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A linear stability analysis of the Rayleigh–Taylor instability �RTI� between two ideal inviscid
immiscible compressible fluids in cylindrical geometry is performed. Three-dimensional �3D�
cylindrical as well as two-dimensional �2D� axisymmetric and circular unperturbed interfaces are
considered and compared to the Cartesian cases with planar interface. Focuses are on the effects of
compressibility, geometry, and differences between the convergent �gravity acting inward� and
divergent �gravity acting outward� cases on the early instability growth. Compressibility can be
characterized by two independent parameters—a static Mach number based on the isothermal sound
speed and the ratio of specific heats. For a steady initial unperturbed state, these have opposite
influence, stabilization and destabilization, on the instability growth, similar to the Cartesian case
�D. Livescu, Phys. Fluids 16, 118 �2004��. The instability is found to grow faster in the 3D
cylindrical than in the Cartesian case in the convergent configuration but slower in the divergent
configuration. In general, the direction of gravity has a profound influence in the cylindrical cases
but marginal for planar interface. For the 3D cylindrical case, instability grows faster in the
convergent than in the divergent arrangement. Similar results are obtained for the 2D axisymmetric
case. However, as the flow transitions from the 3D cylindrical to the 2D circular case, the results
above can be qualitatively different depending on the Atwood number, interface radius, and
compressibility parameters. Thus, 2D circular calculations of RTI growth do not seem to be a good
model for the fully 3D cylindrical case. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2991431�

I. INTRODUCTION

The Rayleigh–Taylor instability �RTI�1,2 occurs at an in-
terface between two fluids having different densities when
the fluids are subjected to accelerations or body forces. In
many cases, such as astrophysical situations, oceans, and at-
mosphere, the acceleration is due to gravity. If the accelera-
tion points from the heavy to the light fluid, the interface
between the two fluids is unstable. In this case any perturba-
tion with a wavelength larger than the cutoff due to surface
tension �for the immiscible case� or mass diffusion �for the
miscible case� will grow. As the perturbation grows, smaller
and larger wavenumbers are generated by nonlinear interac-
tions and eventually the flow becomes turbulent. There is a
complex phenomenology associated with the evolution of
RTI including formation, competition, and amalgamation of
spikes and bubbles, entrainment, and, eventually, turbulence.
In general, the fluids can be immiscible or miscible; in the
latter case the material mixing also influences the flow de-
velopment. If the amplitudes of the initial perturbations are
sufficiently small, the early stages of the instability growth
can be described by the linearized governing equations.

For a planar interface �PI� in the Cartesian geometry, the
linear growth rate for incompressible immiscible fluids is
well known and has become a classic textbook result.3 In this
configuration, the role of compressibility on the linearized
RTI development has been studied by a number of research-

ers. While Sharp2 found a stabilizing effect of compressibil-
ity, other researchers4–7 reported that compressibility has a
destabilizing effect on RTI. This controversy was settled by
Livescu,8 who showed that compressibility can be character-
ized by two independent parameters, the isothermal speed of
sound, cT �which can be changed, for example, by varying
the undisturbed pressure at the interface, p0�, and the ratio of
specific heats, �. For isothermal initial conditions, the pertur-
bation growth rate decreases when p0 decreases �more com-
pressible flow� but increases when � decreases �more com-
pressible fluid�, which clarifies the dual character, stabilizing
and destabilizing, of compressibility reported in the litera-
ture. Incompressible limits are independently obtained when
either M→0 or �→�, where M is the static Mach number
�defined using the gravity wave speed and the isothermal
speed of sound�. The compressible to incompressible limit
has been studied for the fully nonlinear equations when the
pressure is a function of density only �barotropic case� in
Ref. 9. In the case of M→0, global weak solutions of the
incompressible Navier–Stokes equations10 are recovered. On
the other hand, as �→�, the incompressible limit may, in
general, be different, underlying the nonuniqueness of the
compressible to incompressible limit. No such result exists
for the fully �nonisentropic� compressible nonlinear case, al-
though the results highlighted above show that the linearized
compressible equations in the Cartesian geometry do not
have a single incompressible limit.

In many applications, RTI occurs in non-Cartesian ge-
ometries. For example, RTI plays an important role in super-
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nova explosions, stellar pulsations,11 or inertial confinement
fusion �ICF�.12,13 Such systems with spherical or cylindrical
geometries can be geometrically divergent �explosive� or
convergent �implosive�. In most situations the resulting flows
are compressible. The effects of compressibility and geom-
etry on the instability growth are, thus, of great interest.

When the instability occurs at a circular interface �CI� in
cylindrical or spherical geometries, there are effects not
present in the Cartesian case. In general, the perturbation
growth can be due to the interface motion, a body force
acting on the fluids, or a combination of both. In the usual
ICF applications, both the ablative front and buoyancy force
contribute to the instability at the interface. However, in
many other applications, the instability can be dominated by
the buoyancy effects �e.g., Ref. 14�. Bell15 was the first to
study the perturbation growth due to an arbitrary radial mo-
tion of the interface in a cylindrical domain. The motion can
be produced, for example, by an initial impulse or continu-
ously driven by an external mechanism. In curved geom-
etries, even the uniform motion of the interface leads to in-
stability. Under an assumption that the flow is irrotational
and of amplitude small compared to the wavelength of the
perturbation, Bell derived differential equations for the am-
plitude of the perturbation as functions of time. Later,
Plesset16 derived the amplitude growth equation in a sphere
based on the same incompressible flow methodology. These
results are now referred to as the Bell–Plesset �BP�
effect.17,18 Recently, the BP treatment was employed in as-
sessing the instability growth in different flow arrangements
in both cylindrical and spherical geometries.19–23 Studies
based on the Euler equations assuming self-similar motion of
the interface also exist for cylindrical24,25 and spherical26,27

