equilibrium in terms of excited crystalline normal modes.

In fact, it is possible to represent the liquid-like correlated motions model as an

equivalent model in terms of crystalline normal modes. Rendering the model in this

alternate way allows interpretation of the correlated motion identi�ed in Caspar et.

al.[19] in terms of periodic lattice vibrations.

The normal-modes treatment not only provides an alternate way of modelling

liquid-like motions: the most general expressions allow for motions of such great

complexity that one could not hope to separate their contributions to the di�use

scattering in order to �ngerprint them. What follows is a derivation of a general ex-

pression for the di�use intensity from a crystal undergoing normal-mode excitations.4

Afterwards is a demonstration of the equivalence of the liquid-like correlated motions

model and a limiting case of the normal-modes model, which is explicitly shown by

introducing a spatial-frequency dependence to the elastic modulus of the crystal. The

4James[41], Warren[42] and Ashcroft and Mermin[43] are three of many texts which describe the
normal-modes treatment of perturbations. The extension to molecular crystals, which proved di�-
cult to locate in the literature, used suggestions found on pp. 442-443 of Ashcroft and Mermin[43].
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di�use maps predicted by this model are identical to those predicted by the liquid-like

motions model, but the resulting interpretation is an original one.

Consider a macromolecular crystal undergoing harmonic structural perturbations.

The average intensity from such a crystal has the following form:

hI(q; t)it =
X
m;m0

QmQm0eiq�(rm�rm0 )
X
n;n0

eiq�(Rn�Rn0)heiq�(umn�um0n0 )it; (3.120)

where Qm and rm are the charge and average position of atom m in the unit cell, Rn

is the position of unit cell n with respect to the origin, and umn is the displacement

of atom m in unit cell n. The atomic displacements umn can be expanded in terms

of crystalline normal modes, so that

umn =
X
gs

as;gems;ge
i(g�Rn�!s(g)t); (3.121)

where ems;g is the complex polarization vector for atom m in branch s of the mode

with wave vector g, as;g is the amplitude of branch s of mode g, and !s;g is its

frequency. As is shown in appendix A.7, in an approximation which is �rst order in

umn, two additive contributions IB and ID, such that

I = IB + ID; (3.122)

can be identi�ed in the expression for the scattering intensity. The Bragg intensity

IB is given by

IB = e�
1
2
q�(Vm+Vm0 )�qI0(q); (3.123)
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where the atomic variance matrices Vm are given by

Vm =
X
g;s

jas;gj2ems;gems;�g; (3.124)

and I0(q) has been de�ned as

I0(q) =
X
m;m0

QmQm0eiq�(rm�rm0 )
X
n;n0

eiq�(Rn�Rn0 ): (3.125)

The di�use intensity ID is given by

ID =
X
g;s

X
n;n0

ei(q+g)�(Rn�Rn0 )
X
m;m0

QmQm0eiq�(rm�rm0)

� e�
1
2
q�(Vm+Vm0 )�q

� q �
h
jas;gj2ems;gem0s;�g

i
� q (3.126)

The above expressions for IB and ID represent the �rst-order scattering from

a macromolecular crystal undergoing normal-mode excitations. As is shown in ap-

pendix A.7, the connection with the liquid-like motions model is established by both

assumimg that all of the atomic variances Vm are the same, so that

Vm = Vm0 = V; (3.127)

and assuming that the polarization vectors ems;g all have the form

ems;g = es;ge
ig�rm; (3.128)

which is true for an elastically homogeneous crystal, where waves continuously mod-

ulate atomic displacements within the unit cell. It can be shown that the di�use
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intensity ID can be expressed as

ID = e�q�V�qq � [I0(q) � cNM(q)] � q; (3.129)

which is the same as equation 3.112. The correlations cNM (g) are given by

cNM(g) � n(g)
X
s

jas(g)j2es(g)es(�g); (3.130)

where n(g) is the density of states. Thus, the liquid-like correlated motions model is

seen to be equivalent to a limiting case of the crystalline normal modes model, where

the displacements of all atoms are equivalently distributed, and where the elastic

properties of the crystal are homogeneous.

Finally, a connection can be established between the parameters of disorder in

the liquid-like motions model and the elastic modulus of the crystal. Let s label the

polarization of mode g, where s = 1 stands for the longitudinally polarized mode,

and s = 2 and s = 3 stand for the two transversely polarized modes. For each of

these modes, the total energy contribution Es;g of mode g is given by

Es;g =
1

2
n(g)Ksg

2jas(g)j2; (3.131)

where Ks is the elastic modulus for modes of polarization s, and V is the volume of

the crystal. By the equipartition theorem,

Es;g =
1

2
kBT; (3.132)
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where T is the temperature and kB is Boltzmann's constant. This leads to

jas(g)j2 = kBT

n(g)Ksg2
(3.133)

as an expression for the amplitude as(g) of branch s of mode g. This leads to the

usual g�2 spreading of Bragg peaks due to �rst-order excitation of normal modes

in the crystal, as used by Glover et. al.[21] to describe the peak pro�les in x-ray

di�raction from protein crystals.

If there is a signi�cant di�erence in the amplitudes of the transversely and lon-

gitudinally polarized modes in the crystal, it will be reected in the distribution of

di�use intensity about the Bragg peaks. From equation 3.130, one can predict that

longitudinally polarized modes will broaden peaks along a line connecting the peak

and the origin, while transversely polarized modes broaden peaks in directions per-

pendicular to this line. The observation of long radial streaks in di�raction images,

therefore, would correspond to the excitation of relatively soft longitudinal modes

in the crystal, while the observation of axial streaks would indicate that transverse

modes were softer.

If the direction of observed streaks around Bragg peaks appears to be independent

of the peak position, it indicates that there are absolute directions in the crystal

which correspond to high-amplitude modes. For example, if the contacts between

unit cells were particularly soft along the c�axis, one might expect to see streaks

along the direction of c in reciprocal space. Since the techniques developed in this

thesis measure di�use features on length scales larger than that of the reciprocal unit

cell, well-de�ned streaks would most likely not be observed in the three-dimensional

di�use maps. Broad asymmetries, however, could possibly be observed, although

none were obviously visible in the maps obtained from Staph. nuclease.
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In the case of the liquid-like motions model, the correlation function �(g) is given

the form

�(g) =
8�3

(1 + g22)2
; (3.134)

by Caspar et. al.[19] and Clarage et. al.[22], which is normalized to 8�3 in order to sat-

isfy the real-space relation C(0) = �2. To demonstrate an explicit connection between

equation 3.130 and this expression, the assumption is made that the elastic modulus

Ks for each polarization is the same value of K, making amplitudes of vibration as(g)

due to all polarizations s the same value a(g), so that, from equation 3.116,

�NM(g) = n(g)
ja(g)j2
�2

(3.135)

where �2 is de�ned by

�2q2 = q � V � q: (3.136)

Substituting the expression for jas(g)j2 from equation 3.133:

�NM (g) =
kBT

Kg2�2
: (3.137)

To make this look like the distribution in equation 3.134, it is necessary to introduce

a dependence of the elastic modulus K on the mode g, such that

K(g) = Kmin

(1 + 2g2)
2

42g2
; (3.138)

so that

�NM (g) =
42kBT

�2Kmin(1 + 2g2)2
; (3.139)

where Kmin is the minimum value for the elastic modulus, and �1 is the width of
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the distribution in g. Choosing Kmin such that

Kmin =
1

2�

kBT

�2
(3.140)

yields

�NM(g) =
8�3

(1 + 2g2)2
; (3.141)

establishing the form of the distribution, and showing the connection with the explicit

form of correlations assumed by Caspar et. al.[19] and Clarage et. al.[22] in modelling

di�use scattering in terms of liquid-like motions. For the short-range correlated mo-

tions in lysozyme discussed at the end of section 3.8, �2 = 0:25 �A
2
, and  = 6 �A,

yielding

Kmin = 3� 10�3 ev�A
�3

(3.142)

= 4� 108 N m�2 (3.143)

at 300 K. For comparison, the bulk modulus of water is roughly 2� 109 N m�2 at

room temperature.



Chapter 4

Analysis Methods

This chapter describes the analysis methods which were developed and which yielded

the results described in chapter 5. A combination of three-dimensional visualization

tools and number-crunching code was used to understand the di�use maps which were

measured as described in chapter 2. Interactive manipulation of the map rendered in

three dimensions allowed inspection of salient features which were recognized in all

three data sets, and allowed an understanding and identi�cation of the symmetries

present in the maps. A graphical shell image representation of the di�use maps

allowed a more complete three-dimensional visualization of di�use features.

Measures of the internal symmetry and reproducibility of di�use maps were de�ned

and applied to the data sets collected. These same measures were used to look for

changes in di�use scattering between the bare crystal and the co-crystal, and to

characterize the quality of �t of simulated maps to experimentally obtained maps.

The results of these �ts were used to identify the types of disorder which are most

consistent with our observed di�use maps.

75
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4.1 Visualization Using EXPLORER

Primary visualization of di�use maps was performed using the EXPLORER data

visualization package1 (see �gure 5.11). The program renders a 3D representation of

the map, and allows interactive manipulations to explore the symmetry of the visible

features. Using this program, it was possible to get a qualitative feel for the data and

to become familiar with the distribution of the features in the maps. Comparison

of two rendered views of the two di�erent measured di�use maps provided visible

evidence for the reproducibility of the data (see �gure 5.12).

4.2 Visualization Using Shell Images

Although EXPLORER provided a good way to qualitatively study the data, a more

quantitative way of displaying the data was sought. What was desired was a way

to observe features in a di�use map, and to easily answer the question: \Where in

reciprocal space is this di�use feature located?" The method should also display the

maps in such a way that symmetries are readily apparent, and such that features

identi�ed using EXPLORER could be found on the resulting graphs. The following

describes the method which was developed.

In order to compactly display an entire di�use map, the lattice was divided into

spherical shells about the origin. Each shell had a width of one reciprocal-unit-cell

diagonal. For each shell at scattering vector jqj, a shell image was generated which

represented voxel value measurements on the spherical shell. Pixel coordinates in the

image linearly correspond to polar angles (�; �) on the shell: � ranges from 0 at the

top of the image to � at the bottom of the image, while � ranges from �� to � from

1Available through the IRIX 5.2 distribution for Silicon Graphics workstations
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left to right. The pixel value in an image is calculated by averaging the values of all

voxels whose polar angles lie in the angular region spanned by the pixel, and whose

radius falls between the inner and outer radius of the shell.

For Staph. nuclease, a section of the shell restricted to (0; �) in � and (��;��
2
)

in � was mapped to the cartesian shell image, to increase clarity at the cost of

eliminating redundant data points. Images of the di�use map obtained from the

�rst crystal are displayed in �gure 4.1. The symmetry of the map is still visible in

the images generated in this way. In addition, the coordinates corresponding to an

arbitrary feature are easily calculated once � and � are measured from a shell image

at scattering vector jqj:

qx = jqj cos� sin �

qy = jqj sin� sin �

qz = jqj cos �: (4.1)

4.3 Self-Consistency of Di�use Maps

There are a large number of symmetry-related points in maps of di�use scattering.

Most models of di�use scattering predict that di�use maps bear the same symme-

try as that predicted for Bragg reections. In the case of Staph. nuclease, the P41

symmetry of the unit cell predicts that each point in the lattice has seven symmetry-

related points. If a point is labelled by (x; y; z), and the z�axis is the four-fold

axis, symmetry-equivalent points are (�y; x; z), (�x;�y; z), (y;�x; z), (�x;�y;�z),
(y;�x;�z), (x; y;�z), and (�y; x;�z), the �rst three being related by four-fold sym-
metry about the z�axis, and the latter four being the Friedel mates of the others.

It is possible that di�use maps would not bear the same symmetry as that pre-
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Figure 4.1: Shell images of the di�use map from Staph. nuclease crystal 1. As
described in the text, an image of shell jqj represents a map of di�use intensity
indexed by polar-coordinate angles (�; �). The numbers n above each image are

related to the shell's scattering vector length s by the relation s = 0:033n �A
�1
. The

images are displayed on a linear grey scale, with a pixel value of -100 corresponding
to black, and 100 corresponding to white.
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dicted by the space group of the unit cell. For this to be the case, however, there

would have to be a symmetry in the average structure of the unit cell without a

corresponding symmetry in the dynamics. Although such a situation is unlikely, it is

possible, and experimental observation of di�use features which do not bear the same

symmetry as that of the Bragg peaks would give evidence for this unusual case.

