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Abstract

We have developed a mathematical model of regulation of expression of theEscherichia coli lacoperon,

and have investigated bistability in its steady-state induction behavior in the absence of external glucose.

Numerical analysis of equations describing regulation by artificial inducers revealed two natural bistability

parameters that can be used to control the range of inducer concentrations over which the model exhibits

bistability. By tuning these bistability parameters, we found a family of biophysically reasonable systems that

are consistent with an experimentally determined bistableregion for induction by thio-methylgalactoside

(TMG) (Ozbudak et al. Nature 427:737, 2004). To model regulation by lactose, we developed similar

equations in which allolactose, a metabolic intermediate in lactose metabolism and a natural inducer of

lac, is the inducer. For biophysically reasonable parameter values, these equations yield no bistability in

response to induction by lactose—only systems with an unphysically small permease-dependent export

effect can exhibit small amounts of bistability for limitedranges of parameter values. These results cast

doubt on the relevance of bistability in thelac operon within the natural context ofE. coli, and help shed

light on the controversy among existing theoretical studies that address this issue. The results also motivate

a deeper experimental characterization of permease-independent transport oflac inducers, and suggest an

experimental approach to address the relevance of bistability in the lac operon within the natural context of

E. coli. The sensitivity oflac bistability to the type of inducer emphasizes the importance of metabolism in

determining the functions of genetic regulatory networks.
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INTRODUCTION

In 1957, Novick and Weiner discovered thatEscherichia colican exhibit discontinuous switch-

ing in expression of thelac operon in response to thio-methylgalactoside (TMG), with some cells

expressing a large amount ofβ-galactosidase (β-gal), other cells expressing a small amount, and

an insignificant number of cells expressing an intermediateamount [1]. Recently, this effect was

further characterized using single-cell assays of fluorescence levels in a population ofE. coli cells

carrying alac::gfp reporter [2]. Cells were grown overnight on sucrose in either an induced (1 mM

TMG) or uninduced (no TMG) state. They were then diluted intomedia with defined levels of

TMG and glucose; after 20 hours of growth, the cells were examined under a microscope. Under

many conditions, cell populations exhibited a bimodal distribution, with induced cells having over

100 times the fluorescence level of uninduced cells. The distribution was also history-dependent:

at the same final level of TMG and glucose, cells with an induced history were predominantly

induced, while cells with an uninduced history were predominantly uninduced. These observations

have been attributed to the existence of two steady states, i.e., bistability, in the induction oflac in

E. coli.

Recent modeling studies have emphasized the importance of determining whether bistability

in expression oflac is relevant within a natural context [3, 4, 5, 6, 7, 8]. This question remains

open because experimental studies have focused on the response of lac expression to artificial

inducers, such as TMG and isopropyl-β, D-thiogalactopyranoside (IPTG), rather than the natural

inducer, allolactose. This difference is critical becauseartificial inducers (also known as gratuitous

inducers) are not metabolized by the induced enzyme, whereas the natural inducer is a metabolic

intermediate in lactose degradation, which is catalyzed bythe induced enzyme.

Savageau [3] found important differences between induction by IPTG vs. lactose in his theoret-

ical treatment of bistability in thelac operon. In Savageau’s model, because production and decay

of allolactose are both proportional to theβ-gal concentration, bistability is forbidden. Expression

of lac in response to lactose was therefore predicted not to exhibit bistability. This prediction

agreed with the absence ofsteady-statebistability in an experimental study of populations ofE.

coli cells exposed to lactose, described in the Supplementary Material of Ref. [2]—in that study,

only transientbimodal distributions of green fluorescence levels among cells were observed at

some glucose concentrations. It was later noted that modelswith operon-independent decay of

lactose (e.g., due to dilution by cell growth) could exhibitbistability [7]. Several studies using

2



such models found either a bistable or graded response to lactose, depending on parameter values

or external glucose levels [5, 6, 7, 8, 9, 10], and, in agreement with the model of Savageau, a

model of van Hoek & Hogeweg [7] was explicitly shown to exhibit no bistability in the absence of

operon-independent decay of allolactose. However, these studies disagree in their assessment of

whether bistability is present [5, 6, 10] or absent [7, 8, 9] in expression oflac amongE. coli cells

in a natural context.

