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Understanding, predicting and controlling laminar-turbulent boundary-layer transition is
crucial for the next generation aircraft design. However, in real flight experiments, or wind
tunnel tests, often only sparse sensor measurements can be collected at fixed locations. Thus, in
developing reduced models for predicting and controlling the flow at the sensor locations, the
main challenge is in accounting for how the surrounding field of unobserved (or unresolved)
variables interacts with the observed (or resolved) variables at the fixed sensor locations. This
makes the Mori-Zwanzig (MZ) formalism a natural choice, as it results in the Generalized
Langevin Equations which provides a mathematically sound framework for constructing non-
Markovian reduced-order models that include the effects the unresolved variables have on the
resolved variables. These effects are captured in the so called memory kernel and orthogonal
dynamics, which, when using Mori’s linear projection, provides a higher order approximation
to the traditional approximate Koopman learning methods.

In this work, we explore recently developed data-driven methods for extracting the MZ
operators to two boundary-layer flows obtained from high resolution data; a low speed
incompressible flow over a flat plate exhibiting bypass transition; and a high speed compressible
flow over a flared cone at Mach 6 and zero angle of attack where transition was initiated using
a broadband forcing approach ("natural" transition). In each case, an array of "sensors"
are placed near the surface of the solid boundary, and the MZ operators are learned and
the predictions are compared to the Extended Dynamic Mode Decomposition (EDMD), both
using delay embedded coordinates. Further comparisons are made with Long Short-Term
Memory (LSTM) and a regression based projection framework using neural networks for the
MZ operators. First, we compare the effects of including delay embedded coordinates with
EDMD and Mori based MZ and provide evidence that using both memory and delay embedded
coordinates minimizes generalization errors on the relevant time scales. Next, we provide
numerical evidence that the data-driven regression based projection MZ model performs best
with respect to the prediction accuracy (minimum generalization error) on the relevant time
scales.

I. Introduction
In boundary-layer flows, transition to turbulence leads to significant increases in skin-friction drag and heat transfer.

For example, in hypersonic flows, this transition can lead to development of the so-called "hot" streaks that, locally, can
far exceed respective turbulent heat transfer values ([1, 2]). Thus, predicting and controlling the transition location
is crucial for the next generation aircraft design. For example, active flow control strategies that delay the onset of
turbulence could substantially reduce skin friction drag and the weight of the required thermal protection systems.
However, one of the primary challenges of developing active flow control technologies is in building efficient and
accurate reduced order models using only a sparse set of measurements within the boundary layer. This makes the
Mori-Zwanzig (MZ) formalism a natural choice as it prescribes self-contained evolutionary equations that quantify the
effects the unresolved variables (surrounding field) have on the resolved variables (sensor values).
The MZ formalism was developed in statistical mechanics nearly half a century ago to construct reduced-order

models for high-dimensional dynamical systems [3, 4]. The formalism provides a mathematically rigorous procedure
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for constructing non-Markovian reduced-order models for a set of resolved variables from high-dimensional dynamical
systems, where the effects due to the unresolved variables are captured in the memory kernel and orthogonal dynamics
[5]. The resulting lower-dimensional model, referred to as the Generalized Langevin equation (GLE), describes the
evolution of a set of observables (resolved variables) and consists of a Markovian term, a memory term, and an
orthogonal dynamics term. The memory term quantifies interactions between the resolved and under-resolved dynamics.
This memory effect depends on the choice of observables and of the projection operator, making the analytic derivation
of the MZ operators very challenging. However, new and promising data-driven Mori-Zwanzig methods have been
developed [5–7], generalizing the approximate Koopmanian learning and showing better performance than Dynamic
Mode Decomposition (DMD) and extended DMD (EDMD), with encouraging results already seen in stationary
homogeneous isotropic turbulence [8], and boundary layer transition [9].
In this work, we use a sparse set of pressure measurements near the surface obtained from Direct Numerical

Simulations (DNS) to represent the "sensor" values. These pressure measurements span the laminar, transitional, and
turbulent flow regions. The pressure signals at the fixed sensor locations serve as the observables used in constructing
the reduced order models. We test each of the methods on two different stationary boundary layer flows: (1) a low speed
incompressible flow over a flat plate with homogeneous isotropic turbulent inflow; and (2) a high speed compressible
flow over a flared cone at Mach 6 and zero angle of attack exhibiting a "natural" path to transition [1, 9, 10].
We apply the data-driven MZ methods developed in [5, 7] to the sparse set of pressure "sensors" and compare each

to the EDMD and LSTM methods respectively. The Mori based projection [5] was shown to provide higher order
corrections over EDMD by using memory kernels, and each are compared with using delay embedded coordinates [11].
The regression based projection approach [7] offers the freedom to use nonlinear function approximators such as neural
networks to learn the MZ operators, and this is compared to Long Short-Term Memory (LSTM) [12] learning. All of
the models are compared using both the KL-Divergence and mean squared error over the relevant time scales. We
show that the regression based MZ method, using fully connected neural networks to approximate the MZ operators,
performs best, with LSTM in a close second.