Due to the expected symmetry of the maps, a measure of the degree to which a

map is symmetric is used to characterize the self-consistency of the data. First, a

symmetric lattice is generated by symmetry-averaging the original map according to

the above predictions of a P41 space group. This was done by replacing each voxel

value at (x; y; z) with the average value of voxels (x; y; z), (�y; x; z), (�x;�y; z),
(y;�x; z), (�x;�y;�z), (y;�x;�z), (x; y;�z), and (�y; x;�z).

For both the original and the symmetry-averaged maps, the average voxel value

was then evaluated within thin spherical shells about the origin, producing pro�les of

the spherically-averaged background scattering at given resolution values in reciprocal

space (see �gure 5.8)2. Finally, for each voxel, the spherically-averaged component of

the scattering was interpolated from the pro�le and was subtracted from the voxel

value.

A di�erence lattice was constructed by subtracting the two resulting lattices voxel-

by-voxel. The RMS voxel value of the di�erence lattice was calculated in spherical

resolution shells, creating a pro�le of the amplitude of the di�erence between the

two lattices3. The thickness of the shells was equal to the length of the diagonal of

the reciprocal unit cell in the Bragg lattice. Similar pro�les were calculated from the

original and symmetrized maps, and all were displayed simultaneously for comparison

(see �gure 4.2).

2These pro�les may hereafter be referred to as average intensity pro�les.
3These pro�les may hereafter be referred to as RMS intensity pro�les.
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Figure 4.2: A measure of the self-consistency of di�use maps. The di�erence between
the original di�use map and a symmetry-averaged map is calculated and its RMS
amplitude is plotted in resolution shells. Pro�les of the RMS amplitude of the original
and symmetrized maps are shown for comparison.
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Figure 4.3: Graphical representation of the reproducibility of di�use data. Shown are
the RMS amplitudes of di�use maps from the �rst and second crystals, after the
maps have been symmetry averaged, and the spherically averaged component has
been subtracted. Also shown is the RMS amplitude of the di�erence map.

4.4 Reproducibility of Di�use Maps

The reproducibility of di�use maps was tested by comparing two data sets obtained

from di�erent crystals grown under identical conditions. Each map was symmetry-

averaged in order to reduce systematic errors due to, e.g., the rotation between exper-

iments of the detector face with respect to the incident beam. Then, the spherically-

averaged component of each lattice was subtracted (see section 4.3).

A di�erence lattice was constructed by subtracting the two lattices voxel-by-voxel

in an identical manner to that described in section 4.3. The RMS voxel value of

the di�erence lattice was calculated in spherical resolution shells, creating a pro�le

of the amplitude of the di�erence between the two lattices. Using a program written
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for the task, a scale factor between the two lattices was adjusted until a minimum

di�erence pro�le was detected. By applying this method to the two data sets, a

di�erence pro�le was generated which shows that the maps di�er by as little as 20%

in the neighborhood of 0:26 �A
�1
, where many of the interesting di�use features are

seen (see �gure 4.3).

Comparison of �gure 4.2 with �gure 4.3 shows that symmetrized maps from dif-

ferent crystals are slightly more consistent with each other than they are with their

unsymmetrized counterparts. This implies that there is some small systematic asym-

metry present in the maps as measured. The most likely source for this asymmetry is

a detector-face rotation: if the detector normal is rotated by an angle � with respect

to the incident beam, then the solid-angle correction of section 2.2.3 can swing from

cos3( � � ) to cos3( + � ), yielding a di�erence

cos3( + � )� cos3( � � ) � 6� cos2  sin 

= 6� (1� q2

2k2
)2(1� q2

4k2
)
1
2
q

k

� 6� 
q

k
(4.2)

Thus, for a resonable detector-face rotation � of 0.035 radians (2 degrees), at q

k
=

0:25 (about 4 �A in our case) the di�erence is 0.05. If the background intensity is 2000

at q

k
= :25, the di�erence in ADU is 2000�0:05 = 100, implying an azimuthal variation

of amplitude 50 ADU, which is roughly consistent with the observed di�erence.

This same method was used to detect whether or not there was a di�erence be-

tween the measured di�use maps from crystalline Staph. nuclease both with and

without Ca++ and pdTp bound. First, each map is symmetrized and its spherically-

averaged component is subtracted. Then, one map is scaled to the other to minimize

whatever di�erences there are. This sets a lower limit on the di�erences observed
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between the di�use maps. As is detailed in chapter 5, signi�cant di�erences were

observed between the maps of di�use scattering from these crystals.

4.5 Simulation of Di�use Maps

In order to identify what kinds of disorder in the crystal were consistent with the

observed di�use maps, simulated di�use maps were generated for comparison to the

data. The �rst key ingredient in simulating di�use maps is an acceptable atomic

structural model of the protein, from which electron densities can be calculated. In

the case of Staph. nuclease, a structural model was available from the Brookhaven

Protein Data Bank (PDB).4

Using the PDB structure as a starting point, a re�nement of the structure was

performed using XPLOR by Axel Br�unger[44]. XPLOR takes a PDB structure as an

input, and can be directed to generate an electron-density map, calculate its Fourier

transform, generate a list of predicted Bragg reections, compare the predictions with

measured Bragg reections, and make adjustments to the structural model iteratively

to minimize the di�erence between measured and predicted reections. The measured

reections were those obtained from oscillation exposures during data collection (see

section 2.1).

Once a good structural model has been obtained, three-dimensional simulations

of maps of di�use scattering can be generated. Using the XPLOR-re�ned structural

model, maps of the Fourier-transformed electron density of arbitrary regions of the

protein are generated and output, depending upon the requirements of the model.

Once these maps are converted to the same format as the di�use maps obtained

experimentally, they can be transformed and manipulated in an identical fashion to

4The ID for the structure was 1STN, deposited February 17, 1993 by T. R. Hynes and R.O. Fox.
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that used for di�use maps. Mathematical operations indicated by a chosen model

of di�use scattering can be performed to turn the maps of Fourier transforms into

simulated maps of di�use intensity.

For example, consider the model where individual proteins execute independent,

isotropic rigid-body translational motions in a monomolecular unit cell. As derived

in section 3.5, the di�use scattering is described by equation 3.59:

ID(q) = N(1� e�q
2�2u)jf(q)j2; (4.3)

where N is the number of unit cells in the crystal, �u is the Gaussian width of

the distribution of molecular displacements, and f(q) is the Fourier transform of the

electron density of the molecule. Once the structural model for the molecule has been

re�ned, the square of the Fourier transform jf(q)j2 can be calculated using XPLOR,

and the results placed on a lattice. Having jf(q)j2, ID(q)=N can be calculated by

choosing a value for �u and multiplying each voxel value in the map of jf(q)j2 by

(1� e�q
2�2u).

For Staph. nuclease, the procedure involves an additional step to account for the

four-molecule unit cell with space group P41. The screw c�axis becomes a four-fold
c��axis in the reciprocal space map. Therefore, a single molecule in the unit cell is �rst
chosen as a reference to generate a simulated map of di�use scattering from a crystal

where each protein molecule in the unit cell executes independent translations. Once

a di�use map has been calculated for the single molecule, it is symmetry-averaged

to generate the proper di�use map for the crystal. The Friedel symmetry of the

simulated di�use map is guaranteed already, but the symmetry-equivalent points due

to the four-fold symmetry about the c��axis must be averaged by hand. This is done
by replacing each voxel value at each point (x; y; z) with the average voxel values of the
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points f(x; y; z); (�y; x; z); (�x;�y; z); (y;�x; z)g. The Friedel symmetry guarantees
that points f(�x;�y;�z); (y;�x;�z); (x; y;�z); (�y; x;�z)g will be equivalent at

the end of the four-fold averaging, but in practice these are also redundantly included

in the symmetry-averaging procedure.

One does not yet expect these simulated maps to bear a great resemblance to

the experimentally obtained di�use scattering maps. This is because of the huge

spherically-symmetric component in each of the maps. While in experimental maps,

there are spherically-symmetric contributions coming from disordered solvent, air

scattering and capillary scattering, in simulated maps the only contribution comes

from the ordered protein in contrast to a at solvent background.

In order to compare the two maps, therefore, they are transformed such that they

both represent scattering from ordered structures in the crystal. One accomplishes

this by subtracting the spherically-averaged component of the scattering from both

lattices. This removes the spherically-averaged component of the protein scattering

from both lattices, but it also removes any intensity due to disordered solvent, air

and capillary scattering which may be present in the experimentally obtained map,

leaving comparable maps.

One possible problem in this approach would come from signi�cantly di�erent

absorption of x-rays scattered into di�erent angles, which would introduce asymme-

tries in the spherically-symmetric component of the scattering. The speci�c pattern

of absorption would depend upon the shape and orientation of the crystal, but gen-

erally the di�erential absorption would cause asymmetries on long length scales in

reciprocal space. We can estimate the e�ect on Staph. nuclease by considering the

crystal to be a 400 �m thick cylinder oriented perpendicular to the beam, which will

approximate the case for the largest crystal studied in this thesis, giving the maxi-

mum e�ect. The largest asymmetry will occur for x-rays scattered on the upstream
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Figure 4.4: E�ect of di�erential absorption on di�use maps. This plot shows the worst
possible ratio of absorption corrections for two pixels in an image versus scattering
vector length, as calculated for the 400 �m cylindrical crystal with an underestimated
x-ray absorption length of 2:5 mm described in the text. Absorption corrections are
ignored on the basis of this plot.
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surface of the cylinder: the ratio R of absorption by x-rays scattered into an angle  

in the equatorial plane versus forward-scattered x-rays is given by

R = e�
t
� (

1
cos 

�1); (4.4)

where t is the thickness of the crystal and � is the absorption length of the x-rays in

the crystal. In terms of the scattering vector length s, this becomes

R = e
� t
�

�
1

cos(2 sin�1(0:5s�))
�1

�
; (4.5)

which is plotted in �gure 4.4 for an underestimated absorption length of 2:5 mm.

This absorption length is lower than what it would be if the crystal were composed

solely of oxygen, which at a wavelength of 0:92 �A has the highest cross-section of

oxygen, nitrogen and carbon.

At 0:26 �A
�1
, there is less than a 0.6% asymmetric perturbation caused by di�er-

ential absorption. Even at 1 �A resolution, the e�ect is below the 2% level. Overes-

timating the spherically-symmetric component of the scattering at 2000 ADU, there

would be only a 10 ADU asymmetry in the data caused by di�erential absorption

at 0:26 �A
�1
, which is much less than the greater-than 100 ADU RMS intensity of

the di�use scattering. By comparison, the single-pixel photon noise at 2000 ADU

is roughly
p
2000 = 45 ADU. Based on these calculations, absorption e�ects were

ignored.

An additional bene�t of subtracting the spherically-averaged component from cal-

culated and measured maps is that it allows them to be Fourier transformed without

edge e�ects, since the subtracted maps fall to zero at the edges. This is particularly

useful in smoothing the maps by convolution with a three-dimensional Gaussian,
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which is used to compare maps at di�erent levels of detail. The relationship

A(q) �B(q) = FT�1 (FT (A(q))�FT (B(q))) (4.6)

is used to speed up the convolution, which would be prohibitively slow otherwise.

This became extremely important in modelling the di�use scattering, since no agree-

ment was observed between a simulated and experimental map at \high detail," with

no smoothing. In order to observe any agreement between a simulation and an exper-

imental map, it was necessary to smooth both the simulated and experimental maps

at \medium detail," using a Gaussian whose half-width was equal to one reciprocal

unit-cell diagonal. Even better agreement was seen by smoothing at \low detail,"

with a Gaussian of half-width equal to two reciprocal unit-cell diagonals.

Once a simulated map has been generated, then, the procedure for comparing it

to the data is outlined as follows:

� Calculate the spherically-averaged component of both the simulated and ex-

perimental maps by averaging, and subtract that component from the original

maps.