In addition to predicting whetherlac induction exhibits bistability, some studies have addressed

the question of whether bistability might enhance or hinderthe performance ofE. coli cells. Both

Savageau [4] and van Hoek & Hogeweg [9] found that bistability increases the time required to

respond to sudden increases in environmental lactose, which can be a disadvantage in competition

for nutrients. These results argue against the natural relevance of bistability inlac expression.

Another important question that has not yet been addressed is whether the experimental obser-

vations of bistability in Ref. [2] are consistent with independent biophysical data that characterize

processes relevant to regulation oflac expression. Although phenomenological models were de-

veloped to reproduce the steady-state behavior [2] and the experimentally characterized dynamics

of switching between stable steady states [11], these models were not constrained by independent

biophysical data. For example, it is unclear whether the phenomenological models are consistent

with independently measured permease transport kinetics.On the other hand, studies of bistability

using more detailed, biophysical models oflac induction were either only partially constrained [7]

or did not consider the response to artificial inducers [5, 6,10].

Here we analyze bistability in ordinary differential equation (ODE) models oflac induction.

We use ODEs because we restrict our analysis to steady-statebehaviors, and because the protein

concentrations in fully induced cells are O(104) per cell (see Parameter Values section) and have

negligible fluctuations. Similar equations describe induction by artificial inducers or lactose;

however, the models for the two types of inducers are topologically distinct and one cannot be

obtained as a limiting case of the other. We first use the artificial induction model to gain insight

into key determinants of bistability oflac expression in response to TMG, and to understand

how characteristics of bistability are controlled by modelparameters. We then use the resulting

insight to tune the parameters of the model to match the bistable behavior observed by Ozbudak et

al. [2], and to predict mechanisms by which bistability might be abolished. Finally, like previous

modeling studies, we use the closely related lactose induction model to address the question of

whetherlac expression might be bistable in a natural context, contributing to resolution of what is
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now a long-standing controversy.

MODEL

FIG. 1: Circuitry for models oflac induction. a) Model for induction by lactose (Eqs. (1)), including the
following processes: (1) proportional production of permease (LacY) andβ-gal (LacZ); (2) permease-
mediated transport of lactose; (3) dilution of intracellular species by cell growth; (4)β-gal catalyzed
degradation of lactose, producing both the metabolic intermediate allolactose, and the ultimate products
of degradation, glucose and galactose; (5)β-gal catalyzed degradation of allolactose, producing glucose
and galactose; and (6) passive transport of inducer. b) Model for induction by artificial inducers (Eqs. (2)),
including: (1) proportional production of permease (LacY)andβ-gal (LacZ); (2) permease-mediated trans-
port of inducer; (3) dilution of intracellular species by cell growth and (6) passive transport of inducer.

In our model oflac induction (Fig. 1a), the following set of coupled ordinary differential equa-

tions relate the internal lactose concentration (l), allolactose concentration (a), andβ-galactosidase
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concentration (z) to the external lactose concentration (l∗)

l̇ = α0 (l∗ − l) + αz
(l∗ − φρl)

Ki + l∗ + ρl
−

βzl/Km,l

1 + a/Km,a + l/Km,l

− γl, (1a)

ȧ =
νβzl/Km,l

1 + a/Km,a + l/Km,l

−
δza/Km,a

1 + l/Km,l + a/Km,a

− γa and (1b)

ż = cγ +
εγan

Kn
z + an

− γz. (1c)

In Eqs. (1),α andKi are the rate constant and Michaelis constant for permease-dependent lactose

import, φα andρ−1Ki are the rate constants for permease-dependent lactose export, β andKm,l

are the rate constant and Michaelis constant for lactose degradation,ν is the branching fraction

of lactose degradation to allolactose,δ and Km,a are the rate constant and Michaelis constant

for allolactose degradation,γ is the rate of dilution due to cell growth,cγ andεγ are the basal

and inducible rates ofβ-galactosidase production,Kz is the allolactose concentration at half-

maximal induction ofβ-galactosidase production, andn is the Hill number for lactose induction

of β-galactosidase production. The metabolic flux terms in Eqs.(1) (β and δ terms) include

the effects of competition between allolactose and lactosefor access toβ-galactosidase; they are

derived from mass-action kinetic equations by assuming fast partitioning of enzyme among the

free, lactose-bound, and allolactose-bound states.

