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Abstract

Inherent structure theory is used to discover strong connections between simple characteristics of

protein structure and the energy landscape of a Gō model. The potential energies and vibrational

free energies of inherent structures are highly correlated, and both reflect simple measures of

networks of native contacts. These connections have important consequences for models of protein

dynamics and thermodynamics.
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Protein activity is controlled by dynamical transitions among conformational substates

[1]; the transitions may be understood in terms of motions on an energy landscape [2].

Substates correspond to local minima in the energy landscape, and transitions correspond

to the hurdling of barriers between minima. Interestingly, the protein energy landscape

resembles that of glasses [3].

Spin-glass models have yielded insight into properties of protein energy landscapes [4, 5]

and the kinetics of protein folding [6]. The main motivation for using spin-glass models

rather than structural-glass models is that spin-glass models are more analytically tractable;

however, it has long been recognized that structural-glass models might be better-suited

to describe proteins [5]. Indeed, protein unfolding has been characterized as a rigidity

transformation that is similar to those seen in network glasses [7].

Structural-glass-forming liquids have been fruitfully characterized using inherent struc-

ture (IS) theory [8, 9], which treats the energy landscape as a set of discrete basins that are

separated by saddles. Each basin contains a local minimum, called an inherent structure,

which is analogous to a protein conformational substate. The dynamics are then naturally

described as vibrations about local minima, punctuated by transitions between neighboring

basins. A key assumption in IS theory is that vibrations are similar about minima with the

same potential energy; however, importantly, IS theory allows for diversity among vibrations

that have different potential energies.

Guo and Thirumalai [10] have used IS theory to analyze fluctuations in the neighbor-

hood of the native state of a coarse-grained model of a designed four-helix bundle protein.

Baumketner, Shea, and Hiwatari [11] have applied IS theory to study the glass transition

in a coarse-grained model of a 16-residue polypeptide; by IS analysis of molecular dynam-

ics trajectories, they demonstrated the ability to rigorously calculate the glass transition

temperature due to freezing in the native-state basin. In a more recent study, Nakagawa

& Peyrard [12] used IS theory to analyze the energy landscape of the B1 segment of the

IgG binding domain of streptococcal protein G (GB1) using a coarse-grained model, find-

ing that the density of minima increases exponentially with the energy. Importantly, their

analysis relied on an assumption that vibrations are the same about all potential energy

minima. However, because protein models become less rigid as noncovalent bonds are bro-

ken [13], vibrations are expected to be different for different minima, especially for minima

with different potential energies. Diversity in vibrations not only would change the density
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FIG. 1: Cartoon illustration of GB1 created using RASMOL [16].

of minima, but also would have important implications for the kinetics of transitions among

conformational substates [1]; however, if vibrations are the same for different minima, their

role in determining the kinetics of transitions would be trivial.

To characterize the diversity in vibrations among different protein inherent structures,

we used IS theory to analyze the same protein fragment considered by Nakagawa & Peyrard

[12], GB1 (Protein Data Bank [14] entry 2GB1 [15]). GB1 has 56 amino acids and consists

of a four-stranded β-sheet packed against a single helix (Fig. 1).

As in Ref. [12], we use a coarse-grained Gō model of GB1. Compared to all-atom models,

the Gō model enabled ample sampling for IS analysis, and enabled us to compare our results

to those in Ref. [12]. Although trivial compared to all-atom molecular mechanics models,

Gō models nevertheless can capture notrivial aspects of protein folding and assembly (see,

e.g., Refs. [17–19]), emphasizing the important role of topology in determining mechanisms

of these processes. In addition, we hoped that analysis of a Gō model would provide clues

about the energy landscape of more detailed models.

In the GB1 model, a configuration x was represented by the set of Cα positions, and the

potential energy U(x) for Cα configurations x of all proteins was similar to that used for the
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GB1 studies in Refs. [20] and [12]:
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The first term in Eq. (1) is the contribution from neighboring backbone Cα bond distances

ri, the second is from angles θi between neighboring bonds, the third is from dihedral angles

φi, the fourth is from noncovalent interactions between atom pairs (i, j) that form a native

contact, and the fifth is from noncovalent interactions between other pairs of atoms. The

crystal structure was used as the reference structure to determine ri,0, θi,0, and rij,0, with

native contacts determined using a cutoff distance of 5.5 Å. Other parameter values are

Kb = 200ε0 Å
−2

, Kθ = 40ε0 rad−2, Kφ = 0.3ε0, ε = 0.18ε0, and C = 4 Å. The absolute energy

unit ε0 = 1.89 kcal mol−1 was determined as in Ref. [20], assuming a folding temperature

T=350 K. As in Ref. [12], instead of being defined with respect to the reference structure,

the dihedral angle terms were defined to yield energy minima at 45◦ and -135◦ [20], adding

some frustration in the native state.