� Choose a level of detail at which to compare the maps. Smooth both maps by

convolution with the same Gaussian map, choosing the width of the Gaussian

as a measure of the detail level.

� In an identical manner to the way that reproducibility measurements were de-

scribed in section 4.4, �nd the best scale factor relating the two maps. Subtract

the scaled maps and plot the RMS di�erence intensity vs. resolution, comparing

it to the RMS amplitudes of both the simulated and experimental di�use maps.

An observation that the di�erence map is smaller in amplitude than the scaled
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simulated and experimental maps is interpreted as evidence that there is some similar-

ity between the two. By observing the e�ect of changing the scale factor on the RMS

amplitude of the di�erence map, it can be determined whether or not the best-�t scale

factor brings the di�erence to a local minimum, providing further evidence for simi-

larity between the maps. By comparing the relative amplitudes of the di�erence maps

generated by using simulated maps based upon various di�erent models, a choice can

be made as to which model best agrees with what is observed experimentally.

In practice, one can predict whether or not two maps will agree with one another

by two other means. One is to simply visualize the maps using the means described

in the beginning of this chapter. If one does not observe broadly similar features in

the simulated and experimental maps, it is a good sign that the �t will be poor.

Another check to see that things are OK is whether or not the scale factors agree

su�ciently well when one constrains the �t over di�erent spherical shells in recip-

rocal space. The written routines allow one to specify an inner and outer radius in

reciprocal space to con�ne the region over which a best scale factor is to be found.

If one observes signi�cantly di�erent scale factors between resolution shells, or if one

observes negative numbers in the scale factor, these may be signs that the lattices are

not su�ciently similar to be able to quantify their agreement.

In this thesis, comparison of simulated di�use maps with experimental data are

used to place constraints on the possible nature of disorder in Staph. nuclease crystals.

The method used was one of simply comparing the various jF (q)j2 maps output by
XPLOR with experimentally obtained di�use maps. For models where individual

subdomains of the unit cell move independently, di�use maps resemble a superposition

of jF (q)j2 calculated for each independently moving unit. For the liquid-like motion

model of Clarage et. al.[22], and for the acoustic modes model discussed by Glover et.

al.[21], the di�use maps most resemble jF (q)j2 calculated from the electron density
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of the entire unit cell. 5

There are a huge number of individual subdomains of Staph. nuclease which

can be considered for such a comparison. If one allows multiple domains to move,

the combinations quickly become too many to compare reasonably by brute-force

trial-and-error. One needs independent information to motivate testing whether a

particular model successfully reproduces the experimentally observed di�use map.

The structural components of crystalline Staph. nuclease chosen for this study

were

� The entire unit cell with four proteins. This was chosen to test agreement with

liquid-like motion and acoustical modes models.

� The entire protein. This was chosen to test agreement with rigid-body motion

models.

� The residue 53-70 alpha-helical domain. This was chosen by observing a back-

bone rendering of the structural model.

� The residue 92-113 beta-barrel domain. This was chosen by observing a back-

bone rendering of the structural model.

� The residue 6-15 high-B-factor tail region. This was chosen by reported high B-

factors in the literature, and by observing a backbone rendering of the structural

model.

� The residue 42-53 high-B-factor exible loop region. This was chosen by re-

ported high B-factors in the literature, and by observing a backbone rendering

of the structural model.

5See chapter 3 for a discussion of models of di�use scattering.
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A comparison of simulated maps of jF (q)j2 with the data yielded a quanti�able

agreement using only one of the maps: that generated from the entire unit cell.

None of the maps agreed with the data at the highest level of detail. The unit-cell

simulated map alone, however, showed a measurable agreement when smoothed both

to the lowest level of detail and to an intermediate level of detail. These results are

presented in greater detail in chapter 5, and were interpreted as indicating that our

measured maps best agree with the predictions of the liquid-like motions model of

Clarage et. al.[22], and the crystalline normal modes model described in Glover et.

al.[21].



Chapter 5

Results

Experimental maps of di�use scattering from Staph. nuclease crystals were obtained

and analyzed as described in chapters 2 and 4. The degree to which these maps

showed the internal symmetry predicted by the P41 space group of the unit cell

was determined: at 0.26 �A�1, the most symmetric map di�ered from its symmetry-

averaged counterpart by roughly 25%, while the least symmetric di�ered by roughly

40%. The asymmetries are attributed to systematic measurement errors which are

primarily due to a rotation of the detector plane with respect to the incident beam.

The reproducibility of measurements of di�use scattering was determined by mea-

suring the di�erence between two symmetry-averaged di�use maps obtained from

nominally identical crystals. The di�erence between the maps was as low as 20% at

0.26 �A�1, which sets a limit on the sensitivity to changes in di�use scattering from

Staph. nuclease which can be observed using the methods outlined in this thesis. This

di�erence is smaller than the measured deviation from the P41 symmetry for maps

obtained from single crystals, which was at best 25% at 0.26 �A�1.

In order to better understand the source of errors, di�erences were also measured

between di�use maps which were smoothed to remove high-frequency components of

the features. Below 0.3 �A�1, di�use maps grew more reproducible at lower detail

levels. Above 0.3 �A�1, however, maps became less reproducible at lower levels of

92
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detail, perhaps due to systematic errors in measuring di�use intensity, which tend to

be exaggerated at high resolution.

Changes in di�use scattering were observed by measuring di�erences in di�use

maps obtained from crystals of Staph. nuclease both with and without Ca++ and

the substrate analog pdTp (thymidine-30,50-diphosphate) bound. In order to better

understand the source of the changes, di�erences were also measured between di�use

maps which had been smoothed as in the reproducibility studies. Signi�cant changes

were observed at all detail levels, with greater di�erences observed at low detail than

at high detail. The primary di�erence observed is an enhancement of di�use scattering

along the c�-axis upon the binding of Ca++ and pdTp. These changes are interpreted

as reecting a change in the dynamics of crystalline Staph. nuclease upon the binding

of Ca++ and pdTp.

Simulated maps of jf(q)j2 were generated from the structural domains listed at

the end of section 4.5. Only the map generated from the entire four-protein unit

cell showed a signi�cant correlation with an experimentally obtained map of di�use

scattering from Staph. nuclease. Of the models considered in chapter 3, the liquid-

like motions model of Caspar et. al.[19] and the crystalline modes model of Glover et.

al.[21] are therefore the candidates for describing the nature of disorder giving rise

to di�use scattering from Staph. nuclease. Models based on substitution disorder,

and rigid-body motions of the entire unit cell, however, are not ruled out as being

consistent with the experimental maps.
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Table 5.1: Description of all crystals studied.

Crystal # Ca++/pdTp? Size (mm3) Unit Cell (�A
3
) Total Rotation Range

|| || || || ||
1 YES 2.0�0.4�0.4 48.5�48.5�63.4 94�

2 YES 2.2�0.4�0.4 48.3�48.3�63.4 96�

3 NO 0.4�0.2�0.2 48.2�48.2�63.9 90�

5.1 Staphylococcal Nuclease Di�use Maps

Di�use maps were obtained from three crystals of Staph. nuclease. The �rst, crystal 1,

contained Ca++ and pdTp. Crystal 2, used to determine the reproducibility of di�use

scattering measurements, also contained Ca++ and pdTp. Crystal 3 contained nei-

ther Ca++ nor pdTp, and was used to measure di�erences in di�use scattering upon

changing the crystalline protein. Table 5.1 describes some features of interest in the

data sets.

In order to generate maps of di�use scattering from the three Staph. nuclease

crystals, di�raction images within each data set were �rst scaled as described in

section 2.2.5. For crystal 1 (see �gure 5.1) and crystal 2 (see �gure 5.2), which

were exposed using the F1 station at CHESS, images needed to be scaled by more

than a factor of two in some cases, while for crystal 3 (see �gure 5.3), exposed at

the A1 station at CHESS, the scale factor is remarkably consistent throughout the

experiment. Rumors of a less stable beam at the F1 station are consistent with this

observation.

Radiation damage prevented the collection of a full 180� data set for each of the

crystals. As is shown in table 5.1, the measured range of reciprocal space for each

crystal was about 90�, which is the minimum required to generate a complete data

set using the symmetry predicted by the P41 space group of the unit cell. Due to the

limited rotation range in each experiment, di�erent regions of reciprocal space were
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Figure 5.1: Crystal 1 image scale factors. The scale factor indicates by how much
to multiply each pixel in the corresponding image in order to best agree with im-
age number one. The sudden dip between images thirty-six and thirty-seven occurs
between \�lls" at CHESS, when the x-ray ux at F1-station is interrupted to re�ll
the ring with positrons and electrons for high-energy physics experiments at CLEO.
Error bars indicate the degree to which the scale factor is to be trusted, so that much
of the �ne structure in the plot is real, and is most likely due to uctuations in the
beam intensity.
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Figure 5.2: Crystal 2 image scale factors. See �gure 5.1 for a description of the
meaning of the scale factor. The sudden dip in the scale factor between images
�fty-eight and �fty-nine is the signature of a new �ll.
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Figure 5.3: Crystal 3 image scale factors. See �gure 5.1 for a description of the
meaning of the scale factor. The superior stability of the beam at A1-station is
indicated by the remarkably consistent scale factor for this data set.
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Figure 5.4: Reciprocal-space volume sampled by experiments on crystal 1. The ren-
dered surface bounds the sampled volume of reciprocal space for crystal 1. The
four-fold c��axis points out of the page, while a� points to the right in the page, and
b� points up in the page. Symmetery averaging about the four-fold will complete the

data set. The outer radius corresponds to a cuto� of 0:6 �A
�1

which is enforced when
the map is created.
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Figure 5.5: Reciprocal-space volume sampled by experiments on crystal 2. The ren-
dered surface bounds the sampled volume of reciprocal space for crystal 2 (see �g-
ure 5.4 for an explanation). This data set is rotated by about 45 degrees about the
four-fold with respect to the data set from crystal 1.
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Figure 5.6: Reciprocal-space volume sampled by experiments on crystal 3. The ren-
dered surface bounds the sampled volume of reciprocal space for crystal 3 (see �g-
ure 5.4 for an explanation).
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Figure 5.7: Veri�cation of scaling between di�use maps from crystal 1 and crystal 2.
In order for a scale factor between two lattices to be meaningful, the di�erence pro�le
must be minimized with respect to changes in the scale factor. After multiplying
the crystal 2 map by a trial scale factor, di�erence pro�les are generated between the
crystal 1 map and several crystal 2 maps which are scaled by slightly more or less than
the trial scale factor. The scale 1.0 plot corresponds to the di�erence pro�le calculated
using the trial scale factor, while the scale 1.1 plot, for example, is calculated using a
scale factor 1.1 times as large. If the scale 1.0 plot shows the smallest di�erence over
a given range in scattering vector, the �t is veri�ed over that range. In this �gure,

the scale factor is veri�ed below 0.3 �A
�1
.

probed by each of the experiments. Figures 5.4, 5.5 and 5.6 show the regions where

all of the experimentally measured di�use intensity lies in di�use maps obtained from

each of the crystals. Symmetry averaging completes all of the data sets, since there

is a four-fold axis pointing out of the page.

As described in section 4.4, the di�use map obtained from crystal 1 was used as

a reference for scaling the maps from crystal 2 and crystal 3. Perturbations on the

scale factor were made to ensure that the di�erence was locally minimized. Di�erence
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Figure 5.8: Spherically-averaged scattering from Staph. nuclease crystals. The aver-
age intensity pro�le for each crystal has a similar shape, but its scale is determined
by things such as the beam intensity and crystal size. See the text for a de�nition of
the average intensity pro�le.

maps were calculated using scale factors in the neighborhood of the best-�t value, and

RMS intensity pro�les were calculated from the di�erence maps. The pro�les were

simultaneously plotted for inspection to ensure that the lowest pro�le corresponded

to the best-�t scale factor. If the best-�t scale factor did not produce the lowest

pro�le, the scale factor was adjusted in order to make it produce the lowest pro�le. If

no scale factor was found which could produce a local minimum, the scale factor was

interpreted as meaningless, and the maps were considered too di�erent to have their

di�erence quanti�ed in this way. Figure 5.7 shows the results of a successful scaling

between the di�use maps obtained from crystal 1 and crystal 2.
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Figure 5.9: Spherically-averaged scattering evaluated from scaled di�use maps. The
same pro�les as those in �gure 5.8, but evaluated after the lattices have been scaled
to minimize the voxel-by-voxel di�erences.
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Figure 5.10: RMS intensity pro�les from di�use maps. These plots are generated
by �rst evaluating the spherically-averaged intensity pro�le of each scaled map, as
displayed in �gure 5.9. Each voxel value in the map then has subtracted from it the
spherical average, determined by interpolation of the average intensity pro�le at the
voxel's scattering vector. The RMS intensity of the resulting map is then calculated
in spherical shells, and displayed in a way analogous to �gure 5.9. All of the pro�les

peak at 0.26 �A
�1
, and are of similar amplitude after scaling.