The model of permease-dependent transport is consistent with the kinetic scheme described

in Ref. [12], in which permease switches between inward-binding and outward-binding confor-

mations, and accepts substrate from either the interior or exterior of the cell depending on the

conformation. Similar to the enzyme flux terms, the transport term in Eq. (1a) (α term) is derived

from mass-action kinetic equations by assuming fast partitioning of permease among its various

states. Active transport (φ < 1) occurs through co-transport of substrate with a proton (symport),

and is powered by a proton gradient across the membrane. The transport model is supported by

crystallography studies [13, 14]. Changes in interior and exterior pH, membrane potential, and the

equilibrium constant between inward- and outward-facing conformations are considered implicitly

through changes in kinetic parameters; we assume these conditions are not influenced by changes

in substrate concentration. We note that Ref. [12] considered a limiting case (exchange) in which

switching between the two conformations is only kinetically accessible when substrate is bound

to the permease, and both active transport and efflux are blocked. Here we consider more general

equations in which all transitions in the model are allowed;our transport equation therefore differs
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from that in Ref. [12].

To focus on the operating conditions of the system that are most relevant to lactose utilization by

E. coli, we only consider regulation in the absence of glucose. Thisfocus is appropriate because,

in the presence of glucose,lac is not essential for growth, and inducedβ-galactosidase levels are

low [15].

Similarly, the model of artificial induction oflac (Fig. 1b) is given by

l̇ = α0 (l∗ − l) + αz
(l∗ − φρl)

Ki + l∗ + ρl
− γl and (2a)

ż = cγ +
εγln

Kn
z + ln

− γz. (2b)

In Eqs. (2), variables and parameters have the same meaning as in Eqs. (1), exceptl and l∗

correspond to the level of internal and external artificial inducer (e.g., IPTG or TMG), respectively,

andα0 is the rate constant for permease-independent passive transport across the membrane.

In Eqs. (1) and Eqs. (2), protein expression is lumped with gene expression, and the dependence

of promoter activity on the level of signal (TMG or allolactose) is modeled using a simple Hill

function, which is significantly simpler than other models [5, 6, 7, 8, 9, 10, 16, 17]. On the other

hand, Eqs. (1) consider the effects of competition among substrates in permease transport and

metabolic processes, unlike other models oflac induction [2, 3, 4, 5, 6, 7, 9, 10, 16, 18]. Compared

to the model of Savageau [3, 4], Eqs. (1) consider operon-independent decay of allolactose, without

which bistability in response to lactose is impossible [3, 4, 7], as discussed above. Overall, Eqs. (1)

and Eqs. (2) are less detailed than thelac induction models used in Refs. [16], [5], [6], [7], [9],

and [10], and are more detailed than those used in Refs. [3], [4], [18], and [2], and they therefore

constitute intermediate complexity equations describinglac induction. Compared to the simpler

models, the intermediate level of detail provides increased contact between model parameters and

biophysical measurements, and compared to more detailed models, it facilitates analysis of the

equations and interpretation of the results.

PARAMETER VALUES

We used the parameter values and ranges listed in Table I to analyze bistability in Eqs. (1) and

Eqs. (2). The values in the table were obtained as follows:

• γ. We assume the doubling time under the conditions in Ref. [2]is 30-60 min. We note,
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however, that this time might be very different forE. coli growing under stress in the gut

or aqueous environment; this represents a source of uncertainty concerning the biological

relevance of our predictions.

• α0. Experimental data on passive transport of inducers seems scarce in the literature.