Langevin dynamics simulations were performed using a time step 0.0007τ and a friction

coefficient of 0.2/τ , where τ = 1.47 ps (following Ref. [20]). The collapse temperature Tθ,

defined by the maximum of the specific heat Cv vs. T [12], was located by performing mul-

tiple simulations at different temperatures to estimate Cv and locate the value of T at which

it is maximal (Tθ is not guaranteed to be the same as the folding temperature as defined,

e.g., using the maximum of the fluctuations in the number of native contacts vs. T [21]). A

trajectory at temperature Tθ with 3× 108 time steps was sampled every 104 steps to obtain

an ensemble of 3×104 inherent structures for analysis. (Results were similar for independent

runs, indicating that this sampling scheme was adequate.) Local minima eα, correspond-

ing to inherent structures α, were found using conjugate gradient minimization terminated

when a step resulted in an energy change of just 10−12ε0. The protein exhibited multiple

transitions between extended and collapsed states during the course of the simulation, and

the inherent structure ensembles exhibited a bimodal probability distribution PIS(eα, Tθ)
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FIG. 2: Estimated probabilities of inherent structures with energy eα at the collapse temperature

Tθ.

of collapsed and extended inherent-structure potential energies eα (Fig. 2), similar to the

distribution in Ref. [12].

Like a previous application of IS theory to proteins by Baumketner, Shea, and Hiwatari

[11], we replace the configurational integral in the partition function for an isolated protein

with a sum over contributions from individual inherent structures:

Z =
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which defines the vibrational free energy Fv(α, T ). In Eq. (2), R(α) is the basin surrounding

inherent structure α, Λi is the thermal wavelength of atom i, and σ is a factor to account

for symmetries.

Values of Fv(α, T ), calculated as differences with respect to the native structure α = 0

(the same holds for values of eα), were estimated at the collapse temperature Tθ using a

harmonic approximation,

Fv(α, T ) =
kBT

2

3N
∑

i=7

ln
λ

(α)
i

λ
(0)
i

, (3)

where λ
(α)
i is the ith eigenvalue of the Hessian hjk = ∂2U/∂xj∂xk calculated at the energy

minimum corresponding to inherent structure α, and λ
(0)
i is the same for the ground-state
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FIG. 3: (Color online) Vibrational free energies Fv of inherent structures vs. their potential energies

eα (black points). The dependence is well-modeled by Eq. (4) with ec = 88.4kBTθ (piecewise-linear

red line). The contribution from the highest 1/3 of the eigenvalues is constant (green points

following y = 0).

inherent structure. The sum is over all modes with nonzero frequency: we neglect a con-

tribution due to changes in the rotational entropy for different inherent structures. Values

of Fv are similar for inherent structures with a similar potential energy eα (Fig. 3). The

contribution to Fv from the highest 1/3 of the eigenvalues does not change for different

inherent structures. Interestingly, there is a gap in the eigenvalue spectrum between the

lowest 2/3 and the highest 1/3 of the eigenvalues (Fig. 4); in addition, only the highest 1/3

of the eigenvalues change when the bond-distance force constant Kb is increased by a factor

of ten, indicating that the corresponding modes describe the bond vibrations. Therefore

bond vibrations do not change significantly among different inherent structures. However,

the total Fv, which includes contributions from the lowest 2/3 of the eigenvalues, changes

significantly with eα (Fig. 3). The assumption of constant Fv by Nakagawa & Peyrard [12]

therefore is only valid for the modes that involve bond vibrations. This result is consistent

with studies of the loss of protein rigidity when local constraints are relaxed [13], e.g., in

protein unfolding [7], and is also consistent with molecular dynamics studies suggesting that

vibrations can be diverse for different protein conformational substates [22, 23].

As demonstrated by the fit in Fig. 3, Fv is well-modeled using the function

Fv(eα) = k2eα + (k2 − k1)kBTθ
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FIG. 4: Eigenvalue spectrum of an arbitrary inherent structure before (empty circles) and after

(filled circles) increasing the bond-distance spring constant Kb by a factor of ten. The low-frequency

spectra are indistinguishable.

× ln
(

e−ec/kBTθ + e−eα/kBTθ

)

. (4)

Equation (4) is essentially a piecewise-linear function with slope k1 for eα < ec, and slope

k2 for eα > ec. For GB1, k1 = −0.40, k2 = −0.91, and ec = 88.4kBTθ.