The average intensity pro�les1 from the scaled maps revealed the similarity of the

crystal 1 and crystal 2 maps, and a di�erence between these maps and the crystal 3

map. Figure 5.8 shows the pro�les from all of the experimental di�use maps before

scaling. After scaling, the pro�les are as shown in �gure 5.9. The pro�les from the

scaled crystal 1 and crystal 2 maps overlap almost perfectly, while the crystal 3 pro�le

lies consistently lower than the other two, with the greatest di�erence above about

0.23 �A
�1
.

1See section 4.3.
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RMS intensity pro�les2 were obtained from scaled maps with the spherically-

averaged intensity subtracted, and showed good agreement for all crystals as well,

with the greatest di�erences noted at high resolution. While it is not surprising that

the pro�les from crystal 1 and crystal 2 agree so well, it is somewhat surprising that

they both agree with the pro�le from crystal 3, given the marked di�erences observed

in the average intensity pro�les. As is shown below, a comparison of the full three-

dimensional maps also shows signi�cant di�erences between crystal 3, which is grown

without a substrate analog bound, and the other crystals, which contain the substrate

analog pdTp.

The �rst indication of the quality of the three-dimensional data came from view-

ing the di�use maps using EXPLORER. Clear features were observed which were

reproduced when maps from nominally identical crystals were viewed. Figure 5.11

and �gure 5.12 show views of the maps studied in this way, and provide a comparative

view to con�rm the reproducibility of di�use features. Both views were displayed by

selecting a voxel value of 2850 at which to draw an interpolated isosurface of di�use

intensity.

Figure 5.13 shows a view of the di�use map from the third crystal, which di�ers in

that there is no Ca++ and pdTp bound to the protein. Similar features are noticeable

in this map, but the similarity is not as striking as that between the crystals grown

with Ca++ and pdTp. Unfortunately, there is no data in the region de�ned by the

overlap between the crystal 1 and crystal 2 data sets, making comparison before

symmetry-averaging di�cult.

These views also suggest that the di�use scattering obeys the symmetry predicted

by the P41 space group of the unit cell. In all maps, there is a visible mirror symmetry

2See section 4.3.
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Figure 5.11: a) An interpolated isosurface in the 3D di�use map of Staph. nuclease
crystal 1. Features are easily distinguished above noise. The visible mirror symmetry
across the a�b�-plane is consistent with the P41 space group of the unit cell. Reciprocal
axes a�; b� and c� are drawn to orient the map. Two opposing wedges of the map
are un�lled, since the data only spans 96 degrees of spindle rotation. b) The same
view restricted to the overlapping volume of reciprocal space sampled for both crystals.
Compare with �gure 5.12 to observe the reproducibility of the measurement.
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Figure 5.12: a) An interpolated isosurface in the 3D di�use map of Staph. nuclease
crystal 2. The data spans a 94 degree region in reciprocal space rotated roughly
45 degrees about the c�-axis with respect to that of the �rst crystal. The combination
of views suggests that c� is a four-fold rotational symmetry axis, which is consistent
with the P41 space group of the unit cell. Reciprocal axes a�; b� and c� are drawn to
orient the map. b) The same view restricted to the overlapping volume of reciprocal
space sampled for both crystals. Comparison with �gure 5.11 shows the reproducibility
of the measurement.
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Figure 5.13: An interpolated isosurface in the 3D di�use map of Staph. nuclease
crystal 3. The scaled di�use map from crystal 3 is here displayed in the same orienta-
tion as that from crystals 2 and 1, using the same method as in �gure 5.11. There are
recognizable features here which are similar to the features in maps of di�use scat-
tering from the other crystals, but the similarity is not as striking as that between
crystals 1 and 2.
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in features across the a�b��plane. In addition, the combination of views from crystal 1

and crystal 2 suggest a four-fold c��axis. Both of these symmetries are predicted by

the P41 space group.

In order to both characterize the degree of internal symmetry and reproducibility

of di�use maps, symmetry-averaged maps were generated from the original data, as

described in section 4.3. These symmetry-averaged maps were also used in modelling

di�use scattering by simulations, since all of the models considered generate maps

which bear the symmetry predicted by P41. Once again, by viewing the maps using

EXPLORER, similarities were observed among all three crystals. Figures 5.14,5.15,

and 5.16 show views which illustrate this observation. Figure 5.17 displays stereo

pairs of perspective views of each of the maps, in order to better show the three-

dimensionality of the features. Even among symmetrized maps, the scattering from

crystal 3 appears to be signi�cantly di�erent from that from the other two crystals.

Section 5.2 describes this di�erence quantitatively.

As described in section 4.3, the degree of internal symmetry in di�use maps was

characterized by measuring the di�erence between a map and its symmetry-averaged

counterpart. Pro�les of the RMS di�erence intensity for this measurement are dis-

played �gure 5.18, along with the RMS intensity pro�le for crystal 1, as shown in

�gure 5.10. By comparing the di�erence pro�les to the RMS intensity pro�le, one

can measure the degree of internal symmetry in the di�use maps. For example, at

0.26�A
�1
, the di�erence pro�le for crystal 2 reads roughly 25 ADU, while the crystal 1

RMS pro�le reads roughly 110 ADU, so that the di�erence is 25% of the \signal". In

other words, the crystal 2 di�use map di�ers from its symmetry-averaged counterpart

by only 25% at 0.26 �A
�1
, which gives a measure of the internal symmetry of the map.

A good way of visually comparing maps is by using the shell images described in

section 4.2. Images of the same shell from two di�erent crystals can be placed side-
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Figure 5.14: A view of the symmetry-averaged di�use map from crystal 1. The
symmetry-averaged di�use map is displayed in a manner identical to that described
in �gure 5.11, including the voxel-value threshold of 2850. Symmetry averaging is
performed as described in section 4.3.
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Figure 5.15: A view of the symmetry-averaged di�use map from crystal 2. The
symmetry-averaged di�use map is displayed in a manner identical to that described
in �gure 5.11, including the voxel-value threshold of 2850. Note the great similarity
between the features observable in this view and those observable in �gure 5.14, which
indicates good reproducibility of di�use maps.
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Figure 5.16: A view of the symmetry-averaged di�use map from crystal 3. The
symmetry-averaged di�use map is displayed in a manner identical to that described in
�gure 5.11, except a voxel-value threshold of 2550 is used instead of 2850. Similarities
are visible between this view and those in �gures 5.14 and 5.15, but there are clear
observable di�erences.
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Figure 5.17: Stereo views of the symmetry-averaged di�use maps. The same maps of
�gure 5.14, �gure 5.15 and �gure 5.16, displayed in stereo pairs, to better show the
three-dimensionality of the features in the maps.
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Figure 5.18: Internal symmetry of Staph. nuclease di�use maps. RMS di�erence
pro�les between symmetrized and unsymmetrized di�use maps constitute measures
of the internal symmetry in Staph. nuclease di�use maps. The pro�les are shown
for all three crystals, side-by-side with the RMS non-spherically-symmetric di�use
intensity pro�le of crystal 1 for comparison.
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Figure 5.19: Low-resolution shell images obtained from the symmetrized di�use maps
of crystal 1 and crystal 2. Di�use maps from crystal 1 and crystal 2 are compared

side-by-side in shells between 0:1 �A
�1

and 0:2 �A
�1
. In order to observe the variations

in di�use scattering within the shells, the maps have had the spherically-averaged
intensity subtracted. The polar angle � varies from 0 at the top to � at the bottom
of each image, while, in order to eliminate the four-fold redundancy in the view, the
azimuthal angle � only varies from �� at the left to �1

2
� at the right of each image.

The images are displayed on a linear grey scale, with -100 corresponding to black,
and 100 corresponding to white.
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Figure 5.20: Medium-resolution shell images obtained from the symmetrized di�use
maps of crystal 1 and crystal 2. Di�use maps from crystal 1 and crystal 2 are com-

pared side-by-side in shells between 0:23 �A
�1

and 0:33 �A
�1
. In order to observe the

variations in di�use scattering within the shells, the maps have had the spherically-
averaged intensity subtracted. The polar angle � varies from 0 at the top to � at the
bottom of each image, while, in order to eliminate the four-fold redundancy in the
view, the azimuthal angle � only varies from �� at the left to �1

2
� at the right of

each image. The images are displayed on a linear grey scale, with -100 corresponding
to black, and 100 corresponding to white.
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Figure 5.21: High-resolution shell images obtained from the symmetrized di�use maps
of crystal 1 and crystal 2. Di�use maps from crystal 1 and crystal 2 are compared side-

by-side in shells between 0:36 �A
�1

and 0:46 �A
�1
. In order to observe the variations

in di�use scattering within the shells, the maps have had the spherically-averaged
intensity subtracted. The polar angle � varies from 0 at the top to � at the bottom
of each image, while, in order to eliminate the four-fold redundancy in the view, the
azimuthal angle � only varies from �� at the left to �1

2
� at the right of each image.

The images are displayed on a linear grey scale, with -100 corresponding to black,
and 100 corresponding to white.
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Figure 5.22: Reproducibility of Staph. nuclease di�use maps at high detail. The
di�erence pro�le between crystals 1 and 2 is much smaller than the pro�le of RMS
non-spherically-symmetric di�use intensity from either of the two crystals, indicating
good reproducibility. One can estimate that the reproducibility is as good as 20% at

0:26 �A
�1

by comparing the RMS pro�les to the di�erence pro�le.

by-side to see where they di�er, and a three-dimensional comparison can be made by

comparing images from many shells which span the resolution range of interest. For

example, �gures 5.19, 5.20 and 5.21 show a three-dimensional visual comparison of

the di�use maps from crystal 1 and crystal 2 over the range 0.1 - 0.5 �A
�1
. These

�gures give a more complete visualization of the reproducibility of di�use features

than the views rendered using EXPLORER.

In order to quantify the observations seen by visualization techniques, the re-

producibility of di�use maps was characterized in a manner similar to that used to

characterize the internal symmetry, as described in section 4.4. Initially, maps were

symmetry averaged, and the spherically-averaged component was subtracted. By the
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method described above, the resulting di�use maps were scaled to minimize the dif-

ference pro�le. The resulting pro�le was compared to the RMS intensity pro�le in

order to measure the reproducibility.

In order to scale the maps from crystal 1 and crystal 2, the crystal 2 map had

to be multiplied by a factor of 1.2. The con�rmation of the �t for the scale factor is

illustrated in �gure 5.7. Figure 5.22 shows the resulting di�erence pro�le compared

to the RMS pro�les for crystal 1 and crystal 2, from which the reproducibility can

be quanti�ed. At 0.26 �A
�1
, the di�erence pro�le reads roughly 20 ADU, while the

RMS intensity pro�le reads roughly 100 ADU, yielding a di�erence of only 20%. This

is a better number than that obtained from the internal symmetry characterization,

indicating that there is some systematic asymmetry in the measured di�use maps.

As is described in section 4.4, this is attributed to a measurement error, correctable

by symmetry-averaging, rather than to an inherent asymmetry in maps of di�use

scattering from Staph. nuclease.

Reproducibility measurements were also performed on maps which were smoothed

by convolution with a three-dimensional Gaussian map. To avoid edge e�ects due to

Fourier transforms in the smoothing algorithm, maps were �rst symmetry-averaged,

and then had their spherically-averaged intensity subtracted. Medium-detail di�use

maps were generated by convoluting the resulting maps with a Gaussian of half-width

equal to one reciprocal unit-cell diagonal, and low-detail maps were generated by

convolution with a Gaussian of half-width equal to two reciprocal unit-cell diagonals.