Ref. [19] reports a measured rate constant of 0.14 min−1 for TMG, and Ref. [20] reports

permease-independent efflux rate constants of 0.022 min−1 and 0.054 min−1 for lactose

measured under conditions of deinduction and induction, respectively. However, the TMG

value was obtained using competitive inhibition of permease using an undescribed method,

and the lactose values were obtained using a model of lactoseflux that is inconsistent with the

mechanism in Ref. [12], and that ignores dilution by cell growth. We therefore consider the

above values to be uncertain. Here we explore the same range as that used in the modeling

study described in Ref. [9], which encompasses the above values. We analyze the lactose

system using a nominal value of 0, allowing for the possibility that the actual value might

be very small; this value also maximizes the potential for bistability.

• α. An approximate range of 1-100 s−1 for sugar transport turnover numbers was obtained

from the review by Wright et al. [21]. The range is broader than measured values [22]

because measurements were made at 25◦C rather than at the physiological temperature of

37◦C in the host environment of the gut, and at which measurements in Ref. [2] were

performed. Turnover numbers can vary by about an order of magnitude depending on

the membrane potential and proton gradient [22], leading toadditional uncertainty. The

nominal value of600 min−1 is consistent with Ref. [22] assuming the production rate of

functional permease is about the same as that of functionalβ-gal. Because permease is a

monomer whileβ-gal is a tetramer, this assumption entails a four-fold smaller synthesis

rate for permease monomers compared toβ-gal subunits. This seems possible, as (1)

galactoside acetyltransferase (GATase) monomer synthesis is eight-fold smaller thanβ-gal

subunit synthesis; (2) due to incomplete operon transcription and the order of genes in

the operon (lacZYA), the amount of mRNA transcribed from the GATase gene (lacA) and

permease gene (lacY) is smaller than that from theβ-gal gene (lacZ); (3) there is some

evidence that permease monomers are made in smaller amountsthanβ-gal subunits [23].

• φ. The nominal value of 0.5 was obtained by comparing the active transport and efflux

turnover numbers in Ref. [22], Table 1. Because permease transport kinetics are sensitive to
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membrane potential and proton gradient [22], we allow the value to decrease in the search

for bistable conditions (we found that bistability is abolished for higher values ofφ).

• Ki. A nominal value of0.5 mM was obtained from Ref. [22]. The range was applied as per

α, and encompasses measured values [22, 24, 25].

• ρ. Guided by Ref. [22], Table 1, we assume that the Michaelis constant for permease-

dependent import can be up to 10 times smaller than that for export. The nominal value of

0.1 is consistent with the smallest in that table, and yieldsthe greatest potential for bistability

in the lactose system.

• β. A total lactose turnover number forβ-galactosidase of2.85 × 104 min−1 is estimated

from a measured value ofVmax = 61.3 µM min−1 mg−1 in Ref. [26]. This estimate is

an order of magnitude greater than the value3.6 × 103 min−1 given in Ref. [27], but the

two estimates agree closely when one considers thatβ-gal converts about half of its lactose

substrate to glucose and galactose, rather than allolactose, and that the enzyme is composed

of four monomeric catalytic subunits. The estimate given inRef. [27] is appropriate for

total turnover of lactose on a per monomer basis. Like forα, because measurements were

performed at 30◦C, we consider a range of values ten times lower to ten times higher than

the nominal value.

• Km,l. The nominal value was obtained directly from Ref. [28]. As for β, because of

temperature considerations, we use a range from ten times lower to ten times higher than the

nominal value.

• ν. The valueν = 0.468 was calculated from the total rate ofβ-gal degradation of lactose and

the partial flux from lactose to allolactose reported in Ref.[26]. We take it to be a constant

because the ratio of reaction products was found to be insensitive to temperature changes

between30◦C and0◦C.

• δ. An allolactose turnover number forβ-gal of2.3×104 min−1 is estimated from a measured

value ofVmax = 49.6 µ mol min−1 mg−1 in Ref. [28]. As forβ, because of temperature

considerations, we use a range from ten times lower to ten times higher than the nominal

value.
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• Km,a. The nominal value was obtained directly from Ref. [28]. As for β, because of

temperature considerations, we use a range from ten times lower to ten times higher than the

nominal value.

