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Abstract

We have developed a mathematical model of regulation ofesssjwn of theéEscherichia coli lacoperon,
and have investigated bistability in its steady-state @tidn behavior in the absence of external glucose.
Numerical analysis of equations describing regulationtti§ical inducers revealed two natural bistability
parameters that can be used to control the range of induoeentrations over which the model exhibits
bistability. By tuning these bistability parameters, werid a family of biophysically reasonable systems that
are consistent with an experimentally determined bistadagon for induction by thio-methylgalactoside
(TMG) (Ozbudak et al. Nature 427:737, 2004). To model reijptaby lactose, we developed similar
equations in which allolactose, a metabolic intermediatéactose metabolism and a natural inducer of
lac, is the inducer. For biophysically reasonable parametiresathese equations yield no bistability in
response to induction by lactose—only systems with an usipally small permease-dependent export
effect can exhibit small amounts of bistability for limitednges of parameter values. These results cast
doubt on the relevance of bistability in theec operon within the natural context &. coli, and help shed
light on the controversy among existing theoretical steidit address this issue. The results also motivate
a deeper experimental characterization of permease-éndient transport dc inducers, and suggest an
experimental approach to address the relevance of biggahithe lac operon within the natural context of
E. coli. The sensitivity ofac bistability to the type of inducer emphasizes the impomtasicmetabolism in

determining the functions of genetic regulatory networks.



INTRODUCTION

In 1957, Novick and Weiner discovered ttegcherichia colican exhibit discontinuous switch-
ing in expression of th&ac operon in response to thio-methylgalactoside (TMG), witine cells
expressing a large amount gfgalactosidasei-gal), other cells expressing a small amount, and
an insignificant number of cells expressing an intermediateunt{[1]. Recently, this effect was
further characterized using single-cell assays of flu@ese levels in a population &. coli cells
carrying dac::gfpreporteri[2]. Cells were grown overnight on sucrose in eigmeinduced (1 mM
TMG) or uninduced (no TMG) state. They were then diluted imedia with defined levels of
TMG and glucose; after 20 hours of growth, the cells were emadunder a microscope. Under
many conditions, cell populations exhibited a bimodalrdisition, with induced cells having over
100 times the fluorescence level of uninduced cells. Thelbligion was also history-dependent:
at the same final level of TMG and glucose, cells with an indugistory were predominantly
induced, while cells with an uninduced history were predantly uninduced. These observations
have been attributed to the existence of two steady statedistability, in the induction dac in
E. coli.

Recent modeling studies have emphasized the importancetefoining whether bistability
in expression ofac is relevant within a natural context [3, 4,15,16,.¥, 8]. Thiegtion remains
open because experimental studies have focused on thensespflac expression to artificial
inducers, such as TMG and isopropylD-thiogalactopyranoside (IPTG), rather than the natural
inducer, allolactose. This difference is critical becaartdicial inducers (also known as gratuitous
inducers) are not metabolized by the induced enzyme, whdheanatural inducer is a metabolic
intermediate in lactose degradation, which is catalyzethbynduced enzyme.

Savageau |3] found important differences between indodfolPTG vs. lactose in his theoret-
ical treatment of bistability in thiac operon. In Savageau’s model, because production and decay
of allolactose are both proportional to thegal concentration, bistability is forbidden. Expression
of lac in response to lactose was therefore predicted not to exbigtability. This prediction

agreed with the absence stieady-statdistability in an experimental study of populationskf

coli cells exposed to lactose, described in the Supplementatgribof Ref. [2]—in that study,
only transientbimodal distributions of green fluorescence levels amonig eeere observed at
some glucose concentrations. It was later noted that med#isoperon-independent decay of

lactose (e.g., due to dilution by cell growth) could exhimitability [7]. Several studies using



such models found either a bistable or graded responsettstaaepending on parameter values
or external glucose levels![5, 8, [4,18,19) 10], and, in agregméth the model of Savageau, a
model of van Hoek & Hogewe@l[7] was explicitly shown to exhit bistability in the absence of
operon-independent decay of allolactose. However, theskes disagree in their assessment of
whether bistability is presenti[5, 6,110] or absent |7,/ 8,rOéxpression ofac amongE. coli cells

in a natural context.