Due to the discrete representation of the Gaussian on a three-dimensional lattice,

the normalization was incorrect, which caused the scale of the maps to change after

smoothing. Since maps were only compared at the same detail level, however, this

e�ect was ignored for the studies performed here.

In order to scale the medium-detail maps from crystal 1 and crystal 2, the crystal 2
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Figure 5.23: Veri�cation of scaling between medium-detail di�use maps from crystal 1
and crystal 2. As in �gure 5.7, this veri�es the �t for the scale factor between the
medium-detail maps from the second and �rst crystals. The best �t is in the range

0.23-0.26 �A
�1
.
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Figure 5.24: Reproducibility of Staph. nuclease di�use maps at medium detail. In

the neighborhood of 0:26 �A
�1
, the di�erence between the maps is even smaller com-

pared with the RMS pro�les than at high detail. At higher resolution, however the
di�erences become greater than at high detail.
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Figure 5.25: Veri�cation of scaling between low-detail di�use maps from crystal 1 and
crystal 2. As in �gure 5.7, this veri�es the �t for the scale factor between the low-detail

maps from the second and �rst crystals. The best �t is in the range 0.20-0.26 �A
�1
.

map had to be multiplied by a factor of 1.2. The con�rmation of the �t for the

scale factor is illustrated in �gure 5.23. Figure 5.24 shows the resulting di�erence

pro�le compared to the RMS pro�les for crystal 1 and crystal 2, from which the

reproducibility can be quanti�ed. At 0.26 �A
�1
, the di�erence pro�le reads roughly

25 ADU, while the RMS intensity pro�le reads roughly 180 ADU, yielding a di�erence

of only 15%, which is better than the di�erence at high detail. At high resolution,

however, the di�erences are larger at medium detail than at high detail.

In order to scale the low-detail maps from crystal 1 and crystal 2, the crystal 2

map also had to be multiplied by a factor of 1.2. The con�rmation of the �t for the

scale factor is illustrated in �gure 5.25. Figure 5.26 shows the resulting di�erence

pro�le compared to the RMS pro�les for crystal 1 and crystal 2, from which the
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Figure 5.26: Reproducibility of Staph. nuclease di�use maps at low detail. Di�er-

ences between the maps become almost as small as 10% below 0:3 �A
�1
, but at high

resolution the di�erence pro�le sharply rises.
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reproducibility can be quanti�ed. At 0.23 �A
�1
, the di�erence pro�le reads roughly

10 ADU, while the RMS intensity pro�le reads roughly 90 ADU, yielding a di�erence

of near 10%, which is the best agreement found among all maps. At high resolution,

however, the di�erences are even larger at low detail than at medium detail.

In short, the di�erences between di�use maps obtained from nominally identical

crystals were measured as su�ciently small to suggest that signi�cant changes in dif-

fuse maps may be observable in controlled di�erence experiments. The quality of the

maps suggested that modelling the three-dimensional di�use scattering by generating

simulated maps may provide meaningful insight into the nature of disorder in Staph.

nuclease crystals. In addition, by smoothing the maps to medium- and low-detail

levels, which proved useful in modelling the di�use scattering, higher reproducibility

was observed at low resolution, and lower reproducibility was observed at high reso-

lution. Fortunately, in the resolution range 0.2-0.3�A
�1
, where most of the interesting

features were observed, the reproducibility was not harmed due to smoothing.

5.2 Di�erence Measurement.

Signi�cant di�erences were observed between crystalline Staph. nuclease with and

without Ca++ and pdTp bound. By comparing di�use maps obtained from crys-

tal 1 and crystal 3, the di�erences were quanti�ed using the techniques developed

to measure the reproducibility of di�use maps (See section 4.4). These di�erences

were signi�cantly larger than those observed in the reproducibility measurement per-

formed using crystal 1 and crystal 2, giving evidence for changes in the dynamics of

the protein upon binding of Ca++ and pdTp.

Di�use maps from crystal 1, crystal 2 and crystal 3 were initially compared us-

ing shell images, generated as described in section 4.2. Images from shells up to



5.2. Di�erence Measurement. 125

Crystal 3

0.17

0.20

(1 / Angstrom)
Resolution Shell

0.10

0.13

 

 

Crystal 1 Crystal 2

Figure 5.27: Low-resolution shell images obtained from the symmetrized di�use maps
of crystal 1, crystal 2 and crystal 3. Di�use maps from crystal 1, crystal 2 and

crystal 3 are compared side-by-side in shells between 0:1 �A
�1

and 0:2 �A
�1
. In order

to observe the variations in di�use scattering within the shells, the maps have had
the spherically-averaged intensity subtracted. The polar angle � varies from 0 at
the top to � at the bottom of each image, while, in order to eliminate the four-fold
redundancy in the view, the azimuthal angle � only varies from �� at the left to �1

2
�

at the right of each image. The images are displayed on a linear grey scale, with -100
corresponding to black, and 100 corresponding to white.
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Figure 5.28: Medium-resolution shell images obtained from the symmetrized di�use
maps of crystal 1, crystal 2 and crystal 3. Di�use maps from crystal 1, crystal 2

and crystal 3 are compared side-by-side in shells between 0:23 �A
�1

and 0:33 �A
�1
. In

order to observe the variations in di�use scattering within the shells, the maps have
had the spherically-averaged intensity subtracted. The polar angle � varies from 0 at
the top to � at the bottom of each image, while, in order to eliminate the four-fold
redundancy in the view, the azimuthal angle � only varies from �� at the left to �1

2
�

at the right of each image. The images are displayed on a linear grey scale, with -100
corresponding to black, and 100 corresponding to white.
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Figure 5.29: High-resolution shell images obtained from the symmetrized di�use maps
of crystal 1, crystal 2 and crystal 3. Di�use maps from crystal 1, crystal 2 and

crystal 3 are compared side-by-side in shells between 0:36 �A
�1

and 0:46 �A
�1
. In

order to observe the variations in di�use scattering within the shells, the maps have
had the spherically-averaged intensity subtracted. The polar angle � varies from 0 at
the top to � at the bottom of each image, while, in order to eliminate the four-fold
redundancy in the view, the azimuthal angle � only varies from �� at the left to �1

2
�

at the right of each image. The images are displayed on a linear grey scale, with -100
corresponding to black, and 100 corresponding to white.



5.2. Di�erence Measurement. 128

0

20

40

60

80

100

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
M

S
 In

te
ns

ity
 (

A
D

U
)

Scattering Vector (1/Angstrom)

Scale 0.8
Scale 0.9
Scale 1.0
Scale 1.1
Scale 1.2

Figure 5.30: Veri�cation of scaling between di�use maps from crystal 1 and crystal 3.
As in �gure 5.7, this veri�es the �t for the scale factor between the di�use maps

obtained from the third and �rst crystals. The �t is best below 0.33 �A
�1
.

0.33 �A
�1
, shown in �gure 5.27 and �gure 5.28, are visually very similar, with greater

di�erences observable at higher resolution. Above 0.33 �A
�1
, signi�cant di�erences

are observable between crystal 3 and the other crystals: most notably, there appears

to be an enhancement of intensity at the top and bottom of the images, indicating

enhanced di�use scattering along the c� direction. Di�erences are also visible in the

more detailed patterns in the images.

To quantify the degree of di�erences, a procedure was followed which is analo-

gous to that described for the reproducibility measurement in section 5.1. First, the

maps from crystal 1 and crystal 3 were symmetry-averaged and had their spherically-

averaged component subtracted. They were then scaled together by multiplying the

crystal 3 map by 0.6, using �gure 5.30 to verify the �t for the scale factor.
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Figure 5.31: Di�erence between maps of Staph. nuclease with and without Ca++ and

pdTp. Above 0.2 �A
�1
, the di�erence pro�le between crystal 1 and crystal 3 di�use

maps is larger than the reproducibility pro�le. RMS intensity pro�les from crystal 1
and crystal 3 are shown for scale. This plot indicates that the di�use maps from
crystal 1 and crystal 3 are signi�cantly di�erent.
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Figure 5.32: Veri�cation of scaling between medium-detail di�use maps from crystal 1
and crystal 3. As in �gure 5.7, this veri�es the �t for the scale factor between the
medium-detail di�use maps obtained from the third and �rst crystals. The �t is best

below 0.30 �A
�1
.

The di�erence pro�le between the scaled maps is shown in �gure 5.31, compared

with the reproducibility pro�le and the RMS intensity pro�les from crystal 1 and

crystal 3. At 0.17 �A
�1

and below, the di�erence pro�le is comparable to the pro�le

obtained from the reproducibility measurement, indicating no signi�cant di�erence.

Above 0.17 �A
�1
, however, the di�erence signi�cantly exceeds the pro�le from the

reproducibility: at 0.26�A
�1
, for instance, the di�erence pro�le reads roughly 50 ADU,

while the reproducibility pro�le reads only 20 ADU.

A comparison of smoothed maps from crystal 1 and crystal 3 was also done. The

con�rmation of the �t for the scale factor between maps scaled to medium detail is

illustrated in �gure 5.32. As is seen in this �gure, the scale factor does not minimize

the di�erence above 0.3 �A
�1
, preventing comparisons at high resolution. Figure 5.33
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Figure 5.33: Di�erence between medium-detail maps of Staph. nuclease with and

without Ca++ and pdTp. Above 0.2 �A
�1
, the di�erence pro�le between crystal 1

and crystal 3 medium-detail di�use maps is larger than the reproducibility pro�le.
Medium-detail RMS intensity pro�les from crystal 1 and crystal 3 are shown for scale.
This plot indicates that the medium-detail di�use maps from crystal 1 and crystal 3
are signi�cantly di�erent.
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shows the di�erence pro�le compared to the medium-detail RMS pro�les for crystal 1

and crystal 3, along with the medium-detail reproducibility pro�le. At 0.26 �A
�1
,

the di�erence pro�le reads roughly 100 ADU, while the reproducibility pro�le reads

roughly 25 ADU, showing that there is a signi�cant di�erence between the medium-

detail di�use maps.

At low detail, no scale factor was found which minimized the di�erence between

the maps, so that the degree of di�erence could not be measured. In general, the

lower the level of detail obtained in smoothing di�use maps, the greater the di�er-

ence was between them. This trend was the same as observed in characterizing the

reproducibility of di�use maps, where low-detail maps di�ered more than high-detail

maps at high resolution.

The observed di�erence between di�use maps obtained from Staph. nuclease with

and without Ca++ and pdTp bound can, in principle, indicate many di�erent things,

only one of which is a change in the dynamics of the crystalline protein. For example,

changes in the average electron density of the unit cell could cause changes in di�use

scattering, either due to the the addition of Ca++ and pdTp to the crystal, or due to

conformational changes in the protein.

As is described below, simulations indicate that the entire unit-cell electron density

contributes to the di�use scattering. Since Ca++ and pdTp represent only a small

fraction of the total electron density of the unit cell, these units alone cannot account

for the size of the change observed. In addition, although structural comparisons were

not done in this work, previous high-resolution structural studies on Staph. nuclease

show only minor changes upon binding Ca++ and pdTp, con�ned to a handful of

residues and an ill-de�ned exible loop in the protein[29]. The size of these domains

similarly argues against their contributing to the changes.

Finally, it is important to note that a change in the dynamics of the crystalline
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protein is perfectly consistent with the observed change in di�use scattering. Con-

sidering the results of the simulations described below, the nature of the change may

be described by changes in the elasticity of the bulk protein crystal upon binding

of Ca++ and pdTp. Such an e�ect could change the distribution of di�use intensity

while maintaining similarities in the patterns observable in di�use maps. Ignoring

the results of the simulations, the changes could be due to changes in the internal

uctuations of the protein upon binding of Ca++ and pdTp. Both kinds of changes

could be potentially signi�cant in understanding the function of the protein as an

enzyme: the bulk elasticity of the crystal depends in part on the exibility of the

protein itself, which can signi�cantly a�ect, e.g., binding energies, while the nature

of the uctuations in the protein will directly a�ect reaction rates if di�erent protein

conformations are functionally distinguishable.