geometries. Epstein28 examined BP effects for an incom-
pressible perturbation for planar, cylindrical, and spherical
interfaces and demonstrated a clear distinction between the
BP effect and RTI. Nevertheless, there are very few studies
to address the contribution to the instability growth due to a
RT mechanism in convergent geometries. An early work29

introduced buoyancy to analyze RTI in an ablating plasma. A
specific mathematical method for obtaining the dispersion
relation and unstable mode profiles in spherical geometry
was presented; however, the physical effects on RTI growth
were not explored.

This paper aims to fill a gap in the present knowledge on
the early development of RTI in cylindrical geometry. Fo-
cuses are on the effects of compressibility and geometry �in-
cluding convergence/divergence effects� on the instability
growth. The remainder of this paper is organized as follows.
Section II introduces the linearized governing equations, in-
cluding the zeroth- and first-order equations, and the incom-
pressible limits. Analytical solutions are given in Sec. III.
Section IV presents numerical results pertaining to three as-
pects: �1� compressibility effects, �2� geometry effects, and
�3� differences between the convergent and divergent con-
figurations. Section V provides a summary and conclusions.

II. LINEARIZED GOVERNING EQUATIONS

The problem considered here is stated as follows: two
ideal inviscid immiscible compressible fluids in a cylindrical
domain with coordinates r, �, z are subject to a steady accel-
eration g� =ge�r in the radial direction. The interface between
the two fluids is located at r=r0. The densities of the two
fluids at the interface are �l �for the light fluid� and �h �for
the heavy fluid�. There are two unstable RT configurations,
with different arrangements of the fluids and directions of
acceleration. The convergent case corresponds to infinite
outer-layer heavy fluid versus finite confined light fluid with
inward acceleration �g�0� and the divergent case is vice
versa. In both cases, the normalized density difference de-
fines the Atwood number, A= ��h−�l� / ��h+�l�.

The governing equations corresponding to mass, mo-
mentum, and energy conservation laws for each fluid are

�,t + �r�ur�,r/r + ��u��,�/r + ��uz�,z = 0, �1a�

r��ur�,t + �r�ur
2�,r + ��uru��,� + r��uruz�,z − �u�

2 = − rp,r + �gr ,

�1b�

r��u��,t + �r�uru��,r + ��u�
2�,� + r��uzu��,z + �u�ur = − rp,�,

�1c�

r��uz�,t + �r�uruz�,r + ��uzu��,� + r��uz
2�,z = − rp,z, �1d�

rp,t + �rpur�,r + �pu��,� + r�puz�,z

= − �� − 1���rqr�,r + q�,� + rqz,r + pj��rur�,r + u�,� + ruz,z�� ,

�1e�

with �, u��ur ,u� ,uz�, p, and q��qr ,q� ,qz� the density, velocity
vector, pressure, and heat flux vector. �¯�,f is used to denote
��. . .� /�f . The heat flux is expressed as q� =−��T with � the
thermal conductivity. The energy equation was written as Eq.
�1e� by assuming ideal gas equation of state p=R�T and
caloric equation of state e=cvT= �R / ��−1��T, where R is the
gas constant, e is the internal energy, cv is the specific heat at
constant volume, and � is the ratio of specific heats.

A. Zeroth-order equations

Let ��0�, ur
�0�, p�0�, and T�0� be the variables defining the

equilibrium state. As mentioned in Sec. I, the instability of
the interface can be produced by an acceleration g�r� as well
as interface movement u�0� or a combination of both. In this
paper, we focus on the classical RTI by setting u�0�=0. Thus,
the fluids are initially at rest, separated by a perfectly cylin-
drical unperturbed interface, and subjected to a constant and
uniform acceleration g.

With these assumptions, the zeroth-order equations for
fluid j, where j= l ,h, reduce to

� j,t
�0� = 0, �2a�

pj,r
�0� = g� j

�0�, pj,�
�0� = pj,z

�0� = 0, �2b�

pj,t
�0� = �� j − 1��� jTj,r

�0��,r/� j . �2c�
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We further assume that the equilibrium state is steady
and � j is constant. Then the energy equation becomes Tj,r

�0�

=0. For infinite domain, as the temperature needs to be
bounded, this yields that the outer fluid has constant
temperature. Assuming that the derivatives are continuous
inside each of the fluid domains, we obtain that the tempera-
ture of the inner fluid is also constant. Since the two fluids
are in thermal equilibrium, this yields uniform temperature in
the whole domain. Thus, the equilibrium state of fluid j is
given by

Tj
�0� = T0, �3a�

pj
�0� = p0eg�r−r0�/RjT0, �3b�

� j
�0� =

p0

RjT0
eg�r−r0�/RjT0, �3c�

where p0 is the unperturbed pressure at the interface. The
zeroth-order equation of state is pj

�0�=� j
�0�RjT0.