In addition to predicting whethéac induction exhibits bistability, some studies have addrdss
the question of whether bistability might enhance or hirtlerperformance dk. colicells. Both
Savageau (4] and van Hoek & Hogeweg [9] found that bistabifitreases the time required to
respond to sudden increases in environmental lactosehwhitbe a disadvantage in competition
for nutrients. These results argue against the naturalamete of bistability ifac expression.

Another important question that has not yet been addresselather the experimental obser-
vations of bistability in Ref..|2] are consistent with indepent biophysical data that characterize
processes relevant to regulationla expression. Although phenomenological models were de-
veloped to reproduce the steady-state behavior [2] andxiberienentally characterized dynamics
of switching between stable steady states [11], these rmedake not constrained by independent
biophysical data. For example, it is unclear whether thenpheenological models are consistent
with independently measured permease transport kinédigsshe other hand, studies of bistability
using more detailed, biophysical modeldaxd induction were either only partially constrained [7]
or did not consider the response to artificial inducgrsi[3,09,

Here we analyze bistability in ordinary differential eqoat(ODE) models ofac induction.
We use ODEs because we restrict our analysis to steadyksthsiors, and because the protein
concentrations in fully induced cells are 10f) per cell (see Parameter Values section) and have
negligible fluctuations. Similar equations describe intdhc by artificial inducers or lactose;
however, the models for the two types of inducers are topcdtly distinct and one cannot be
obtained as a limiting case of the other. We first use the@stifinduction model to gain insight
into key determinants of bistability dac expression in response to TMG, and to understand
how characteristics of bistability are controlled by mogdatameters. We then use the resulting
insight to tune the parameters of the model to match theldesteehavior observed by Ozbudak et
al. |[2], and to predict mechanisms by which bistability niglk abolished. Finally, like previous
modeling studies, we use the closely related lactose immuatodel to address the question of

whetherdac expression might be bistable in a natural context, contnigito resolution of what is



now a long-standing controversy.

MODEL
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FIG. 1: Circuitry for models ofac induction. a) Model for induction by lactose (Eddl (1)),luding the
following processes: (1) proportional production of pease (LacY) and3-gal (LacZ); (2) permease-
mediated transport of lactose; (3) dilution of intracellukpecies by cell growth; (43-gal catalyzed
degradation of lactose, producing both the metabolic iméeliate allolactose, and the ultimate products
of degradation, glucose and galactose; §5al catalyzed degradation of allolactose, producing agec
and galactose; and (6) passive transport of inducer. b) Mod@duction by artificial inducers (Eqd1(2)),
including: (1) proportional production of permease (LaaYip3-gal (LacZ); (2) permease-mediated trans-
port of inducer; (3) dilution of intracellular species byllgrowth and (6) passive transport of inducer.

In our model oflac induction (Fig[la), the following set of coupled ordinaifferential equa-

tions relate the internal lactose concentratidngllolactose concentration), andjg-galactosidase



concentration4) to the external lactose concentratidt) (
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In Egs. [1),« and K; are the rate constant and Michaelis constant for permegsendent lactose
import, oo and p~! K; are the rate constants for permease-dependent lactose,ekpod K., ;
are the rate constant and Michaelis constant for lactoseadation,v is the branching fraction
of lactose degradation to allolactoseand k,, , are the rate constant and Michaelis constant
for allolactose degradation is the rate of dilution due to cell growtl; andey are the basal
and inducible rates off-galactosidase productiors’, is the allolactose concentration at half-
maximal induction ofs-galactosidase production, ands the Hill number for lactose induction
of (-galactosidase production. The metabolic flux terms in Eis(5 and o terms) include
the effects of competition between allolactose and lactoisaccess t@-galactosidase; they are
derived from mass-action kinetic equations by assuminggaditioning of enzyme among the
free, lactose-bound, and allolactose-bound states.