5.3 Modelling Results

As was described at the end of section 4.5, simulated maps of jf(q)j2 were generated
from many structural subdomains of the unit cell, and were compared with experi-

mental maps of di�use scattering. The subdomains are listed at the end of section 4.5,

along with the motivation for selecting each one. Without smoothing, no simulated

map could be successfully scaled against an experimentally obtained di�use map.

After smoothing by convolution with a Gaussian of half-width equal to one re-

ciprocal unit-cell diagonal, only the map generated from the entire unit cell could

be scaled against the crystal 1 experimental di�use map. The di�erence between the

simulated and experimental maps was further reduced by smoothing using a Gaussian

of half-width equal to two reciprocal unit-cell diagonals. The models most consistent

with these results are the liquid-like motions model of Caspar et. al.[19] and the crys-
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Figure 5.34: Structural model of Staph. nuclease. This view was generated from the
PDB structure of Staph. nuclease, using the program Ribbons by Mike Carson[45].
Hydrogen-bonded regions of alpha-helices and beta-sheets are displayed as at rib-
bons, while the remainder of the backbone is displayed as a thin, winding cylinder.
Notable secondary structure includes the three alpha-helices displayed on top of the
model, and a beta-barrel seen in the lower left.

talline normal modes model discussed in Glover et. al.[21]. A type of substitution

order, where a fraction of the unit cells are randomly replaced with solvent, also

cannot be ruled out.

As described in section 4.5, the structural model of Hynes and Fox[29] was down-

loaded from the Brookhaven Protein Data Bank and used as a starting point for sim-

ulating di�use maps of Staph. nuclease. The program XPLOR by Axel Br�unger[44]

was used to re�ne the model against measured the Bragg reections, which were

obtained during di�use scattering data collection (see section 2.1). The R-factor as

measured by DENZO from internal symmetry considerations was 6% to 2.2 �A. The

data set was 76% complete as determined by XPLOR after enforcing a 2� cut on the

Bragg peaks.

A forty-step rigid-body re�nement was used to generate a structural model of
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Staph. nuclease with XPLOR: the �nal R-factor was 33%. Given the quality of

the di�use data, this was considered adequate for generating simulated maps. A

PDB-format structure was output and used as the input structure for simulations.

Figure 5.34 shows a rendered view of the model.

By specifying a range of residues in XPLOR, a domain of the protein was selected

from the list at the end of section 4.5. Maps of jf(q)j2 were generated by zeroing

all individual atomic B-factors and requesting an output of the calculated Bragg

reections based on the PDB model of Staph. nuclease. The resulting maps were

converted to the same format as the experimentally obtained di�use maps.

Following the arguments in section 3.4, the jf(q)j2 maps were symmetry-averaged
according to the predictions of space group P41. The only exception to this was the

map generated from the full unit cell, which automatically had the correct symmetry.

For this map alone, XPLOR was directed to generate P41 isomorphous copies of the

asymmetric unit before calculating the jf(q)j2 map.
As described in section 4.5, in order to compare the simulated maps with the

experimental di�use maps, the spherically-averaged component of the maps was sub-

tracted. The maps were then scaled in an identical manner to that described in

the reproducibility measurement of section 5.1. Without smoothing, no proper scale

factor was found between any simulated and experimental maps.

After smoothing using a Gaussian of half-width equal to one reciprocal unit-cell

diagonal, only the simulated map from the entire unit cell could be scaled with the

experimental map. Attempts to scale simulated maps from other structural units

failed to show a locally minimized di�erence pro�le. A veri�cation of the �t for the

unit-cell simulated map is shown in �gure 5.35, in which it can be seen that it is only

good over a limited range of roughly 0.26-0.3 �A
�1
. A comparison of the medium-

detail shell images generated from the crystal 1 di�use map and the simulated di�use
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Figure 5.35: Veri�cation of scaling between medium-detail di�use maps from crystal 1
and the simulated unit cell. As in �gure 5.7, this veri�es the �t for the scale factor

between the medium-detail di�use maps. The �t is best in the range 0.26-0.33 �A
�1
.
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Figure 5.36: Medium-resolution shell images obtained from the symmetrized di�use
map of crystal 1 and the unit-cell simulated map. Di�use maps from crystal 1 and

the unit-cell simulated map are compared side-by-side in shells between 0:23 �A
�1

and

0:33 �A
�1
. In order to observe the variations in di�use scattering within the shells,

the maps have had the spherically-averaged intensity subtracted. The polar angle �
varies from 0 at the top to � at the bottom of each image, while, in order to eliminate
the four-fold redundancy in the view, the azimuthal angle � only varies from �� at
the left to �1

2
� at the right of each image. The images are displayed on a linear grey

scale, with -300 corresponding to black, and 300 corresponding to white.
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Figure 5.37: Di�erence between medium-detail experimental and simulated maps of

Staph. nuclease di�use scattering. Between 0.23 �A
�1

and 0.33 �A
�1
, the di�erence

pro�le is smaller than either of the RMS intensity pro�les, indicating a degree of
success in the simulation.

map is shown in �gure 5.36. The similarities are not as striking as those observed in

the reproducibility measurement, but common features are de�nitely visible in these

images.

The methods developed for the reproducibility measurement were used to quantify

the di�erence between the simulated and experimental maps. The di�erence pro�le

calculated using the medium-detail scaled maps is shown in �gure 5.37, and is plotted

side-by-side with the reproducibility pro�le of �gure 5.24 and the RMS intensity

pro�les of both the crystal 1 di�use map and the simulated di�use map. The fact

that the di�erence pro�le is lower than either of the RMS intensity pro�les is evidence

for the correlation between the simulated and experimental maps.

An improved �t of the unit-cell simulated map with the crystal 1 di�use map
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Figure 5.38: Veri�cation of scaling between low-detail di�use maps from crystal 1 and
the simulated unit cell. As in �gure 5.7, this veri�es the �t for the scale factor between

the low-detail di�use maps. The �t is best in the range 0.20-0.33 �A
�1
.
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Figure 5.39: Medium-resolution shell images obtained from the symmetrized di�use
map of crystal 1 and the unit-cell simulated map. Di�use maps from crystal 1 and

the unit-cell simulated map are compared side-by-side in shells between 0:23 �A
�1

and

0:33 �A
�1
. In order to observe the variations in di�use scattering within the shells,

the maps have had the spherically-averaged intensity subtracted. The polar angle �
varies from 0 at the top to � at the bottom of each image, while, in order to eliminate
the four-fold redundancy in the view, the azimuthal angle � only varies from �� at
the left to �1

2
� at the right of each image. The images are displayed on a linear grey

scale, with -200 corresponding to black, and 200 corresponding to white.
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Figure 5.40: Di�erence between low-detail experimental and simulated maps of Staph.

nuclease di�use scattering. Between 0.13 �A
�1

and 0.33 �A
�1
, the di�erence pro�le is

much smaller than either of the RMS intensity pro�les, indicating good agreement
between the simulation and experiment.

was seen when the maps were smoothed to low detail using a Gaussian of half-width

equal to two reciprocal unit-cell diagonals. A veri�cation of the low-detail �t is shown

in �gure 5.38, where it is seen that the �t holds over the region 0.23-0.33 �A
�1
. A

comparison of the low-detail shell images generated from the crystal 1 di�use map

and the simulated di�use map is shown in �gure 5.39. At this detail level, the two

maps look somewhat similar.

Once again, the di�erences were quanti�ed using the methods developed in the

reproducibility measurement. The di�erence pro�le calculated using the low-detail

scaled maps is shown in �gure 5.40, and is plotted side-by-side with the reproducibility

pro�le of �gure 5.26 and the RMS intensity pro�les of both the crystal 1 di�use map

and the simulated di�use map. By comparing the height of the di�erence pro�le with
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the RMS intensity pro�les, the �t at low detail is seen to compare favorably with the

33% R-factor of the rigid-body re�nement, which sets a lower limit on the observed

di�erence between the simulation and the data.

In summary, these results indicate that the three-dimensional di�use scattering

from Staph. nuclease crystals most resembles a map of jf(q)j2, the squared structure

factor, generated from the electron density of the entire four-protein unit cell. This

fact alone can be used to place constraints on which models of disorder are consistent

with the observed di�use scattering from Staph. nuclease. For example, independent

rigid-body motions of single proteins the unit cell, such as is described in the B-

factor analysis of Kuriyan and Weis [16], give rise to di�use maps which are derived

from the structure factor of single proteins (see section 3.4). Since no correlation

was observed between experimental maps and simulated maps generated from single-

protein structure factors, such a model is inappropriate for describing the disorder

which gives rise to di�use scattering in Staph. nuclease crystals.

By similar arguments, sole, independent motions of each structural subdomain in

the list at the end of section 4.5 are ruled out as the cause of the observed di�use

features. Arbitrary combinations of motions of these domains were not tested, and

therefore are not ruled out. The strong correlation observed between the unit-cell

simulated map and the crystal 1 di�use map, however, suggests that subdomain mo-

tions do not contribute signi�cantly to the di�use scattering. Given the fact that

many di�erent models of di�use scattering have been successfully used to simulate

di�raction images in the past, however, more studies may need to be done to un-

derstand how robust the three-dimensional modelling is before such suggestions are

given too much weight.

Models which are derived from the unit-cell structure factor are the ones which

are indicated by the results of simulations of Staph. nuclease di�use scattering. Four
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kinds of disorder are consistent with this result { two from each class described in

section 3.2. In the class of independent unit cells, models based on both substitution

disorder and independent, rigid-body translations of entire unit cells are indicated. In

the class of correlated unit-cell motions, the liquid-like motions model of Caspar et.

al.[19] and the crystalline normal modes model discussed in Glover et. al.[21] are

indicated.

The substitution disorder is derived from equation 3.23 by assuming that the unit

cell has two states: one where the unit cell is occupied by the four protein molecules,

and one where it is unoccupied. Equation 3.23 can be rewritten as

ID = Nhjfn � hfninj2in; (5.1)

so that

ID = Nhjfn � �f j2in; (5.2)

where f is the structure factor of the occupied unit cell, and � is the fraction of unit

cells which are occupied. The unit-cell structure factor fn can assume a value of

either f or 0. After some algebra, the expression for di�use intensity becomes

ID = N(1� �)�jf j2; (5.3)

which is proportional to the squared unit-cell structure factor jf j2. For high occu-

pancies, as one may expect for protein crystals, the di�use scattering is proportional

to the fraction (1� �) of unoccupied unit cells, which makes it very small compared

with the Bragg scattering. One way to de�nitively distinguish this form of disorder

from others would be to look for temperature-induced changes in di�use scattering,

since one would not expect any changes if substitution disorder were giving rise to
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the observed di�use features. Although no temperature study was performed in this

work, experimental maps of Staph. nuclease show signi�cant di�use scattering: sub-

stitution disorder is therefore an unlikely, but possible, candidate as the cause of the

observed di�use scattering.

As is described in section 3.5, unit-cell rigid-body translations give rise to di�use

scattering of the form

ID = N(1� e�jq�Sj2)jf j2; (5.4)

where f is the structure factor of the unit cell. No attempt was made to �t for a

matrix S which parametrizes the motion of the unit cell, but the correlation of the

experimental map with jf j2 suggests this model as a possibility. In order for the unit

cell to behave like a rigid unit, however, the contacts between proteins within the

unit cell must be stronger than the contacts across unit cells { if they were of equal

magnitude, the motions would more resemble those of individual molecules. If the

four-molecule clustering of Staph. nuclease were energetically favorable, one would

expect that under certain conditions clusters would form without crystallizing. There

has been no suggestion that Staph. nuclease would tend to cluster in this fashion, but

the results of these studies may be interpreted to provide evidence for such a state.

The remaining models which are consistent with the observed di�use scattering

in Staph. nuclease crystals are the liquid-like motions model of Caspar et. al.[19] and

the crystalline normal modes model described in Glover et. al.[21], which are shown

to be equivalent in section 3.9. To �rst order, these models predict di�use scattering

of the form

ID = e�q
2�2q2�2I0(q) � �(q): (5.5)

Since I0(q) is proportional to the squared structure factor jf(q)j2 of the unit cell, this
form of di�use scattering resembles a map of jf(q)j2 which has been convoluted with
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a smoothing function �(q). The function �(q) is related to the amplitudes of normal

modes in the crystal as described in section 3.9.