B. First-order equations

The interface between the two fluids is perturbed with a
small amplitude perturbation so that the primary variables
can be decomposed as the sum between the equilibrium val-
ues and some small perturbations, ��, ur�, u��, uz�, p�, and T�.
The decomposition is plugged into the governing equations
and, after all quadratic or higher order terms in the perturba-
tions are neglected, the first-order equations are obtained as

�,t� + ��0��� · u��� + ur��,r
�0� = 0, �4a�

��0�ur,t� = − p,r� + g��, �4b�

r��0�u�,t� = − p,�� , �4c�

��0�uz,t� = − p,z� , �4d�

p,t� + ur�p,r
�0� = − �p�0��� · u��� , �4e�

with � ·u� = �rur��,r /r+u�,�� /r+uz,z� . Thermal conduction is ne-
glected in the first-order equations as the effects are small
when the zeroth-order state is in thermal equilibrium. Equa-
tions �4a�–�4e� are written formally for the entire domain so
that the variables are generalized functions as the density is
discontinuous across the interface. However, the equations
are solved separately for each fluid and integrated over the
interface to get a jump conditions. This method avoids deal-
ing directly with delta functions. Besides the jump condition,
the other boundary conditions needed are at r=0 and r→�
that are discussed below.

From the energy equation �Eq. �4e��, it can be seen that
�p�0�→� leads to � ·u� =0 which defines the incompressible
limit. Thus, there exist two types of incompressible limits: as
p�0�→� with finite � and as �→� with finite p�0�, similar to
the fully compressible linear Cartesian case8 and consistent
with the barotropic nonlinear equations.9 For both limits, cs

→� for finite ��0�, where cs=��p�0� /��0� is the sound speed.
Nevertheless, the two limits may be different, so that cs

→� is not unique. Thus, in general, compressibility can be

characterized by two independent parameters, one related to
the flow �p0� and the other a property of the fluid ���. Since
for the problem considered here the density is fixed, the limit
p�0�→� also leads to T�0�→�, resulting in spatial uniform
density, as can be seen from Eq. �3b�, whereas �→� allows
spatially varying density, ��0�=��0��r�. Similar limiting cases
are obtained for a PI in the Cartesian system.8 For the sake of
brevity, in the rest of the paper we use the abbreviations
UDIL for uniform density incompressible limit and VDIL for
varying density incompressible limit.

It is known that for ideal gases � does not exceed 5 /3.
However, there are two situations that allow, formally, to
consider larger values for �. First, in the absence of viscous
effects and heat sources, the flow is isentropic. For ideal gas,
the energy equation �1e� reduces to

d�p� + p�0��
p� + p�0� = �

d��� + ��0��
�� + ��0� , �5�

which is the so called �-law. More generally, Eq. �5� can
describe a polytropic transformation if � is replaced by the
polytropic exponent �. In this case, Eq. �5� can still replace
the energy equation after a consistent source or sink of en-
ergy is added in �see Ref. 30�. Thus, the exponent can have
any real value if a polytropic process is considered. Second,
many liquids can be treated as �-law gases with large value
of � in certain thermodynamic conditions, again with Eq. �5�
replacing the energy equation.31

III. ANALYTICAL SOLUTIONS

Following the standard procedure,3 we seek solutions for
the perturbations ��, p�, ur�, u��, and uz� whose dependence on
�, z, and t has the form ei�m�+kzz�+nt. Here n is the growth rate
of the perturbation, m is an integer representing the number
of waves in the � direction, and kz is the wavenumber in the
z direction. The wavenumber in the � direction is k�=m /r0

and depends on the position of the interface.
After substituting f��r ,� ,z , t�= f�r�ei�m�+kzz�+nt with f

representing �, p, ur, u�, and uz into the first-order equations
�4a�–�4e�, one obtains

n� + b��0�ur + ��0�� = 0,

��0�nur = − Dp + g� ,

r��0�nu� = − imp ,

��0�nuz� = − ikzp ,

np + a��0�ur = − cs
2��0�� ,
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where b=g /RT�0� and the divergence of velocity fluctuations
is given by �=Dur+ur /r+ imu� /r+ ikzu� with D�d /dr.
After eliminating �, p, u�, and uz, one obtains an equation
for ur:

��0�ur −
g��0���m2 + r2kz

2��g/cs
2� − rn2/cs

2�
n2�r2�n2/cs

2 + kz
2� + m2�

ur

− D	 ��0�r2Dur

r2�n2/cs
2 + kz

2� + m2

− urD	 g��0��r2/cs

2�
r2�n2/cs

2 + kz
2� + m2


− D	 r��0�ur

r2�n2/cs
2 + kz

2� + m2
 +
g

n2urD��0� = 0. �6�

As mentioned above, Eq. �6� is valid in the entire do-
main so that, in this form, the variables are generalized func-
tions. The jump condition can be obtained by integrating Eq.
�6� over an infinitesimal element across the interface located
at r=r0:

− 		 ��0�r2Dur

r2�n2/cs
2 + kz

2� + m2
 − ur0
		 g��0��r2/cs

2�
r2�n2/cs

2 + kz
2� + m2


− 		 r��0�ur

r2�n2/cs
2 + kz

2� + m2
 +
g

n2ur0
	��0� = 0, �7�

where 	f ��f �r0+0− �f �r0−0 is the jump of a quantity f across
the interface. The radial velocity is continuous at the inter-
face since the interface is a material surface. Thus, �ulr�r0
= �uhr�r0

=ur0
. However, cs

2, ��0�, and Dur in Eq. �7� have a
jump discontinuity at the interface.