The model of permease-dependent transport is consistémttig kinetic scheme described
in Ref. [12], in which permease switches between inwardhipigp and outward-binding confor-
mations, and accepts substrate from either the interioxt@rier of the cell depending on the
conformation. Similar to the enzyme flux terms, the transfeym in Eq. [IR)  term) is derived
from mass-action kinetic equations by assuming fast pamtitg of permease among its various
states. Active transport (< 1) occurs through co-transport of substrate with a protomfsyrt),
and is powered by a proton gradient across the membrane.rdimgbrt model is supported by
crystallography studies [13,/14]. Changes in interior axtdrgor pH, membrane potential, and the
equilibrium constant between inward- and outward-faciogformations are considered implicitly
through changes in kinetic parameters; we assume theséioosdire not influenced by changes
in substrate concentration. We note that Ref. [12] coneidiarlimiting case (exchange) in which
switching between the two conformations is only kinetiga@tcessible when substrate is bound
to the permease, and both active transport and efflux ar&daodiere we consider more general

equations in which all transitions in the model are allowed;transport equation therefore differs



from that in Ref. [12].

To focus on the operating conditions of the system that as re@evant to lactose utilization by
E. coli, we only consider regulation in the absence of glucose. fhioiss is appropriate because,
in the presence of glucoskac is not essential for growth, and inducgejalactosidase levels are
low [15].

Similarly, the model of artificial induction déc (Fig.[b) is given by

I = ag(l*=1)+ azKi T ~l and (2a)
. eyl B
z=cy+ Ko+ vz. (2b)

In Egs. [2), variables and parameters have the same measig Eqgs. [(L), except and [*
correspond to the level of internal and external artifigidlicer (e.g., IPTG or TMG), respectively,
anday is the rate constant for permease-independent passiaptdracross the membrane.

In Egs. 1) and Eqsl]2), protein expression is lumped witltegexpression, and the dependence
of promoter activity on the level of signal (TMG or allolas®) is modeled using a simple Hill
function, which is significantly simpler than other modé&isi$,17,.8) 9] 10, 16, 17]. On the other
hand, Egs.[{1) consider the effects of competition amongtsates in permease transport and
metabolic processes, unlike other modellgoinduction [2, 3] 4, 5,16,/7,9, 10, 116,/118]. Compared
to the model of Savageau |3, 4], E4S. (1) consider operoagieddent decay of allolactose, without
which bistability in response to lactose is impossiole [3]4as discussed above. Overall, EGk. (1)
and Egs.[[R) are less detailed than theinduction models used in Refs. _[16], [5]) [6]1/ [7]. [9],
and [10], and are more detailed than those used in Refs 4BJU&], and [2], and they therefore
constitute intermediate complexity equations descritt@egnduction. Compared to the simpler
models, the intermediate level of detail provides incrdasmtact between model parameters and
biophysical measurements, and compared to more detailel@ls)at facilitates analysis of the

equations and interpretation of the results.

PARAMETER VALUES

We used the parameter values and ranges listed in [lable atpzarbistability in Eqs[{1) and
Egs. [2). The values in the table were obtained as follows:

e . We assume the doubling time under the conditions in Refis[3P-60 min. We note,
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however, that this time might be very different fér coli growing under stress in the gut
or agueous environment; this represents a source of umtgrtancerning the biological

relevance of our predictions.

ag. Experimental data on passive transport of inducers seearsesin the literature.
Ref. [19] reports a measured rate constant of 0.14 far TMG, and Ref. |[20] reports
permease-independent efflux rate constants of 0.022'n@ind 0.054 min! for lactose
measured under conditions of deinduction and inductispeetively. However, the TMG
value was obtained using competitive inhibition of pernesasing an undescribed method,
and the lactose values were obtained using a model of laittedbat is inconsistent with the
mechanism in Refl [12], and that ignores dilution by celvgite We therefore consider the
above values to be uncertain. Here we explore the same rartpataused in the modeling
study described in Refl.l[9], which encompasses the abowesalWe analyze the lactose
system using a nominal value of 0, allowing for the posgipilat the actual value might

be very small; this value also maximizes the potential fetdbility.