In principle, it would be possible to characterize the correlation length, as was

done in Caspar et. al.[19], or the elasticity of the crystal by establishing the best-

�t functional dependence of �(q). No explicit �t was performed in this work, but

some insight can be gained into the length scales involved by observing the depen-

dence of the success of simulations upon the detail level of smoothing. As mentioned

above, without smoothing, no agreement was seen between experimental and simu-

lated maps. At medium detail, where the �rst agreement was seen, the smoothing was

performed by convolution with a Gaussian of half-width equal to one reciprocal unit-

cell diagonal, which is 0.033 �A
�1

long. In terms of �(q), this would correspond to a

roughly 1=(2��0:033) = 5 �A correlation length, which is close to the 6 �A correlation

length in insulin reported by Caspar et. al.[19].



Chapter 6

Conclusions

A signi�cant result of the work presented in this thesis is a complete method for

generating three-dimensional di�use-scattering maps from images of x-ray di�raction

from protein crystals. The method has been used here to study Staph. nuclease

crystals, but in principle any crystal can be studied by the same techniques. The

format of the measured di�use maps is such that they can be represented in an

identical fashion to a collection of measured Bragg reections, making it easy to take

advantage of existing code, such as XPLOR, for simulations.

Two methods are presented for characterizing the quality of measured di�use

maps: one which measures the degree of internal symmetry in a single map, and an-

other which measures the degree of di�erence between di�use maps from nominally

identical crystals. These methods provide a benchmark with which to gauge the sig-

ni�cance of changes observed in controlled di�erence experiments. They also provide

a scale against which to compare di�erences between simulated and experimental dif-

fuse maps. Being completely general, the methods can be used to characterize maps

of di�use scattering from any protein crystal.

A limitation to the method presented is that it only records di�use features which

are larger than the size of the reciprocal unit cell. Features on smaller length scales

are either averaged over or removed. Thus, although the method adequately samples
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di�use features which are due to motions uncorrelated across unit cells, features which

are due to motions correlated across unit cells are not properly sampled, making

quantitative analysis of these motions di�cult. Future re�nement of the method may

increase the resolution of the maps, allowing the characterization of smaller di�use

features.

Certain steps in generating di�use maps may need modi�cation in future exper-

iments. For certain crystal morphologies, for example, absorption corrections may

be required for an accurate measurement. In addition, detectors with a large point-

spread function may require more sophisticated methods than mode �ltering in order

to eliminate Bragg peaks. Perhaps other astronomical \de-starring" techniques would

provide further insight into this problem.

Although Staph. nuclease lasted well in the intense x-ray beams at CHESS, other

crystals may not behave as kindly. Therefore, it may become necessary to freeze crys-

tals for di�use scattering experiments. Although freezing techniques are now widely

used, they may not be controlled enough for di�use scattering experiments, since the

common way of bringing a crystal to cryogenic temperatures is to simply dunk it

in, e.g., liquid nitrogen. Not only must the reproducibility of di�use maps obtained

from frozen crystals be characterized, but comparisons of di�use maps from cryogenic

and room-temperature crystals may be necessary to resolve the experimental issues

involved.

Although a state-of-the-art CCD-based x-ray detector was used on a world-class

synchrotron beamline for this experiment, di�use scattering experiments have been

performed on standard rotating anode sources and more common detectors, such as

�lm and image plates. It would be interesting and important to see whether or not

the quality of the three-dimensional di�use maps is the same using these resources.

If it is, di�use scattering experiments would more easily become widespread.
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The di�use scattering in Staph. nuclease appears to change upon binding of Ca++

and pdTp. Arguments have been presented to show that the change is indicative of a

change of dynamics in the crystal, but what are the resulting implications? Although

Staph. nuclease has become a model system for studying protein folding, the e�ect

of the internal dynamics of the protein on its activity is not yet understood. This

crucial connection must be established in order for any characterization of protein

dynamics to contribute signi�cantly to an understanding how proteins work.

As described in the introduction, in order to make an experimental dent in this

problem, it will be necessary to identify dynamical parameters of proteins which can

be systematically varied and measured in a controlled fashion. Such a parameter

may be something as speci�c as the amplitude of the displacement of a particular

domain of the protein, or as general as a measure of protein elasticity. The connection

with protein function must then be made experimentally by monitoring a measure of

activity while varying the observed dynamical parameters.

The parameters of disorder in the models which best agree with the observed

di�use scattering from Staph. nuclease tend to describe material properties of the

crystal, rather than speci�c motions of known functionally relevant groups in the

protein. Understanding the functional relevance of the results through these models

would come in two steps: �rst, a connection would need to be established between

the parameters of crystalline disorder, such as correlation lengths or elasticities, and

some dynamical property of the protein. If one assumes that the bulk properties

of the crystal reect the bulk properties of the protein, the measured parameters of

disorder will apply to individual proteins, providing the link to dynamical properties.

Elasticity, for instance, is related to the energy cost for the protein to adopt non-

equilibrium con�gurations, which can directly a�ect reaction rates.

The second step is to relate the dynamical property of the protein to its function-
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ality. This connection would have to be established through separate experiments,

since di�use scattering is unlikely to provide any direct information about protein

activity. The ideal situation would involve crystallizing a protein which retains its

functionality in the crystal, and characterizing both the activity and the protein dy-

namics simultaneously while changing the temperature or pressure of the specimen,

varying the pH or the salt concentration, or even by changing the chemical potential

of the water by immersing the crystal in a bath of dissolved organic polymers.

It is possible that some protein besides Staph. nuclease is a better candidate for

establishing a complete connection between protein dynamics and protein function.

Other proteins may show signi�cantly di�erent di�use scattering, possibly connected

with internal motions of the molecule. The methods developed here can be used to

survey protein crystals which show signi�cant di�use scattering. It would be inter-

esting, for example, to obtain three-dimensional di�use maps from crystals of tRNA,

which has been shown by Kolatkar et. al.[23] to exhibit signatures of intramolecular

motion in images of x-ray di�raction, or from one of the many other crystals which

have shown interesting di�use features in x-ray di�raction experiments.

Further work will reveal how useful three-dimensional maps of di�use scattering

are in understanding how proteins work. The results here show how the maps can re-

veal the nature of disorder in a protein crystal, and suggest that protein dynamics can

be characterized by di�use scattering measurements. A survey of three-dimensional

di�use maps from protein crystals promises both to reveal much about the nature

of protein dynamics, and to suggest how to quantitatively connect protein dynamics

with protein function.



Appendix A

Supplemental Calculations

The following sections contain calculations supplemental to the description of models

in chapter 3. Where they are missing, symbol de�nitions can be found in the cross-

referenced section where the appropriate model is discussed.

A.1 Di�raction from an Imperfect Crystal

As is discussed in section 3.1, if the crystal is su�ciently large, the scattering inten-

sity I(q; t) becomes e�ectively time-independent even in the disordered crystal1. To

demonstrate this, the substitution n0 = n + �n is �rst made in equation 3.8, where

�n points to a unit cell separated from n by R�n (see �gure 3.1). It follows that

I(q; t) =
X
n;�n

fn(q; t)f
�
n+�n(q; t)e

�iq�R�n (A.1)

=
X
�n

e�iq�R�n
X
n

fn(q; t)f
�
n+�n(q; t) (A.2)

=
X
�n

e�iq�R�nN(�n)hfn(q; t)f �
n+�n(q; t)in (A.3)

where N(�n) is the number of unit cells n in the crystal which are separated by a

displacement vector R�n.

1The following argument draws on a discussion on p. 155 of Guinier[40].
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If N(�n) is su�ciently large, and the joint electron densities of all pairs (n; n0)

separated by a given �n evolve identically, the set of products ffn(q; t)f �
n+�n(q; t)g

will e�ectively span the space of all such products dynamically available. In this case

the average hfn(q; t)f �
n+�n(q; t)in, and thus the scattering intensity, becomes time-

independent. This condition is never met for the largest displacements R�n in the

crystal, since there will always be too few unit cell pairs (n; n0) which share the same

displacement, yielding the resolution limitation discussed in the text.

A.2 Independent Molecular Domains

In order to derive an expression for the di�use intensity ID in section 3.3, it is necessary

to obtain expressions for hjfnj2in and jhfninj2:

hfnin =
X
j

hfnjin (A.4)

so that

jhfninj2 =
X
j;j0

hfnjinhf �
nj0in: (A.5)

While for hjfnj2in

hjfnj2in = hjX
j

fnjj2i
n

(A.6)

=
X
j

hjfnjj2in +
X
j 6=j0

hfnjf �
nj0in (A.7)

=
X
j

hjfnjj2in +
X
j 6=j0

hfnjinhf �
nj0in (A.8)

=
X
j

(hjfnjj2in � jhfnjinj2) + jhfninj2; (A.9)
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where the substitution

hfnjf �
nj0in = hfnjinhf �

nj0in (A.10)

has been made based on the assumption of independent domains. The di�use intensity

ID is given by

ID = N(hjfnj2in � jhfninj2) (A.11)

= N
X
j

(hjfnjj2in � jhfnjinj2) (A.12)

=
X
j

IDj: (A.13)

A.3 Independent Isomorphous Molecules

Using the equation

fj(q) = eiq�Tjf0(q � Rj) (A.14)

derived in section 3.4, transformations of the average and average squared structure

factor under rotations and translations can be calculated:

hfnjin = heiq�Tjfn0(q � Rj)in (A.15)

= eiq�Tjhfn0(q � Rj)in; (A.16)

where fnj is the j
th copy of the reference structure factor fn0 in unit cell n, and the

average is over all unit cells. This means that

jhfnjinj2 = jeiq�Tjhfn0(q � Rj)inj2 (A.17)

= jhfn0(q � Rj)inj2 (A.18)
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and

hjfnjj2in = hjeiq�Tjfn0(q � Rj)j2in (A.19)

= hjfn0(q � Rj)j2in (A.20)

From this it can be shown how the Bragg intensity IB0 and the di�use intensity

ID0 transform under a unit-cell rotation Rj and translationTj into IBj and IDj. Using

the results of section 3.3,

IBj = jhfnjinj2eiq�(Rn�Rn0 ) (A.21)

= jhfn0(q � Rj)inj2eiq�(Rn�Rn0 ); (A.22)

while

IDj = N(hjfnjj2in � jhfnjinj2) (A.23)

= N(hjfn0(q � Rj)j2in � jhfn0(q � Rj)inj2) (A.24)

= ID0(q � Rj) (A.25)

For multiple isomorphous molecules j in the unit cell, the Bragg intensity IB is

then

IB = jhfninj2
X
n;n0

eiq�(Rn�Rn0) (A.26)

= jX
j

hfnjinj2
X
n;n0

eiq�(Rn�Rn0 ) (A.27)

= jX
j

eiq�Tjhfn0(q � Rj)inj2
X
n;n0

eiq�(Rn�Rn0 ) (A.28)
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while the di�use intensity ID is given by

ID = N(hjfnj2in � jhfninj2) (A.29)

= N
X
j

(hjfnjj2in � jhfnjinj2) (A.30)

= N
X
j

(hjfn0(q � Rj)j2in � jhfn0(q � Rj)inj2) (A.31)

=
X
j

ID0(q � Rj): (A.32)

A.4 Rigid-Body Translations

In order to obtain expressions for the di�use intensity ID and the Bragg intensity IB

for the case of rigid-body translations discussed in section 3.5, expressions for jhfninj2

and hjfnj2in must �rst be found. By equation 3.47,

hfnin = heiq�uninf: (A.33)

For small displacements un, the exponential can be expanded, so that

heiq�unin = h1 + iq � un � 1

2
q � unun � qi

n
(A.34)

= 1 + iq � hunin �
1

2
q � hununin � q: (A.35)

The second term vanishes, since huni = 0. The average of the tensor unun can be

written as

hununin = hunxunxinx̂x̂ + hunxunyinx̂ŷ + hunxunzinx̂ẑ

+ hunyunxinŷx̂+ hunyunyinŷŷ + hunyunzinŷẑ

+ hunzunxinẑx̂+ hunzunyinẑŷ + hunzunzinẑẑ (A.36)
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De�ning the symmetric variance matrix V as