• ε. Using a production rate of 5β-gal tetramers per cell per second for a 48 min generation

time [29], 14,400 molecules are produced during a generation at full induction–this is the

number of molecules in the cell after doubling (supporting our choice of a noiseless model).

Assuming a 1µm3 mean cell volume [30] and linear volume increase in time [31], the

volume after doubling is approximately 0.7µm3, leading to a concentration of 34,286nM.

• c. This value is derived fromε, assuming a 1000-fold increase inβ-galactosidase levels

upon induction [32].

• Kz andn. These values are estimated from IPTG induction data in permease knockout cells

both from Ref. [33], Fig. 15 and from data compiled in Ref. [34], Figs. 1 and 2. The

nominal valuen = 2 was estimated from the slopes of the curves in the figures, andKz

was determined by estimating from the figures the concentration of IPTG at half-maximal

induction. The nominal value of105 nM was estimated from data compiled in Ref. [34]. To

determine the range, an approximate lower value of104 nM was obtained from Ref. [33],

and we allowed for an upper value of106 nM to account for potential differences between

induction by IPTG and TMG or lactose.

RESULTS

We first used Eqs. (2) to determine how parameter values control bistability in the steady-state

response oflac expression to artificial inducers. To detect and characterize bistability for a given

set of parameter values, we solved forz(l) andl∗(l) as rational functions ofl. Bistability in lac

expression exists when the line describing steady-state levels ofz vs. l∗ adopts a characteristic “S”

shape, as shown in Fig. 2. Within the bistable range ofl∗, the highest and lowest levels ofz are

stable steady-state solutions and the intermediate level of z is an unstable steady-state solution of

Eqs. (1). The bistable range is defined by the lower (l∗ = L) and upper (l∗ = U) turning points, as

illustrated in Fig. 2. An analogous signature of bistability can be seen in examining steady-state
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TABLE I: Parameter values. Nominal values are those used to generate the lactose induction curves in
Fig. 8.

ParamDescription Nominal Range
γ growth rate – 0.0116 min−1 – 0.0231 min−1

α0 passive transport 0 0 – 1.35 min−1

rate constant
α permease import 600 min−1 6 × 101 min−1 –

turnover number 6 × 103 min−1

φ ratio of permease 0.5 0 –0.5
export to import
turnover numbers

Ki permease Michaelis 5 × 105 nM 5 × 104 nM –
constant 5 × 106 nM

ρ ratio of permease 0.1 0.1 –1
import to export
Michaelis constants

β β-gal lactose 2.85 × 104 min−1 2.85 × 103 min−1 –
turnover number 2.85 × 105 min−1

ν lactose→ allolactose 0.468 –
β-gal branching
fraction

Km,l β-gal lactose 2.53 mM 0.253 mM – 25.3 mM
Michaelis constant

δ β-gal allolactose 2.30 × 104 min−1 2.30 × 103 min−1 –
turnover number 2.30 × 105 min−1

Km,a β-gal allolactose 1.2 mM 0.12 mM –12.0 mM
Michaelis constant

ε fully induced 34285 nM –
β-gal level

c basalβ-gal level 34.3 nM –
Kz signal level at 105 nM 104 nM – 106 nM

half-maximal
lac induction

n Hill number for 2 –
signal-dependent
lac induction

levels ofl vs. l∗ (not shown). For a model with given parameter values,L andU can be located by

finding the roots of eitherdl∗/dz or dl∗/dl using an eigenvalue solver.

We analyzed Eqs. (2) for systems withα0 = 0 andφ = 0, ρ = 1, n = 2, and all other sets of

parameter values drawn from the ranges in Table I. Sets of 100values each forKi andKz were

obtained using logarithmically even sampling over their allowed ranges. Because the steady-state
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FIG. 2: An example of bistable behavior in the artificial induction model (Eqs. (2)). The upper (U ) and
lower (L) turning points are consistent with the experimental results in Ref. [2]. The parameter values are
γ = .0231 min

−1, α = 60 min
−1, Kz = 123, 285 nM andKi = 1, 077, 217 nM.

solutions of Eqs. (2) only depend onα andγ through the ratioα/γ, rather than samplingα andγ

individually, we obtained 100 values ofα/γ using logarithmically even sampling between the upper

and lower bound computed from Table I. This sampling scheme yielded100 × 100 × 100 = 106

systems with different values of(α/γ, Ki, Kz).