a. An approximate range of 1-100 'sfor sugar transport turnover numbers was obtained
from the review by Wright et al. [21]. The range is broademtmaeasured values [22]
because measurements were made &€ 2&ther than at the physiological temperature of
37°C in the host environment of the gut, and at which measuregrnienRef. [2] were
performed. Turnover numbers can vary by about an order ommate depending on
the membrane potential and proton gradient [22], leadingdditional uncertainty. The
nominal value of600 min~! is consistent with Ref.[22] assuming the production rate of
functional permease is about the same as that of functiowggl. Because permease is a
monomer whiles-gal is a tetramer, this assumption entails a four-fold snaynthesis
rate for permease monomers compareditgal subunits. This seems possible, as (1)
galactoside acetyltransferase (GATase) monomer systigesight-fold smaller thap-gal
subunit synthesis; (2) due to incomplete operon transoripand the order of genes in
the operonlécZYA, the amount of mMRNA transcribed from the GATase gdaeA) and
permease gendagy) is smaller than that from thg-gal gene lac2); (3) there is some

evidence that permease monomers are made in smaller antibanitsgal subunits/ [23].

¢. The nominal value of 0.5 was obtained by comparing the adt@nsport and efflux

turnover numbers in Rel. [22], Table 1. Because permeassyaat kinetics are sensitive to
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membrane potential and proton gradieni [22], we allow tHaes&o decrease in the search

for bistable conditions (we found that bistability is alsbiked for higher values af).

K;. Anominal value of).5 mM was obtained from Ref. [22]. The range was applied as per

Y

«, and encompasses measured values [22, 24, 25].

p. Guided by Ref.|[22], Table 1, we assume that the Michaelisstant for permease-
dependent import can be up to 10 times smaller than that fooréexThe nominal value of
0.1is consistent with the smallest in that table, and yitldgreatest potential for bistability

in the lactose system.

(. A total lactose turnover number fgi-galactosidase .85 x 10* min~! is estimated
from a measured value df,,,, = 61.3 uM min~! mg~! in Ref. [26]. This estimate is
an order of magnitude greater than the vatuex 10® min—! given in Ref. [27], but the
two estimates agree closely when one considersiugtl converts about half of its lactose
substrate to glucose and galactose, rather than allogaod that the enzyme is composed
of four monomeric catalytic subunits. The estimate givefRaf. [27] is appropriate for
total turnover of lactose on a per monomer basis. Likenfobecause measurements were
performed at 30C, we consider a range of values ten times lower to ten tingdsehithan

the nominal value.

K,,;. The nominal value was obtained directly from Ref.|[28]. As £, because of
temperature considerations, we use a range from ten times to ten times higher than the

nominal value.

v. The valuer = 0.468 was calculated from the total rate @fgal degradation of lactose and
the partial flux from lactose to allolactose reported in f2f]. We take it to be a constant
because the ratio of reaction products was found to be iiisen® temperature changes
betweerg0°C and0°C.

5. An allolactose turnover number férgal 0f2.3 x 10* min~! is estimated from a measured
value ofV,,,, = 49.6 ;1 mol min~* mg~! in Ref. [28]. As for3, because of temperature
considerations, we use a range from ten times lower to teestinigher than the nominal

value.



e K, .. The nominal value was obtained directly from Ref.|[28]. As B, because of
temperature considerations, we use a range from ten times to ten times higher than the

nominal value.

e c. Using a production rate of B-gal tetramers per cell per second for a 48 min generation
time |29], 14,400 molecules are produced during a generatidull induction—this is the
number of molecules in the cell after doubling (supportingahoice of a noiseless model).
Assuming a 1um® mean cell volumel[30] and linear volume increase in time [3h¢

volume after doubling is approximately Quzn?, leading to a concentration of 34,2881.