Inherent structure theory [8, 9] assumes that Fv(α, T ) = Fv(eα, T ) (validated for the

present application in Fig. 3), and relates Fv(eα, T ) and PIS(eα, T ) to the density of states

ΩIS(eα) through

PIS(eα, T ) =
1

Z
ΩIS(eα)e−eα/kBT e−Fv(eα,T )/kBT . (5)

Given ΩIS(e0) = 1, Fv(e0, T ) = 0, and e0 = 0, ΩIS(eα) is given by

ΩIS(eα) = eeα/kBT eFv(eα,T )/kBT PIS(eα, T )

PIS(e0, T )
, (6)

which generalizes a similar equation in Nakagawa & Peyrard [12] to values of Fv(eα, T ) that

vary with eα. Because Fv in Eq. (3) is proportional to T , in a harmonic approximation of

Fv, temperature changes are guaranteed only to influence PIS through the Boltzmann factor

e−eα/kBT in Eq. (5). This behavior was observed in Ref. [12]; however, it was interpreted

there as indicating that values of Fv are similar for different inherent structures.

We used Eq. (6) along with the calculated PIS and Fv from Eq. (4) to model the density

of inherent structures ΩIS. At energies below ec, ΩIS exhibits an exponential increase, but

with a slight increase in the exponent factor above an energy er, giving rise to a knee in
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FIG. 5: Density of inherent structures ΩIS (eα). The knee at er = 47.4kBTθ is due to a change in

stress, and the plateau beginning at roughly ec = 88.4kBTθ is due to a change in rigidity; both are

understood in terms of the network of native contacts (Figs. 6, 7).

the plot of log ΩIS vs. eα (Fig. 5). The knee is located at a minimum in PIS between the

extended and collapsed states (Fig. 2), and is thus associated with the transition state. Such

a knee was also seen in a previous model of ΩIS in which vibrations were assumed to be

identical for different inherent structures [12]. Above ec, ΩIS plateaus and decreases at the

highest energies, which is a consequence of the structure in both PIS and Fv. Rather than

being exponential in form [12], from Eqs. [3], [4], and [6], ΩIS in this region has the form

ΩIS(eα > ec) = eeα/kBT ek2eα/kBTθe(k1−k2)ec/kBTθ
PIS(eα, T )

PIS(e0, T )
. (7)

Because k2 is close to -1, the structure of ΩIS(eα) closely resembles that of PIS(eα, Tθ) above

ec.

We found (Fig. 6) that eα is closely related to the number of broken native contacts, n̄α

through the piecewise-linear function

eα = h2n̄α + (h2 − h1) ln
(

e−n̄r + e−n̄α

)

. (8)

The slopes h1 and h2 correspond to the amount of energy required to break a native contact

below (h1) and above (h2) a critical number of broken contacts n̄r. Data for GB1 are well-

modeled using h1 = 0.997, h2 = 0.622, and n̄r = 60. Below n̄r, breaking a native contact

requires more potential energy than above n̄r. Therefore, n̄r is associated with a change in

protein stress.
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FIG. 6: (Color online) Potential energy eα vs. number of broken contacts n̄α. The dependence is

well-modeled by Eq. (8) (red line). The energy required to break a native contact is approximately

equal to the binding energy ε, with differences due to stress in the structure. The knee corresponds

to a change in stress at n̄r = 60, where eα(n̄r) = 59.6kBTθ.

There are interesting connections between the structure of ΩIS below ec (Fig. 5) and the

dependence of eα on n̄α (Fig. 6). The change in the slope of ΩIS at er is closely related

to the change in the slope of eα(n̄α) at n̄r, suggesting that ΩIS has a simple exponential

dependence on n̄r below ec. However, the knee in ΩIS occurs at er = 47.4kBTθ, which is

smaller than the value eα(n̄r) = 59.6kBTθ at the knee in Fig. 6. While the density of inherent

structures might truly be enhanced in the gap between er and eα(n̄r), we note that the shift

of er with respect to eα(n̄r) might indicate that the inherent structure basins associated with

the transition state are especially large (as noted above, er is associated with the transition

state), and that the harmonic approximation might be especially ill-suited to estimating

their free energies for use in Eq. (6).