We found that all106 systems exhibited some degree of bistability in response toinduction by

artificial inducers. The dependence of the range of bistability on model parameters was further

analyzed using two measures that we introduce here: the ratio U/L, and the productUL. We used

these measures to estimate the percentage of systems for which bistability might be observable

in an experiment like that in Ref. [2]. By inspecting the measurement errors in Ref. [2], we

estimate that systems withU/L > 1.1 andUL > 0.01 µM2 exhibit bistability that is favorable

for experimental observation, and that systems with eitherU/L < 1.1 or UL < 0.01 µM2 exhibit

bistability that is unfavorable for experimental observation. Among systems with parameter values

sampled as described above, by these criteria, experimental observation of bistability is favorable

for 65% of systems, and unfavorable for35% of systems.
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FIG. 3: Effects of variations in theα0 > 0 parameter on an artificially induced system withφ = 0 min
−1

andα0 = 10
−k

min
−1, k = 0, . . . , 4. The other parameters are given byn = 2, γ = .0231 min

−1, ε =

34286 nM, c = 34.3 nM, Ki = 5 × 10
6

nM, Kz = 10
4

nM andα = 60 min
−1.

To compare Eqs. (2) to the data in Ref. [2], we first selected a subset of systems for which

the bistable region is in the same neighborhood as that in Ref. [2]: from 3 µM to 30 µM TMG.

Considering this range, out of the106 systems sampled, we selected 187,108 systems for which

L > 1 µM andU < 100 µM for further analysis. Interestingly, we found that all of these systems

collapse to a single curve when displayed in the space oflog
10

(U/L) vs. log
10

(Ki/Kz) (Fig. 5),

indicating thatU/L can be precisely tuned using the parameterX = Ki/Kz. As shown in Fig. 5,

the dependence was accurately modeled using the equation

log10(U/L) ≈
(Ki/Kz)

.93

(Ki/Kz).93 + (.27).93
−

1

10
≥ 0. (3)

Next, we found that, at a given value ofX = Ki/Kz, without changing the value ofU/L, UL

could be tuned precisely using the parameterY = KiKzγ/α. As shown in Fig. 6, this dependence

was accurately modeled using the equation

log
10

(UL) = C0(X) + C1(X) log
10

(Y ). (4)
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FIG. 4: Effects of variations in theφ > 0 parameter on an artificially induced system withα0 = 10
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min
−1

andφ = 0 and10
−k

min
−1, k = 1, . . . , 4. The other parameter values are as in Fig. 3.

Figure 7 shows theX-dependence of the parametersC0(X) andC1(X), obtained numerically

using systems with similar values ofX. For the range of systems considered here, we found that

C0(X) could be fit using a third order polynomial inlog
10

(X), and thatC1(X) could be taken as

a constant.

We used Eq. (3) and Eq. (4) to obtain a family of systems that are consistent with the parameter

values in Table I and that exhibit a range of bistability consistent with that observed in Ref. [2],

with log10(U/L) ≈ .86 andlog10(UL) ≈ 1.92. An example of the steady-state behavior of one

such system is illustrated in Fig. 2.

Increasing eitherα0 or φ above zero tends to reduce or abolish bistability in artificially induced

systems. Asα0 is increased (Fig. 3), firstU begins shifting to lower values ofl∗, thenL begins

shifting to higher values ofl∗, leading to an asymptotic behavior in which bistability is abolished.

Like changes inα0, asφ is increased (Fig. 4),L shifts to higher values ofl∗; however, by contrast,

U does not initially show a significant change. Asφ is increased further, the entire induction curve

begins to shift to higher levels ofl∗.
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FIG. 5: Relation betweenU/L and the parameterX = Ki/Kz . Data points are generated using the artificial
induction model (Eqs. (2)) with parameter values selected as described in the text. Points withL > 1µM

andU < 100µM were selected; shown are a subset of points that illustrate the general trend, which is
described well using Eq. (3).