e c. This value is derived from, assuming a 1000-fold increase /galactosidase levels

upon induction![32].

e K andn. These values are estimated from IPTG induction data in @assknockout cells
both from Ref. [38], Fig. 15 and from data compiled in Ref]][38igs. 1 and 2. The
nominal valuen = 2 was estimated from the slopes of the curves in the figures,/and
was determined by estimating from the figures the conceotraf IPTG at half-maximal
induction. The nominal value df)®> nM was estimated from data compiled in R&f/[34]. To
determine the range, an approximate lower valug¢0éfnM was obtained from Refl [33],
and we allowed for an upper value tf° nM to account for potential differences between
induction by IPTG and TMG or lactose.

RESULTS

We first used Egsl[12) to determine how parameter valuesaldistability in the steady-state
response ofac expression to artificial inducers. To detect and charadyistability for a given
set of parameter values, we solved fgf) and/*(/) as rational functions of. Bistability in lac
expression exists when the line describing steady-statéslefz vs. [* adopts a characteristic “S”
shape, as shown in Figl 2. Within the bistable rangé& athe highest and lowest levels ofare
stable steady-state solutions and the intermediate |éveisoan unstable steady-state solution of
Eqgs. Q). The bistable range is defined by the loer( L) and upperif = U) turning points, as

illustrated in Fig[2. An analogous signature of bistapitian be seen in examining steady-state



TABLE I: Parameter values. Nominal values are those usectemte the lactose induction curves in
Fig.[8.
ParamDescription Nominal Range
v |growth rate - 0.0116 min~* —0.0231 min "
ap |passive transport 0 0—1.35min "
rate constant
a |permease import 600 min ' 6 x 10! min~' —
turnover number 6 x 10% min~*
¢ |ratio of permease 0.5 0-0.5
export to import
turnover numbers
K, |permease Michaelis 5 x 10° nM 5 x 10* nM —
constant 5 x 106 nM
p |ratio of permease 0.1 0.1-1
import to export
Michaelis constants
5 |3-gallactose 2.85 x 10T min " 2.85 x 10° min~ ' —
turnover number 2.85 x 10° min~*
v |lactose- allolactose 0.468 -
(-gal branching
fraction
K., |-gal lactose 2.53 mM 0.253 mM —25.3 mM
Michaelis constant
5 |p-gal allolactose {2.30 x 10* min~* 2.30 x 10° min~* —
turnover number 2.30 x 10° min~*
K. |-gal allolactose 1.2 mM 0.12 mM —12.0 mM
Michaelis constant
¢ |fully induced 34285 nM -
5-gal level
¢ |basalg-gal level 34.3 nM -
K. |signal level at 10° nM 10* nM —10° nM
half-maximal
lac induction
n  |Hill number for 2 -
signal-dependent
lac induction

levels ofl vs. I* (not shown). For a model with given parameter valdeandU can be located by
finding the roots of eithedl* /dz or di* /dl using an eigenvalue solver.

We analyzed Eqs[]2) for systems with = 0 and¢ = 0, p = 1, n = 2, and all other sets of
parameter values drawn from the ranges in Téble I. Sets of/al@s each fokK; and K, were

obtained using logarithmically even sampling over thdmaéd ranges. Because the steady-state
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FIG. 2: An example of bistable behavior in the artificial istlan model (Egs.[{2)). The uppet’{ and
lower (L) turning points are consistent with the experimental tesual Ref. [2]. The parameter values are
v =.0231 min~!, @ = 60 min~!, K, = 123,285 nM andK; = 1,077,217 nM.

solutions of Egs[{2) only depend anand~ through the ratiav/~, rather than sampling and~y
individually, we obtained 100 values @f -y using logarithmically even sampling between the upper
and lower bound computed from Talile I. This sampling scheiglegd100 x 100 x 100 = 10°
systems with different values of/~, K, K.).