In order to emphasize the role of the parameters consid-
ered, more specifically, geometry effects and the role of the
two compressibility parameters, we nondimensionalize the

system as follows: G=k� /kt, k̃z=kz /kt=�1−G2, r̃=rkt, r̃0

=r0kt, m=Gr̃0, ũr=�kt / �g� ur, ñ2=n2 /kt�g�, 
 j =� j / ��l+�h�,
and M2= �g���l+�h� /ktp0, where kt=�kz

2+m2 /r0
2.

The normalized equation for ũr̃ becomes, on each side of
the interface,

D2ũr̃j
+ f j�r̃�Dũr̃j

+ hj�r̃�ũr̃j
= 0, �8�

with

f j�r̃� = � 
 jM
2 +

1

r̃
+

2G2r̃0
2

r̃��ñ2� j + 1 − G2�r̃2 + G2r̃0
2�

, �9a�

hj�r̃� =
�G2r̃0

2 + r̃2�1 − G2��� j − ��ñ2� j + 1 − G2�r̃2 + G2r̃0
2��
 jM

2 + ñ2�
ñ2r̃2 +

G2r̃0
2 � 2G2r̃0

2� jr̃ − �ñ2� j + 1 − G2�r̃2

r̃2��ñ2� j + 1 − G2�r̃2 + G2r̃0
2�

+ 
 jM
2� j �


 jM
2

r̃
�

� j

r̃
. �9b�

The stacked signs in the equations such as � or � distin-
guish between the divergent �top� and convergent �bottom�
configurations and � j =
 jM

2 /� j.
From Eq. �7�, one obtains the normalized jump condition

at the interface:

��A

ñ2 −
���hr̃0 + 1�
h

�ñ2�h + 1�r̃0

+
���lr̃0 + 1�
l

�ñ2�l + 1�r̃0

ũr̃0

−

h

ñ2�h + 1
Dũhr̃ +


l

ñ2�l + 1
Dũlr̃ = 0. �10�

The other boundary conditions become

�ũrj
�r̃=0 = 0, �ũrj

�r̃→� = 0, �11�

�ũrl
�r̃=r̃0

= �ũrh
�r̃=r̃0

= ũr0
. �12�

It should be pointed out that M is the static Mach num-
ber based on the isothermal sound speed �which does not
depend on ��. M =0 and �→� recover UDIL and VDIL,

respectively. G is a parameter characterizing the geometry,
i.e., the dimension of the perturbation wavenumber space
which is also the dimension of the flow space. From the
definition of G, it is easily seen that 0�G�1 represents the
three-dimensional �3D� case, and G=0 �m=0� and G=1
�kz=0� are two-dimensional �2D� cases, with the former cor-
responding to a 2D axisymmetric flow �r-z system� and the
latter to a 2D circular flow �r-� system�. Thus, as G increases
from 0 to 1, the flow changes from 2D axisymmetric to 3D
cylindrical and to 2D circular.

Full analytical solutions for the growth rate have been
found for several cases and are presented below.

A. Uniform density incompressible limit

In this case, cs
2→� due to p0→�, which corresponds to

M =0. Thus,

f j�r̃� =
1

r̃
+

2G2r̃0
2

r̃��1 − G2�r̃2 + G2r̃0
2�

, �13a�
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hj�r̃� =
G2r̃0

2 − �1 − G2�r̃2

r̃2��1 − G2�r̃2 + G2r̃0
2�

−
�1 − G2�r̃2 + G2r̃0

2

r̃2 . �13b�

The corresponding normalized jump condition is

Dũrh

h − Dũrl


l + 	 1

r̃0

�
1

ñ2
Aũr0
= 0. �14�

On each side of the interface, Eq. �8� has the solution

ũr̃j
= cj1

2m+1
�2 + m��mIm�r�� + r�I1+m�r���r̃m−1

r�m

+ cj2
Km−1�r��r� + mKm�r��

r̃
, �15�

with r�=��1−G2�r̃ and cj1 and cj2 integral constants deter-
mined by the boundary conditions �7�, �11�, and �12�.

After imposing the boundary conditions and eliminating
the integral constants, one obtains an expression for the
growth rate:

ñ2 =
2A

�1 � A�Km�r0��

Km−1�r0���1 − G2 + GKm�r0��
+

�1 � A�Im�r0��

GIm�r0�� + �1 − G2Im+1�r0��

, �16�

with r0�=�1−G2r̃0 and Kp�r0�� and Ip�r0�� the modified Bessel
functions of the first and second kinds of order p. Note that
m=Gr̃0 must be an integer.

For the 2D axisymmetric case �G=0�, the growth rate
reduces to

ñ2 =
2AK1�r̃0�I1�r̃0�

�1 � A�K0�r̃0�I1�r̃0� + �1 � A�K1�r̃0�I0�r̃0�
, �17�

and for 2D circular �G=1�:

ñ2 = A . �18�

Equation �18�, for the incompressible, uniform density,
2D circular case, was also obtained by Epstein.28

B. Varying density incompressible limit

In this case, cs
2→� due to �→�. The coefficients in the

velocity perturbation equation �8� are

f j�r̃� = � 
 jM
2 +

1

r̃
+

2G2r̃0
2

r̃��1 − G2�r̃2 + G2r̃0
2�

, �19a�

hj�r̃� =
G2r̃0

2 − �1 − G2�r̃2

r̃2��1 − G2�r̃2 + G2r̃0
2�

�

 jM

2

r̃

−
��1 − G2�r̃2 + G2r̃0

2��
 jM
2 + ñ2�

ñ2r̃2 . �19b�

The jump condition is the same as Eq. �14�. Analytical solu-
tions are obtained for the two 2D cases, corresponding to
G=0 and G=1.