We then considered systems withρ < 1. Using Eqs. (2), we found that the steady-state behavior

of such systems is equivalent to that of systems withρ = 1 under the transformation

l → ρl, (5a)

Kz → ρKz, and (5b)

γ →
γ

ρ
+ (1 − ρ)

α0

ρ
(5c)

Because bothKi/Kz andKiKzγ/α increase under this transformation, we expected bistability to

be enhanced in systems withρ < 1 (see Figs. 5 and 6). Indeed, we found that bistability in systems

with ρ < 1 exhibited a higher tolerance to increases inα0 andφ: for example, the system with

Kz = 10 µM, Ki = 5 mM, α = 890 min−1, φ = 0.1, α0 = 10−3 min−1, andρ = 0.1 exhibits

bistability with log10(U/L) = 0.85 and log10(UL) = 1.91, which is consistent with the data in

Ref. [2].

We used similar methods to analyze Eqs. (1) which describe induction by lactose. Like the
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FIG. 6: Relation between the bistability measureUL and the parameterY = KiKzγ/α. Using the co-
efficientsC0 andC1 (Fig. 7) as indicated on the y-axis yields a linear relation that is well-modeled using
Eq. (4). The data points are generated as described in Fig. 5 and in the text.

artificial induction model, the steady-state behavior of systems withρ < 1 is equivalent to that of

systems withρ = 1 under the transformations in Eqs. (5), with the additional re-scaling

Km,l → ρKm,l. (6)

No bistability was present in the system with nominal parameter values from Table I withφ = 0.5

(Fig. 8), which is consistent with the theory of Savageau [3]and the Supplementary Material of

Ref. [2]. However, guided by the results for artificial inducers in Fig. 4, we examined systems with

φ = 0. Although the system with otherwise nominal parameter values did not exhibit bistability,

other systems that have parameter values consistent with the ranges in Table I did exhibit bistability.

We located the system that exhibits the largest values ofU/L andUL; for this case,α, β, δ, ρ and

Kz assume their lowest values in Table I whileγ, Km,l, Km,a andKi assume their highest values

(Fig. 9).

To estimate the distribution of systems exhibiting the different qualitative behaviors, as for the

case of artificial inducers, we analyzed105 systems with randomly sampled parameter values, all
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FIG. 7: Dependence of the coefficients for theUL regression model in Eq. (4) onX = Ki/Kz. By allowing
C0 andC1 to depend onX, the bistability measureUL has a simple linear relationship withY = KiKzγ/α

(Fig. 6). The value ofX is determined by Eq. (3) for a given value ofU/L (Fig. 5).

with φ = 0 andρ = 0.1. We found that99.82% of these systems exhibit no bistability,0.07%

exhibit bistability favorable for observation (U/L > 1.1 andUL > 0.01 µM2), and0.11% to

exhibit bistability that is unfavorable for observation (U/L < 1.1 or UL < 0.01 µM2). These

statistics are virtually unchanged for systems withρ = 1. Increasingφ to even a small fraction

of its nominal value rapidly abolishes bistability for all combinations of other parameter values in

Eqs. (1) (Fig. 10).

DISCUSSION

For the equations describing induction by artificial inducers, we found that the range of external

inducer concentrations over which systems withα0 = 0 andφ = 0 exhibit bistability is precisely

controllable by two rational combinations of model parameters. First, the value ofU/L can be

specified by choosing a value of the parameterX = Ki/Kz using Eq. (3). Then, using this value

of X, the value ofUL can be specified by choosing a value of the parameterY = KzKiα/γ using

Eq. (4) and the empirically determinedC0(X) andC1(X) (Fig. 7). By adjusting these parameters,

16



10
−2

10
0

10
2

10
4

10
6

10
−2

10
−1

10
0

z 
(µ

M
)

γ = .0231

10
−2

10
0

10
2

10
4

10
6

10
−2

10
−1

10
0

z 
(µ

M
)

l* (µM)

γ = .0116

FIG. 8: Lactose induction behavior calculated using the nominal values in Table I. Neither the system with
γ = 0.231 min

−1 (top) nor the system withγ = 0.116 min
−1 (bottom) exhibits bistability.

we were able to demonstrate agreement with the bistable range for TMG induction from Ref. [2].