We found that allL0° systems exhibited some degree of bistability in respongsdiaction by
artificial inducers. The dependence of the range of bistalmh model parameters was further
analyzed using two measures that we introduce here: tlelfafi, and the produd? L. We used
these measures to estimate the percentage of systems fdr hiktability might be observable
in an experiment like that in Ref.l[2]. By inspecting the measent errors in Refl [2], we
estimate that systems wifti/ L. > 1.1 andUL > 0.01 xM? exhibit bistability that is favorable
for experimental observation, and that systems with eithdr < 1.1 or UL < 0.01 uM? exhibit
bistability that is unfavorable for experimental obseiwat Among systems with parameter values
sampled as described above, by these criteria, experifredrgarvation of bistability is favorable

for 65% of systems, and unfavorable f85% of systems.
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FIG. 3: Effects of variations in thag > 0 parameter on an artificially induced system wijth= 0 min—*
andag = 107" min~!, £ = 0,...,4. The other parameters are givenhy= 2, v = .0231 min~!, € =
34286 nM, ¢ = 34.3nM, K; = 5 x 10 nM, K, = 10* nM anda = 60 min~".

To compare Eqs[12) to the data in Rei. [2], we first selectedlset of systems for which
the bistable region is in the same neighborhood as that in[Eeffrom 3 xM to 30 uM TMG.
Considering this range, out of tH€8° systems sampled, we selected 187,108 systems for which
L>1puMandU < 100 uM for further analysis. Interestingly, we found that all bEse systems
collapse to a single curve when displayed in the spadee@f(U/L) vs. log,,(K;/K.) (Fig.®),
indicating that// L can be precisely tuned using the paraméfer K;/K .. As shown in Fig[b,
the dependence was accurately modeled using the equation
(Ki/K.)*" 1

(KJK)® 1 (2% 10=" (3)

log,o(U/L) ~

Next, we found that, at a given value &f = K;/K,, without changing the value @f /L, UL
could be tuned precisely using the paraméter K,;K,v/a. As shown in FiglB, this dependence

was accurately modeled using the equation

log,o(UL) = Co(X) + C1(X)log,(Y). (4)
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FIG. 4: Effects of variations in the > 0 parameter on an artificially induced system with= 10~* min "
and¢ = 0 and10~* min~', k = 1,...,4. The other parameter values are as in Hg. 3.

Figure[T shows theX-dependence of the parametérg( X') and C(X), obtained numerically
using systems with similar values af. For the range of systems considered here, we found that
Co(X) could be fit using a third order polynomial log,,(X ), and thatC, (X) could be taken as

a constant.

We used Eq[{3) and Edq(4) to obtain a family of systems tletansistent with the parameter
values in Tabl€l| and that exhibit a range of bistability dstet with that observed in Ref.![2],
with log,,(U/L) ~ .86 andlog,,(UL) ~ 1.92. An example of the steady-state behavior of one
such system is illustrated in Fig. 2.

Increasing eithety, or ¢ above zero tends to reduce or abolish bistability in aréfiginduced
systems. Asy is increased (Fidl3), firdl’ begins shifting to lower values df, then L begins
shifting to higher values df', leading to an asymptotic behavior in which bistability imhshed.
Like changes inyy, as¢ is increased (Fidl4), shifts to higher values df; however, by contrast,

U does not initially show a significant change. A increased further, the entire induction curve

begins to shift to higher levels &f.
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FIG. 5: Relation betweeli/ L and the parameteX = K/ K,. Data points are generated using the artificial
induction model (Egs[{2)) with parameter values selectedesscribed in the text. Points wifh > 1M
andU < 100uM were selected; shown are a subset of points that illustretegéneral trend, which is
described well using Eq](3).