G=0 (2D axisymmetric). The solution for the radial ve-
locity is

ũr̃j
= �cj1M�j,1	� jr̃

r̃0

 + cj2W�j,1	� jr̃

r̃0


 e�
jM

2r̃/2

�r̃
. �20�

The corresponding dispersion relation is obtained as

�
�M2ñ2 + 2�Ar̃0

2ñ2 +

hW�h+1,1��h�

W�h,1��h�

+
�3 + 2�l�
lM�l+1,1��l�

2M�l,1
��l�

+
�1 + �l − 2�l�
l + �1 + �h − 2�h�
h

2
= 0, �21�

with

� j =
� �ñ�
 jM

2

���
 jM
2�2 + 4�ñ2 + 4
 jM

2

and

� j =
���
 jM

2�2 + 4�ñ2 + 4
 jM
2r̃0

�ñ�
.

Wj,m�x� and Mj,m�x� are the Whittaker functions.
G=1 (2D circular). The solution for the radial velocity

is

ũrj
=

e��jr̃

�r̃
�cj1�I−1/2+Aj

	� jr̃

r̃0

 + I1/2+Aj

	� jr̃

r̃0




+ cj2�K−1/2+Aj
	� jr̃

r̃0

 + K1/2+Aj

	� jr̃

r̃0


� . �22�

The corresponding dispersion relation is
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Ah − 1 − �h

�h
K−1/2+Ah

��h� −
Ah

�h
K1/2+Ah

��h� + K3/2+Ah
��h� �

2A�G2r̃0 � ñ2�

h

2M2ñ2r̃0

�K−1/2+Ah
��h� − K1/2+Ah

��h��

−

l

2


2
2

K−1/2+Ah
��h� − K1/2+Ah

��h�

I−1/2+Al
��l� − I1/2+Al

��l�
�I3/2+Al

��1� +
Al − 1 − �l

�l
I−1/2+Al

��l� +
Al

�l
I1/2+Al

��l�
 = 0, �23�

with Aj = r̃0
�
 jM

2+ ñ2 / ñ and � j = �
 jM
2r̃0 /2.

C. Fully compressible flow

We have found analytical solutions to Eq. �8� for the fully compressible case only when G=0 �2D axisymmetric case�. In
this case, the radial velocity variation is obtained as

ũr̃j
= �cj1M�j,1	 � jr̃

r̃0

 + cj2W�j,1	 � jr̃

r̃0


 e�
jM

2r̃/2

�r̃
. �24�

The corresponding dispersion relation is

�Ar̃0� ñ2�h + 1

ñ2 +
M2

2�ñ2�l + 1�

 +


hW�h+1,1��h�

W�h,1��h�
−

��h − 2�h � 2�hr̃0 + 1�
h

2

�
M2r̃0ñ2�
h

2�l − 
1
2�h�

2�ñ2�l + 1�
��h − 2�h � 2�hr̃0 + 1�
h

2

ñ2�h + 1

ñ2�l + 1
+ 	3

2
+ �l

lM�l+1,1��l�

M�l,1
��l�

ñ2�h + 1

ñ2�l + 1
= 0, �25�

with

� j =
� �ñ��
 jM

2 − � j�
�4ñ4� j + ��
 jM

2�2 + 4�ñ2 + 4�
 jM
2 − � j�

and

� j =
�4ñ4� j + ��
 jM

2�2 + 4�ñ2 + 4�
 jM
2 − � j�r̃0

�ñ�
.

IV. RESULTS AND DISCUSSIONS

In this section, the growth rate dependences on various
parameters are examined. The results are grouped into three
categories: �1� compressibility effects as characterized by the
static Mach number M and the ratio of specific heats, �, �2�
geometry effects due to the nature of the cylindrical geom-
etry, and �3� differences between the convergent and diver-
gent configurations. To obtain the growth rate, Eq. �8�, to-
gether with the boundary and jump conditions, was
integrated using a fourth-order Runge–Kutta scheme. The
cases where analytical solutions were found are used to
verify the numerical scheme.

A. Compressibility effects

ñcc
2 , ñcu

2 , and ñcv
2 are used to denote the normalized rates

of growth �by kt�g�� corresponding to the fully compressible
flow, UDIL, and VDIL. As explained above, compressibility
effects are characterized by the fluid property � and flow
property M, with large M corresponding to more compress-
ible flow and small � to more compressible fluid.

In general, if r̃0 is not very small, the compressible
growth rate is bounded by the growth rates obtained for

UDIL and VDIL, similar to the PI case in the Cartesian
geometry8 �Fig. 1�. Thus, the growth rate decreases for more
compressible flows �characterized by smaller 1 /M� and in-
creases for more compressible fluids �characterized by lower
��. In all cases, the UDIL growth rate is recovered as
1 /M→�.