The source of the plateau in ΩIS above ec may be understood in terms of the dependence

of the free energy on both n̄α and the number of residues mα for which all native contacts

are broken. As shown in Fig. 7, a plot of mα vs. n̄α is well-modeled by the function

mα =
1

3

(

en̄α/40 − 1
)

, (9)

supporting an expectation that breaking a contact is only likely to create a residue with no

native contacts at high n̄α. The following simple model for Fv then successfully captures
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FIG. 7: Number of residues mα for which all native contacts are broken vs. the number of broken

contacts n̄α. The dependence is well-modeled by Eq. (9) (black line). Note that mα = 55 (close to

the expected value of 56) at n̄α = 207.

the structure of Fv in Fig. 3:

Fv(n̄α) = νn̄α + µmα, (10)

with mα given by Eq. (10). Using ν = −0.32 and µ = −1.07 yields good agreement

between values of Fv obtained either directly from the Hessian or using Eq. (10) (Fig. 8),

with a correlation coefficient of 0.993 for values calculated from all inherent structures. We

conclude that the change in the slope of Fv vs. eα at ec, and therefore the plateau in ΩIS(eα)

above ec, is associated with an increase in the likelihood that breaking a native contact will

increase the number of residues with no native contacts.

We found that protein stress and rigidity are closely tied to the network of native contacts

through Eqs. [8] and [10]. This finding is remeniscent of analyses of protein rigidity using

concepts from graph rigidity [13] and the association of a loss of network rigidity with protein

unfolding [7]. It is therefore tempting to associate the region between er and ec in Fig. 5

with the region of the mean coordination number 〈r〉 where proteins were found in Ref. [7] to

become floppy and unfold. However, the present approach differs from that used in Ref. [7]

in two key ways. First, because all residue interactions in the present study are lumped into

Cα atoms, the coordination numbers are higher, and the relation of coordination numbers

to protein rigidity might be different than for the all-atom models considered in Ref. [7].

Second, whereas the present results were obtained using a dynamical model, those obtained
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FIG. 8: Comparison of vibrational free energies calculated from Eq. [10] (y-axis) and estimated

using inherent structure theory (x-axis).

in Ref. [7] were obtained using a static model of the protein. It will be interesting to further

explore connections between the analyses based on IS theory and network rigidity.

The maximum in the density of states above ec is a consequence of considering diversity

in vibrations, and is not observed when uniform vibrations are assumed [12]. Interestingly,

a similar structure for the density of states, in which an exponential increase is followed

by a maximum, has been observed for many structural-glass-forming liquids [9]. To further

explore this correspondence, it will be interesting to improve the estimation of the density

of states by obtaining more accurate estimates of Fv than are possible using a harmonic

approximation [11].

Studies of two other Gō models of proteins yielded results that are qualitatively similar to

those found here for GB1 (unpublished results), suggesting the possibility that a simple phe-

nomenological relationship between the network of native contacts and the energy landscape

might exist for all Gō models. It will be interesting to explore this relationship for a large

number of proteins and seek representations in which it is identical for different proteins.

Discovery of such “universality” would enable the prediction of important properties of the

energy landscapes of Gō models without performing numerical simulations.

It will be important to extend the present results to models whose energy landscapes ex-

hibit more frustration than the model considered here. For example, the location, depth, and

curvature of energy minima would be expected to change with increasing Kφ. In addition,
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consider a modified model in which there is a weak attractive interaction for non-native

contacts. In contrast to the simple relation illustrated in Fig. 6, in such a model, inher-

ent structures with the same potential energy would likely have diverse numbers of native

contacts. However, by extending the parameter space, the energy still might be simply re-

lated to a combination of both the number of native contacts and the number of non-native

contacts. Similarly, the vibrational free energies might exhibit diversity among inherent

structures with the same energy, but might still be simply related to both the number of

native contacts and non-native contacts through an equation analogous to Eq. (10).

Ultimately, it will be interesting to incrementally increase the complexity of the model,

extending the present results (as far as computationally feasible) to realistic, all-atom models

of proteins that include explicit solvent and other effects that are important in controlling

protein function. Comparisons with all-atom models will create an avenue for understanding

more precisely the limitations of Gō models, which are gaining in popularity. Use of all-atom

models will also facilitate the exploration of links between analyses based on IS theory and

network rigidity.

The present results demonstrate that simple connections to protein structure are hidden

within the energy landscape of a Gō model. The potential energies and vibrational free

energies of inherent structures are highly correlated, and both reflect simple measures of

networks of native contacts. Through use of IS theory, these regularities should enable

significant simplification of thermodynamic models of proteins [8, 9, 12]. It will be important

to determine the relevance of the present results to more realistic models; both the success of

Gō models in studying mechanisms of protein folding and the fact that diversity in vibrations

about different minima has been observed in all-atom molecular mechanics models of proteins

[22, 23] suggests that the present results might be meaningfully generalized.
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