V � hununin; (A.37)

it follows that

heiq�unin = 1� 1

2
q � V � q (A.38)

= e�
1
2
q�V�q (A.39)

which is in the form of the familiar Debye-Waller factor2. The matrix V can be

compared with the usual crystallographic anisotropic B-factor:

heiq�unin = e�q̂�B�q̂
sin2 �
�2 (A.40)

so that, using the fact that q = 2k sin � = 4�
�
sin � (see �gure 3.2),

B = 8�2V: (A.41)

It follows from equation A.33 that

hfnin = e�
1
2
q�V�qf (A.42)

so that

jhfninj2 = e�q�V�qjf j2: (A.43)

2See, e.g., pp.148-154, chapter 2 of Giacovazzo[38]; pp.35-38, chapter 3 of Warren[42]; pp.186-193,
chapter 7 of Guinier[40]; and pp. 20-25, chapter 2 of James[41]
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The phase factor eiq�un in equation 3.47 vanishes when calculating jfn(q)j2:

jfn(q)j2 = jeiq�unf(q)j2 = jf(q)j2; (A.44)

so that

hjfnj2in = jf j2: (A.45)

Substituting the expressions for jhfninj2 and hjfnj2in in equations A.43 and A.45

into the expression for the di�use intensity ID in equation 3.23:

ID = N(hjfnj2in � jhfninj2) (A.46)

= N(jf j2 � e�q�V�qjf j2) (A.47)

= N(1� e�q�V�q)jf j2: (A.48)

The Bragg intensity IB is given by substitution in equation 3.24:

IB = jhfninj2
X
n;n0

eiq�(Rn�Rn0) (A.49)

= e�q�V�qjf j2X
n;n0

eiq�(Rn�Rn0 ): (A.50)

A.5 Rigid-Body Rotations

In order to calculate IB and ID for the case of rigid-body rotations discussed in

section 3.7, hfnin and hjfnj2i must be calculated. If the rotations are decoupled from

the translations, the following expressions hold:

hfnin =
X
m

fme
iq�r0heiq�Rn�r0minheiq�unin (A.51)
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and

hjfnj2in =
X
m;m0

fmfm0heiq�Rn�(r0m�r0
m0

)in; (A.52)

so that the phase factor eiq�r0 has dropped out. Let us �rst look at the term

Am = heiq�Rn�r0min (A.53)

from equation A.51. An angle �n can be de�ned such that

q � Rn � r0m = qr0m cos(�0m + �n); (A.54)

where �0m is de�ned by the relation

q � r0m = qr0m cos(�0m): (A.55)

It is now assumed that the angle � is Gaussian distributed with a width ��, so

that

Am = N�

Z
d�eiqr

0

m cos(�0m+�)e
� �2

2�2� ; (A.56)

where N� is a normalization constant. If the distribution in � is su�ciently narrow,

the cosine term in the phase factor can be expanded:

cos(�0m + �) � cos(�0m)� � sin(�0m) (A.57)

so that

Am = eiq�r
0

mN�

Z
d�e

�iqr0m sin(�0m)�� �2

2�2� : (A.58)

Completing the square in the exponential and integrating the resulting Gaussian to
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unity, one obtains

Am = eiq�r
0

me�
1
2
q2(r0m)2�2� sin2(�0m); (A.59)

or

Am = eiq�r
0

me�
1
2
jq�r0mj2�2� (A.60)

A similar derivation follows for

Amm0 = heiq�Rn�(r0m�r0
m0

)i; (A.61)

where one obtains

Amm0 = eiq�(r
0

m�r0
m0

)e�
1
2
jq�(r0m�r0

m0
)j2�2� : (A.62)

From equations A.51 and A.52, it then follows that

jhfninj2 =
X
m;m0

fmfm0eiq�(rm�rm0 )e�
1
2
(jq�r0mj2+jq�r0

m0
j2)�2�e�q�Vu�q (A.63)

and

hjfnj2in =
X
m;m0

fmfm0eiq�(rm�rm0 )e�
1
2
jq�(r0m�r0

m0
)j2�2� (A.64)

so that

IB =
X
m;m0

fmfm0eiq�(rm�rm0)e�
1
2
(jq�r0mj2+jq�r0

m0
j2)�2�e�q�Vu�q; (A.65)

�X
n;n0

eiq�(Rn�Rn0 ) (A.66)

and

ID = N(hjfnj2in � jhfninj2) (A.67)
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= N
X
m;m0

fmfm0eiq�(rm�rm0)

�(e� 1
2
jq�(r0m�r0

m0
)j2�2� � e�

1
2
(jq�r0mj2+jq�r0

m0
j2)�2�e�q�Vu�q) (A.68)

A.6 Liquid-like Correlated Motions

As a sanity check, in the case where all of the atoms execute independent, isotropic

displacements, an expression for ID analogous to that of equation 3.70 should be

obtained from the expression for di�use scattering due liquid-like correlated motions

in section 3.8.. The correlation coe�cient �(r) in this case will be 1 for r = 0, and 0

for r 6= 0, so that

�(r) = �(r): (A.69)

Working from equation 3.107,

ID = e�q
2�2

Z
d3 reiq�r q2�2�(r)P0(r) (A.70)

= e�q
2�2q2�2P0(0) (A.71)

� (1� e�q
2�2)P0(0) (A.72)

which is the isotropic equivalent to equation 3.70 after using equation 3.106 to show

that

P0(0) =
X
m;m0

QmQm0�(rm � rm0) (A.73)

=
X
m

Q2
m; (A.74)

since X
m

jfmj2 =
X
m

Q2
m (A.75)
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for a point-like charge distribution.

A.7 Crystalline Normal Modes

Given the expression

hI(q; t)it =
X
m;m0

QmQm0eiq�(rm�rm0 )
X
n;n0

eiq�(Rn�Rn0)heiq�(umn�um0n0 )it; (A.76)

a �rst-order normal modes expansion can be performed to give the results discussed

in section 3.9. For small perturbations umn, the approximation

heiq�(umn�um0n0 )it = e�
1
2
h[q�(umn�um0n0 )]

2i
t (A.77)

can be made, so that the expression

h [q � (umn � um0n0)]
2 it = h(q � umn)

2it + h(q � um0n0)
2it � 2hq � umnum0n0 � qit (A.78)

must be calculated. The atomic displacements umn are now expanded in terms of

crystalline normal modes:

umn =
X
gs

as;gems;ge
i(g�Rn�!s;gt); (A.79)

where ems;g is the complex polarization vector for atom m in branch s of the mode

with wave vector g, as;g is the amplitude of branch s of mode g, and !s;g is its

frequency. This yields

h(q � umn)
2it =

X
g;g0

X
s;s0

as;gas0;g0
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� q � ems;gq � ems0;g0hei[(g+g0)�Rn�(!s;g+!s0;g0)t]it (A.80)

=
X
g;g0

X
s;s0

as;gas0;g0

� q � ems;gq � ems0;g0e
i(g+g0)�Rn�g;�g0�s;s0 (A.81)

=
X
g;s

as;gas;�gq � ems;gq � ems;�g; (A.82)

where in order to introduce �g;�g0�s;s0 it is assumed that each mode (g; s) has a unique

frequency !s;g. Remembering that

h(q � umn)
2it = q � Vm � q; (A.83)

where Vm is the variance matrix for displacements of atom m, it follows that

Vm =
X
g;s

jas;gj2ems;gems;�g: (A.84)

In a similar fashion,

h(q � um0n0)
2it = q �

"X
g;s

jas;gj2em0s;gem0s;�g

#
� q: (A.85)

The cross term becomes

h(q � umn)(q � um0n0)it =
X
g;g0

X
s;s0

as;gas0;g0q � ems;gq � em0s0;g0

� hei[g�Rn+g0�Rn0�(!s;g+!s0;g0)t]it (A.86)

=
X
g;g0

X
s;s0

as;gas0;g0q � ems;gq � em0s0;g0

� ei(g�Rn+g
0�Rn0)�g;�g0�s;s0 (A.87)

= q �X
g;s

jas;gj2ems;gem0s;�ge
ig�(Rn�Rn0 ) � q (A.88)
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The expression for the scattered intensity becomes

hI(q; t)it =
X
m;m0

QmQm0eiq�(rm�rm0)
X
n;n0

eiq�(Rn�Rn0 )

� e�
1
2
q�(Vm+Vm0 )�q

� e
q�

hP
g;s

jas;gj2ems;gem0s;�ge
ig�(Rn�Rn0

)
i
�q
: (A.89)

Expanding the exponential yields

e
q�

hP
g;s

jas;gj2ems;gem0s;�ge
ig�(Rn�Rn0

)
i
�q �

1 + q �
"X
g;s

jas;gj2ems;gem0s;�ge
ig�(Rn�Rn0 )

#
� q; (A.90)

so that two additive contributions IB and ID can be identi�ed, such that

I = IB + ID; (A.91)

where

IB =
X
m;m0

QmQm0eiq�(rm�rm0)
X
n;n0

eiq�(Rn�Rn0 )

� e�
1
2
q�(Vm+Vm0 )�q (A.92)

= e�
1
2
q�(Vm+Vm0 )�qI0(q); (A.93)

where I0(q) has been de�ned as

I0(q) =
X
m;m0

QmQm0eiq�(rm�rm0 )
X
n;n0

eiq�(Rn�Rn0 ); (A.94)
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and

ID =
X
m;m0

QmQm0eiq�(rm�rm0 )
X
n;n0

eiq�(Rn�Rn0)

� e�
1
2
q�(Vm+Vm0 )�q

� q �
"X
g;s

jas;gj2ems;gem0s;�ge
ig�(Rn�Rn0)

#
� q (A.95)

=
X
g;s

X
n;n0

ei(q+g)�(Rn�Rn0 )
X
m;m0

QmQm0eiq�(rm�rm0)

� e�
1
2
q�(Vm+Vm0 )�q

� q �
h
jas;gj2ems;gem0s;�g

i
� q (A.96)

In order to demonstrate the connection with the liquid-like motions model, it is

necessary to make some simplifying assumptions. The �rst is that all of the atomic

variances Vm are the same, so that

Vm = Vm0 = V: (A.97)

The di�use term ID in the normal modes model then becomes

ID = e�q�V�q
X
g;s

X
m;m0

QmQm0eiq�(rm�rm0)
X
n;n0

ei(q+g)�(Rn�Rn0)

� q �
h
jas;gj2ems;gem0s;�g

i
� q: (A.98)

The next is that the polarization vectors ems;g all have the form

ems;g = es;ge
ig�rm; (A.99)

which would be true for an elastically homogeneous crystal3, where waves continuously

3The opposite extreme would be where the entire unit cell is uniformly displaced as a rigid unit,
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modulate atomic displacements within the unit cell. This would imply

ID = e�q�V�q
X
g;s

q �
h
jas;gj2es;ges;�g

i
� q

� X
m;m0

QmQm0ei(q+g)�(rm�rm0)
X
n;n0

ei(q+g)�(Rn�Rn0): (A.100)

In this, one can recognize

I0(q+ g) =
X
m;m0

QmQm0ei(q+g)�(rm�rm0)
X
n;n0

ei(q+g)�(Rn�Rn0); (A.101)

so that

ID = e�q�V�q
X
g

I0(q+ g)
X
s

q �
h
jas;gj2es;ges;�g

i
� q: (A.102)

Converting the sum over modes g into an integral,

ID = e�q�V�q
Z
d3g n(g)I0(q+ g)

X
s

q �
h
jas(g)j2es(g)es(�g)

i
� q

= e�q�V�q
Z
d3g I0(q+ g)q � c(g) � q

= e�q�V�qq � [I0(q) � c(q)] � q; (A.103)

which is the same as equation 3.112, where c(g) has been de�ned as

c(g) � n(g)
X
s

jas(g)j2es(g)es(�g); (A.104)

and the density of states n(g) has been introduced. Thus, the liquid-like correlated

motions model is seen to be equivalent to a limiting case of the crystalline normal

modes model, where the displacements of all atoms are equivalently distributed, and

where the elastic properties of the crystal are homogeneous.

leading to ems(g) = es(g).
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