The growth rate variation due to compressibility can be
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FIG. 1. Compressible to UDIL growth rate ratio as a function of 1 /M for the
convergent �left column� and divergent �right column� configurations for
different �l and �h combinations at G=0.5, r̃0=2.0. The pure solid line
corresponds to ñcv

2 / ñcu
2 . ��a� and �d�� A=0.2, ��b� and �e�� A=0.5, and ��c�

and �f�� A=0.8.
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explained intuitively by calculating the changes in the local
A due to nonuniform equilibrium densities on the two sides
of the interface. As the flow compressibility increases, the
change in the equilibrium density variation leads to a de-
crease in the local A for points on the interface situated
above the initial position and an increase in the local A for
points on the interface situated below the initial position.
However, the change in the local A is larger above the initial
position of the interface so that the overall effect is a de-
crease in the average A. This suggests a stabilizing effect of
compressibility when this is characterized by changes in the
flow conditions �represented here by M�. On the other hand,
as � decreases, the equilibrium density and pressure remain
unchanged. As the heavy fluid falls towards regions with
higher pressures, its volume decreases progressively more at
higher �, so that the tips of the spikes fall less for more
compressible fluids. Similarly, the tips of the bubbles rise
more for fluids with higher �. The change is larger for the
bubbles, so that the overall effect is an increase in the rate of
growth due to compressibility when this is characterized by
changes in the fluid properties �represented here by ��. The
arguments imply not only opposite influence of the two com-
pressibility parameters on the growth rate but also on the
spike and bubble sides, leading to an asymmetry of the layer
in the compressible case larger than the overall effect on the
growth rate. This effect is being verified with direct numeri-
cal simulations of the fully nonlinear case and will be re-
ported elsewhere.

Figure 1 also shows that the compressible growth rate is
more sensitive to changes in � for the light fluid �compare
the results obtained for �l=10, �h=1 and �l=1, �h=10 with
the perfectly compressible case �l=1, �h=1� which is con-
sistent with the arguments above that the changes to the tips
of the bubbles position influence more the overall growth
rate. The results are also sensitive to the A values. At large A,
the growth rate shows little sensitivity to changes in the ra-
tios of specific heats and takes values close to the VDIL
growth rate.

Overshooting �ncc
2 exceeds ncu

2 � occurs in both conver-
gent and divergent configurations when r̃0 is small �Fig. 2�.
In this case, the arguments above with regard to changes in
the local A due to compressibility are no longer valid. They
were based on small amplitude expansions in the equilibrium
density profile which can no longer be made in the interior
domain. Small values of r̃0 can be obtained only in the 2D
axisymmetric �G=0� and some 3D �with small G� cases.
Overshooting is also observed in the Cartesian geometry
when the domain size of the heavy fluid is much smaller than
the wavelength of the perturbation and �l�1.8 Here, the con-
dition ��1 is required only for the convergent configura-
tion; for the divergent arrangement it can occur at all values
of �. The effect is more distinctive than obtained in the Car-
tesian geometry and becomes more pronounced at low A for
the convergent and of high A for the divergent cases. Under-
shooting �ncc

2 drops below ncv
2 � may occur at large �, small A,

and small 1 /M �highly compressible flow� but is much less
pronounced than overshooting and not discussed here.

B. Geometry effects

To characterize the geometry effects, the influences of
different parameters on the ratio ncc

2 /npc
2 of the growth rates

obtained for CI and PI are now discussed. For meaningful
comparisons, the PI configuration corresponds to a finite do-
main with size r̃0 occupied by the heavy fluid in the diver-
gent configuration and by the light fluid in the convergent
case and an infinite domain occupied by the other fluid. Cor-
responding dispersion relations obtained for the PI as special
half-infinite cases are given in the Appendix.

For UDIL, the growth rate ratio being discussed has an
analytical formula:

ñcc
2

ñpc
2 =

2BIBK

�1 � A�Km�r0��BI + �1 � A�Im�r0��BK

er̃0 � Ae−r̃0

er̃0 − e−r̃0
,

�26�

with BI=GIm�r0��+�1−G2Im+1�r0�� and BK=GKm�r0��
+�1−G2Km−1�r0��.

For 2D axisymmetric �G=0� Eq. �26� reduces to

ñcc
2

ñpc
2 =

2K1�r̃0�I1�r̃0�
�1 � A�K0�r̃0�I1�r̃0� + �1 � A�K1�r̃0�I0�r̃0�

�
er̃0 � Ae−r̃0

er̃0 − e−r̃0
�27�

and for 2D circular �G=1� to

ñcc
2

ñpc
2 =

er̃0 � Ae−r̃0

er̃0 − e−r̃0
. �28�

Figure 3 shows the importance of the compressibility
effects on the ratio ncc

2 /npc
2 for a representative 3D case �G

=0.5� and r̃0=2. The CI growth rate is larger for the conver-
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FIG. 2. Compressible to UDIL growth rate ratio for the convergent �left
column� and divergent �right column� cases as a function of 1 /M for differ-
ent � values at G=0, r̃0=0.1. ��a� and �d�� A=0.2, ��b� and �e�� A=0.5, and
��c� and �f�� A=0.8.
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gent configuration than the PI growth rate but slower for the
divergent case. At moderate values of �, it seems that there is
a critical value of M �M �2 for �=1� at which the difference
between the CI and PI growth rates is largest. This difference
also increases with A. The ratio of the CI versus PI growth
rates depends sensibly on the values of � only for highly
compressible flows. For M �1, � influence is less important.
Similar behavior is observed in the 2D axisymmetric case.
However, in the 2D circular case, the behavior is more com-
plicated: ncc