We then considered systems witk: 1. Using Eqgs.[[R), we found that the steady-state behavior

of such systems is equivalent to that of systems with 1 under the transformation

I — pl, (5a)

K., — pK., and (5b)
a

L R (5¢)
p p

Because botli’;/ K, and K; K ,~v/a increase under this transformation, we expected bistglbali
be enhanced in systems wjth< 1 (see FigdJ5 arld 6). Indeed, we found that bistability inesyst
with p < 1 exhibited a higher tolerance to increasesvinand ¢: for example, the system with
K. =10 uM, K; = 5mM, a = 890 min™", ¢ = 0.1, ap = 10~ min~!, andp = 0.1 exhibits
bistability with log,,(U/L) = 0.85 andlog,,(UL) = 1.91, which is consistent with the data in
Ref. |2].

We used similar methods to analyze E@$. (1) which descrithecion by lactose. Like the
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FIG. 6: Relation between the bistability meastfé and the parametéy” = K;K.v/«. Using the co-
efficientsCy andC; (Fig.[d) as indicated on the y-axis yields a linear relatioat is well-modeled using
Eq. (). The data points are generated as described ialFigl Bdhe text.

artificial induction model, the steady-state behavior aftegns withp < 1 is equivalent to that of

systems withp = 1 under the transformations in Eqsl (5), with the additioradcaling
Km,l - me,l~ (6)

No bistability was present in the system with nominal par@mealues from Tablg | witkb = 0.5
(Fig.[8), which is consistent with the theory of Savageaudidjl the Supplementary Material of
Ref. [2]. However, guided by the results for artificial inéus in Fig[#, we examined systems with
¢ = 0. Although the system with otherwise nominal parameteresldid not exhibit bistability,
other systems that have parameter values consistent withriges in Tab[@ | did exhibit bistability.
We located the system that exhibits the largest valué§/éfandU L; for this caseq, (3, d, p and
K, assume their lowest values in Talle | whileK,,;, K., . and K; assume their highest values
(Fig.[@).

To estimate the distribution of systems exhibiting theet#ht qualitative behaviors, as for the

case of artificial inducers, we analyzeef systems with randomly sampled parameter values, all
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FIG. 7: Dependence of the coefficients for thé regression model in EQ1(4) 0¥ = K;/K .. By allowing
Cp and(C to depend orX, the bistability measur€& L has a simple linear relationship with= K; K/«
(Fig.[8). The value ofX is determined by Eq[13) for a given value®@f L (Fig.[3).

with ¢ = 0 andp = 0.1. We found that9.82% of these systems exhibit no bistability07%
exhibit bistability favorable for observatio/(L > 1.1 andUL > 0.01 uM?), and0.11% to
exhibit bistability that is unfavorable for observatioii /(L < 1.1 or UL < 0.01 uM?). These
statistics are virtually unchanged for systems with- 1. Increasingy to even a small fraction
of its nominal value rapidly abolishes bistability for airbinations of other parameter values in
Eqgs. Q) (FigID).

DISCUSSION

For the equations describing induction by artificial indgcgve found that the range of external
inducer concentrations over which systems with= 0 and¢ = 0 exhibit bistability is precisely
controllable by two rational combinations of model paraenet First, the value of//L can be
specified by choosing a value of the paramefer K;/K, using Eq.[[B). Then, using this value
of X, the value ofU/ L can be specified by choosing a value of the paraméter K, K;a/~ using
Eq. (4) and the empirically determinéd(X) andC, (X ) (Fig.[4). By adjusting these parameters,
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FIG. 8: Lactose induction behavior calculated using theinahvalues in Tabl8 I. Neither the system with
v = 0.231 min~*! (top) nor the system with = 0.116 min~! (bottom) exhibits bistability.

we were able to demonstrate agreement with the bistablefand MG induction from Ref.[[2].
Small increases i, and ¢ abolished bistability in artificially induced systems wijth= 1.
Bistability was less sensitive to increasesoinand ¢ in systems withp = 0.1; however, even

with p = 0.1, bistability was abolished in systems witly as high a€).01 min~".