Small increases inα0 andφ abolished bistability in artificially induced systems withρ = 1.

Bistability was less sensitive to increases inα0 andφ in systems withρ = 0.1; however, even

with ρ = 0.1, bistability was abolished in systems withα0 as high as0.01 min−1. This value

is smaller than measured permease-independent diffusion rates for TMG [19] and lactose [20];

combined with uncertainty in these measurements (Parameter values), this discrepancy motivates

further studies of permease-independent diffusion oflac inducers.

To achieve agreement with the bistable range of roughly3 µM to 30 µM in Ref. [2], c andε

in Eqs. (2) were tuned to exhibit a 1000-fold induction of protein expression. While this value

is reasonable based on previous studies, at first glance, it appears to disagree with the roughly

100-fold induction of GFP expression reported in Ref. [2]. Indeed, we analyzed systems with

alternative values ofc and ε that yield 100-fold induction, and none of them exhibited bistable

ranges that agree with the range reported in Ref. [2]. However, the lac :: gfp reporter used in

Ref. [2] begins at -84 with respect to the start site, and extends to +20; it therefore seems to be

missing all of the O2 sequence, and some of the O3 sequence. Such a difference could easily lead
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FIG. 9: Bistability in theφ = 0 lactose-induced system withα, β, δ, ρ, andKz at their lowest values in
Table I andγ, Km,l, Km,a, andKi at their highest values. This is the system that exhibits thelargest values
of U/L andUL within the allowed ranges of parameter values.

to a 10-fold difference in induction of the reporter compared to the nativelac promoter; evidence

for such an effect could be sought experimentally, e.g. by calibrating the fluorescence levels against

measurements ofβ-gal activity.

The curve in Fig. 9 illustrating an extreme example of bistability in response to lactose forφ = 0

closely resembles a similar curve shown in van Hoek & Hogeweg[7], Fig. 2B. Thus, although

our model is less detailed than theirs, it can exhibit comparable steady-state behavior. In addition,

Ref. [9] considered a stochastic model oflac induction, and Ref. [8] considered a more detailed

model of the dependence of promoter activity on the level of inducer that includes DNA looping;

nevertheless, like the present study, Refs. [7, 8, 9] each reported a lack of bistability in lactose

induction of lac. These consistencies lend support to our choice of an intermediate complexity

model of bistability inlac.
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CONCLUSIONS

The lack of bistability observed for induction by lactose agrees with modeling studies concluding

that bistability inlac expression is irrelevant toE. coli in a natural context [3, 4, 7, 8, 9]. Thus,

although bistable behavior inlac is now well-documented [1, 2, 35], because it has only been

experimentally observed using artificial inducers, its relevance within the natural context ofE. coli

is doubtful. Indeed, it is surprising that thelac operon has been considered to be a paradigm of

bistability in gene regulation, considering the gaps in understanding that remain after so many

careful experimental and theoretical studies.

The present results predict that bistable behavior can be promoted by (1) hindering the kinetics

of permease transport (α, Ki) andβ-gal catalysis (β, δ, Km,l, Km,a); (2) lowering the required

level of allolactose for half-maximallac expression (Kz); (3) accelerating cell growth (γ); and

(4) decreasing the Michaelis constant for permease influx relative to that for efflux (ρ). These

predictions suggest genetic targets for engineeringE. coli strains that exhibit a clear signature of
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bistability. Experiments to compare the behavior of such strains with wild-type cells would help

to clarify whether bistability inlac expression is relevant in a natural context.

Here, we found that metabolic fluxes are key determinants of bistability in lac induction, and

that the qualitative behavior of the system can change depending on metabolism of of inducers.

Previously, we found that diversity in the interaction of aninput signal with transcription factors

leads to diversity in the qualitative behavior of a feed-forward loop gene circuit [36]. We expect

these findings to apply broadly to genetic regulatory systems in E. coli and other organisms.

Overall, the results of these studies emphasize the importance of the nature of the input signal in

determining the functions of genetic regulatory circuits.
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