2 can be either larger or smaller than npc
2 depend-

ing on the combinations among parameters �see also below�.
As the normalized radius r̃0→�, the growth rate should

recover the PI growth rate. For finite values of r̃0, the CI
growth rate is always larger for the convergent and smaller
for the divergent configuration than the corresponding PI
growth rate �Fig. 4�. Again, the difference between the CI
and PI growth rates increases with A. At large A, however,
this difference depends less sensibly on the ratios of specific
heats. The results remain qualitatively the same for the axi-
symmetric case but may change for the 2D circular case.

The dimensionality parameter G increases from 0 to 1 as
the flow changes from 2D axisymmetric �G=0� to 3D cylin-
drical �0�G�1� and to 2D circular �G=1�. Figure 5 shows
that the CI to PI growth rate ratio behaves qualitatively the
same at small and moderate values of G as a function of �
but becomes different when G is close to 1. At low A, the
divergent/convergent results described above also change
qualitatively at large values of G. Thus, 2D circular or 3D
with small kz calculations do not represent a useful model for
the fully 3D cylindrical case. Nevertheless, the results ob-
tained for the 2D axisymmetric case are qualitatively the
same as those obtained for the 3D cylindrical domain.

C. Convergence versus divergence effects

As pointed out above, the growth rates obtained for the
convergent and divergent configurations change qualitatively
when compared to the PI case. Below, the growth rates ob-
tained for the two unstable configurations are compared di-
rectly to the CI case. The fluid arrangements for the two
cases are explained again for clarity—convergence corre-
sponds to infinite heavy fluid domain pressing a finite light
fluid domain due to inward acceleration, while divergence
corresponds to a finite heavy fluid domain expelling an infi-
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nite light fluid domain due to an outward acceleration. The
ratio ñdv

2 / ñcv
2 is used to quantitatively express the difference

between the divergent and convergent configuration growth
rates for a CI setup.

For UDIL, ñdv
2 / ñcv

2 is given analytically by

ñdv
2

ñcv
2 =


hKm�r0��BI + 
lIm�r0��BK


lKm�r0��BI + 
hIm�r0��BK

, �29�

which for the 2D axisymmetric case �G=0�, reduces to

ñdv
2

ñcv
2 =


hK0�r̃0�I1�r̃0� + 
lI0�r̃0�K1�r̃0�

lK0�r̃0�I1�r̃0� + 
hI0�r̃0�K1�r̃0�

�30�

and for the 2D circular case �G=1� to

ñdv
2 /ñcv

2 = 1. �31�

For all 3D cylindrical cases, the growth rate obtained for
the divergent arrangement is smaller than that obtained for
the convergent arrangement and the difference increases with
A �Fig. 6�. Again, at small values of �, there seems to be a
critical M at which the difference between the divergent and
convergent configuration growth rates is largest. This critical
M changes little with A and takes values close to 2. As be-
fore, the � influence is sensibly felt for highly compressible
flows �M �1�.

For large values of r̃0 the curvature effects become small
�Fig. 7� and the ratio ñdv

2 / ñcv
2 is close to the PI interface

result. For PI, the divergent and convergent arrangement
growth rates, while having the same qualitative behavior, are
close to 1. Thus, the differences between the two growth
rates are the largest for small r̃0. � influence on ñdv

2 / ñcv
2 is

also largest at small r̃0; however, it is significant only at
small A. Again, the results change qualitatively at large G
�G�0.8� when the flow becomes close to the 2D circular
case: it is seen that ñdv

2 can exceed ñcv
2 and the influences of

� and A become the opposite of those obtained at low to
moderate G. This further emphasizes that the 2D circular
limit does not represent a useful model for the fully 3D cy-
lindrical case.

V. SUMMARY AND CONCLUSION

A linear stability analysis of the RTI in cylindrical ge-
ometry with CI is performed to study �1� the effects of com-
pressibility, �2� the geometry as related to the difference be-
tween PI and CI configurations and also to the difference

between the 2D and 3D cases, and �3� the distinction be-
tween the convergent �gravity acting inward� and divergent
�gravity acting outward� unstable arrangements. The flow is
considered inviscid and compressible. Full analytical solu-
tions are found in several limiting cases. For the fully com-
pressible case analytical results are obtained for the 2D axi-
symmetric configuration. For the rest of the cases, the
linearized equations are solved numerically to obtain the
growth rates.

The main findings are as follows:

• Compressibility can be characterized by two param-
eters, a static Mach number M �a flow feature� and the
ratio of specific heats, � �a fluid feature�. The limiting
incompressible flows �defined by zero divergence of
velocity� can be obtained as either M→0 or as �
→� and can be different in the two cases. Thus, as
M→0 the density becomes uniform while as �→�
density variations are allowed. For equilibrium initial
conditions �both hydrodynamic and thermal� the com-
pressible growth rate was found to be bounded, in gen-
eral, by the growth rates obtained for the UDIL from
above and for the VDIL from below. Similar to the PI
case,8 the growth rate decreases as M increases �more
compressible flow� but increases as � decreases �more
compressible fluid�. Overshooting �compressible
growth rate larger than UDIL growth rate� can occur
when the normalized radius of the interface is very
small, which is possible only in the 2D axisymmetric
and 3D cylindrical with small tangential wavenumber
configurations. This effect is more pronounced than
for the PI case. Undershooting �compressible growth
rate smaller than VDIL growth rate� can also occur but
is less significant.