This value
is smaller than measured permease-independent diffuates for TMG [19] and lactose [20];
combined with uncertainty in these measurements (Parawedtees), this discrepancy motivates
further studies of permease-independent diffusiolaofnducers.

To achieve agreement with the bistable range of roughip to 30 M in Ref. [2], c ande
in Egs. [2) were tuned to exhibit a 1000-fold induction oftein expression. While this value
is reasonable based on previous studies, at first glancppéaas to disagree with the roughly
100-fold induction of GFP expression reported in Ref. [2hdded, we analyzed systems with
alternative values of ande that yield 100-fold induction, and none of them exhibitedtable
ranges that agree with the range reported in Ref. [2]. Howekielac :: gfp reporter used in
Ref. [2] begins at -84 with respect to the start site, andredddo +20; it therefore seems to be

missing all of the O2 sequence, and some of the O3 sequenck.allifference could easily lead
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FIG. 9: Bistability in the¢ = 0 lactose-induced system with, 3, §, p, and K, at their lowest values in
Tablell andy, K, 1, Kinm,q, andK; at their highest values. This is the system that exhibitdatfgest values
of U/L andU L within the allowed ranges of parameter values.

to a 10-fold difference in induction of the reporter comphie the nativdac promoter; evidence
for such an effect could be sought experimentally, e.g. bgiaing the fluorescence levels against
measurements gf-gal activity.

The curve in FiglB illustrating an extreme example of bisitgtn response to lactose far = 0
closely resembles a similar curve shown in van Hoek & Hogef¥ggrig. 2B. Thus, although
our model is less detailed than theirs, it can exhibit coraiplgrsteady-state behavior. In addition,
Ref. [9] considered a stochastic modella¢ induction, and Ref.. [8] considered a more detailed
model of the dependence of promoter activity on the levehdticer that includes DNA looping;
nevertheless, like the present study, Refs![7, 8, 9] eqobrted a lack of bistability in lactose
induction oflac. These consistencies lend support to our choice of an ietgiate complexity
model of bistability inlac.
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FIG. 10: Influence ofp on bistability in lactose induction. The leftmost curve responds to the same
system illustrated in Fid.]9, except wifh = 1 (the two are nearly identical). The curves to the right
correspond to the same systems, exgept 10~% min~!, k = 1, ..., 4. Bistability in lactose induction is
abolished even for small values of

CONCLUSIONS

The lack of bistability observed for induction by lactosesss with modeling studies concluding
that bistability inlac expression is irrelevant t&. coliin a natural context (3,4, 7] 8, 9]. Thus,
although bistable behavior ilac is now well-documentec_[1, 2, 35], because it has only been
experimentally observed using artificial inducers, itgvahce within the natural contextBf coli
is doubtful. Indeed, it is surprising that thec operon has been considered to be a paradigm of
bistability in gene regulation, considering the gaps inamthnding that remain after so many
careful experimental and theoretical studies.

The present results predict that bistable behavior candragted by (1) hindering the kinetics
of permease transpord( K;) and g-gal catalysis 8, 6, K1, Kn..); (2) lowering the required
level of allolactose for half-maximadac expression k,); (3) accelerating cell growthy§; and
(4) decreasing the Michaelis constant for permease infllative to that for efflux f). These

predictions suggest genetic targets for enginedingoli strains that exhibit a clear signature of

19



bistability. Experiments to compare the behavior of suchiss with wild-type cells would help
to clarify whether bistability ifac expression is relevant in a natural context.

Here, we found that metabolic fluxes are key determinantsstéithility in lac induction, and
that the qualitative behavior of the system can change di#pgmon metabolism of of inducers.
Previously, we found that diversity in the interaction ofiaput signal with transcription factors
leads to diversity in the qualitative behavior of a feedafard loop gene circuil [36]. We expect
these findings to apply broadly to genetic regulatory systémE. coli and other organisms.
Overall, the results of these studies emphasize the impuetaf the nature of the input signal in

determining the functions of genetic regulatory circuits.
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