• Compressibility effects, as characterized by �, are
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mostly felt at low A. In this case, the growth rate is
more sensible to changes in � values of the lighter
fluid. At high A, the � influence becomes small.

• For the 3D case, instability grows faster for the con-
vergent than for the divergent arrangement. The
differences between the two unstable configuration
growth rates are small for PI but become significant
for CI. They are also amplified at high A and small
values of �.

• For low values of � there seems to be a critical value
of M at which the difference between the divergent
and convergent configuration growth rates as well as
the growth rates obtained for the CI and PI cases is the
largest.

• The wavenumbers of the perturbations in tangential
and axial directions have different influences on the
growth rate. The differences can be captured by a di-
mensionality parameter G, which varies between 0
when k�=0 to 1 when kz=0. Thus, as G increases from
0 to 1, the flow changes from 2D axisymmetric �G
=0� to 3D cylindrical �0�G�1� and to 2D circular
�G=1�. All the 3D cylindrical results remain qualita-
tively the same in the 2D axisymmetric case but
change qualitatively as the flow becomes close to the
2D circular configuration �k��kz�. In this case, the
influences of A and � are opposite than for the 3D
cylindrical case and the growth rate for the divergent
configuration exceeds that obtained for the convergent
arrangement. Thus, 2D circular case calculations do
not represent a useful model for the fully 3D cylindri-
cal case, while the influences of the parameters con-
sidered remain qualitatively the same as the flow
changes from 3D cylindrical to 2D axisymmetric.

The findings above are currently being examined in the
fully nonlinear case and the results will be published
elsewhere.

APPENDIX: DISPERSION RELATIONS
FOR PLANAR INTERFACE

Analytical dispersion relations for the RTI growth rate in
the Cartesian geometry with PI are obtained from Eq. �26� in
Ref. 8 and given here for completeness. Two special cases,
schematically shown in Fig. 8, are considered by analogy to
the two cylindrical unstable arrangements: the convergent
configuration, corresponding to infinite heavy fluid domain

versus finite light fluid domain, and the divergent configura-
tion, corresponding to infinite light fluid domain versus finite
heavy fluid domain. The normalized dispersion relations are
as follows.

Fully compressible flow. We define A�=0.5�1�A�M2,
au= ��1+A��h��l+A−ñp

2�− �1−A��l��h+A+ñp
2��, bdl= �1

−A��l��h+A+ñ2�, bdh= �1+A��h��l+A−ñ2�, and

�l
� =

A−

2
��1 +

ñp
2A−

�1
+

�1 − 1

�1

A−

ñp
2 +

A−
2

4
, �A1a�

�h
� =

A+

2
��1 +

ñp
2A+

�h
+

�h − 1

�h

A+

ñp
2 +

A+
2

4
, �A1b�

• Infinite light fluid domain �Fig. 8�a�� corresponding to
the divergent CI case:

ñpc
2 =

�e−�h
+r̃0 − e−�h

−r̃0�au

bdl�l
+�e−�h

+r̃0 − e−�h
−r̃0� − bdh��h

+e−�h
+r̃0 − �h

−e−�h
−r̃0�

.

�A2�

• Infinite heavy fluid domain �Fig. 8�b�� corresponding
to the convergent CI case:

ñpc
2 =

�e−�l
+r̃0 − e−�l

−r̃0�au

bdl��l
+e�l

+r̃0 − �l
−e�l

−r̃0� − bdh�h
−�e−�l

+r̃0 − e−�l
−r̃0�

.

�A3�

VDIL. In the VDIL, Eqs. �A1a�, �A1b�, �A3�, �A4a�, and
�A4b� reduce to

�l
� =

A−

2
��1 +

A−

ñp
2 +

A−
2

4
, �A4a�

�h
� =

A+

2
��1 +

A+

ñp
2 +

A+
2

4
, �A4b�

• Infinite light fluid domain �Fig. 8�a�� corresponding to
the divergent CI case:

ñpc
2 =

A�e−�h
+r̃0 − e−�h

−r̃0�


l�l
+�e−�h

+r̃0 − e−�h
−r̃0� − 
h��h

+e−�h
+r̃0 − �h

−e−�h
−r̃0�

.

�A5�

• Infinite heavy fluid domain �Fig. 8�b�� corresponding
to the convergent CI case:

ñpc
2 =

A�e−�l
+r̃0 − e−�l

−r̃0�


l��l
+e�l

+r̃0 − �l
−e�l

−r̃0� − 
h�h
−�e−�l

+r̃0 − e−�l
−r̃0�

.
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UDIL. In this case, the dispersion relations simply re-
duce to the following.

• Infinite light fluid domain:

ñpu
2 =

A�er̃0 − e−r̃0�
er̃0 + Ae−r̃0

. �A7�
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r
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FIG. 8. Schematic PI cases corresponding to �a� divergent and �b� conver-
gent CI cases.
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• Infinite heavy fluid domain:

ñpu
2 =

A�er̃0 − e−r̃0�
er̃0 − Ae−r̃0
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