II. Data-Driven Mori-Zwanzig Formulations
In this work, we follow the works from Y.T. Lin et al. [5, 7] in which two approaches for learning the MZ operators

are derived. In the first approach [5], the Mori’s linear projection is used to derive a data-driven learning framework
for extracting the MZ memory kernels and orthogonal dynamics under a generalized Koopman formulation. By
combining the Koopman description with the MZ formalism [5], one can perform a dimensional reduction of the infinite
dimensional Koopmanian linear formulation to a finite, low-dimensional dynamical system with memory kernels and
orthogonal dynamics. Since the observables evolve in a linear space, the learning problem is convex, which simplifies
the learning procedure of the MZ operators. In the second approach [7], statistical regression is formalized as the
projection operator, allowing for nonlinear function approximators to be used to learn the MZ operators. In each case,
the final result is a closed dynamical system describing the evolution of observables, however, in this work we ignore the
orthogonal dynamics.
We apply these data-driven learning procedures to an inhomogeneous turbulence problem, where the observables

are selected as a sparse set of pressure values at the fixed sensor locations near the surface of the flat plate and flared
cone. Using DNS data, we are in the setting in which the full system has been simulated and observed at discrete times,
where the pressure sensor observations form the data set for fitting each model. Specifically, a subset is used for training,
and an independent identically distributed subset is used for evaluating generalization errors in order to compare the
predictive performances between each model.

A. Mori-Zwanzig Formalism
We consider discrete-time deterministic dynamical system where the state 𝝓(𝑡) ∈ R𝐷 evolves according to

𝝓𝑛+1 = 𝑭(𝝓𝑛), 𝝓(0) = 𝝓0, (1)

where 𝑭 is the flow map 𝑭 : R𝐷 → R𝐷 . Following the reduced order modeling approach we seek an evolutionary
equation for 𝑀 < 𝐷 set of observables 𝑔𝑖 : R𝐷 → R, 𝑖 = 1, ..., 𝑀. The observables are, in general, functions of
the state 𝝓. In this study, the observables are selected as the values of the pressure field at the sensor locations, i.e.
𝑔𝑖 (𝑡) = 𝜋𝑖 (𝝓(𝑡)) = 𝑝𝑖 (𝑡), where 𝑀 is the number of sensors (in this work, 20 sensors are used, as seen in Fig. 11).
The central result of the MZ procedure, is the so called Generalized Langevin Equation (GLE) (see [3–5] for detailed

derivations), which prescribes the exact evolutionary equations of the observables given any initial condition 𝝓0 ∈ R𝐷
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as:

𝒈𝑛+1 (𝝓0) = 𝛀(0) (𝒈𝑛 (𝝓0)) +
𝑛∑︁
𝑙=1

𝛀(𝑙) (𝒈𝑛−𝑙 (𝝓0)) +𝑾𝑛 (𝝓0). (2)

Where, 𝒈𝑛 : R𝐷 → R𝑀 is the 𝑀 × 1 vector of functions of the initial state 𝝓0 so that

𝒈𝑛 (𝝓0) = 𝒈(𝝓(𝑛Δ𝑡; 𝝓0)) := 𝒈(𝑭𝑛 (𝝓0)), (3)

thus, 𝒈𝑛 := K𝑛𝒈0 where K is the discrete time Koopman operator and Δ𝑡 is the uniform time step (not necessarily the
time step used in DNS). The GLE (Eq. 2) states that the vector of observables at time 𝑛 + 1 evolves (and is decomposed)
according to three parts: (1) a Markovian operator 𝛀(0) : R𝑀 → R𝑀 which only depends on the observables at the
previous time step (𝑛), (2) a series of operators 𝛀(𝑙) : R𝑀 → R𝑀 depending on observables with a time lag 𝑙 (often
referred to as the memory kernel), and (3) the orthogonal dynamics 𝑾𝑛 : R𝐷 → R𝑀 depending on the full state 𝝓0.
The above GLE is general for any projection operator which maps functions of the full configuration to functions of only
the resolved variables in the projected space.
Using Mori’s linear projection [3], whose projection operator is the functional projection that uses the equipped

inner product in the 𝐿2 Hilbert space, results in a linear Markovian form 𝛀(0) (𝒈𝑛 (𝝓0)) = �̂�
(0) · 𝒈𝑛 (𝝓0), and a linear

memory dependence 𝛀(𝑙) (𝒈𝑛−𝑙 (𝒙0)) = �̂�
(𝑙) · 𝒈𝑛−𝑙 (𝒙0). In this manuscript, we assume that𝑾𝑛 is a small residual term

and negligible. However, to further bolster this assumption, nonlinear projection operators defined by regression to
minimize𝑾𝑛 are explored using the methods developed in [7]. Furthermore, not all memory terms are included from
Eq. 2, and a truncation to include only the past 𝑘 terms is done in practice (a detailed analysis of of how increasing 𝑘
effects the prediction error is carried out in Section IV). The algorithms used in this manuscript (see Appendix B) were
derived in [5] and [7].
When using regression as the projection operator, we are free to choose the parameterized model for the MZ

operators: 𝑓 (·, 𝜽 (𝑘) ) = Ω(𝑘) (·). In this work, we use a fully connected neural network with 3 hidden layers each with
a height of 64. The main idea uses the Generalized Fluctuation Dissipation (GFD) theorem, a central result of the
Mori-Zwanzig formalism, to iteratively learn each operator (for further details of the derivation see [7]).

III. Hypersonic Boundary-Layer Test Case: Flared Cone, M = 6
The data-driven methods for extracting the MZ operators (see Section section II)can be applied to both low- and

high-speed boundary-layer flows. The hypersonic boundary-layer test case used here is based on the "natural" transition
simulations by Hader and Fasel [10, 13] for a flared cone at Mach 6. These simulations were based on the Purdue flared
cone geometry with a 4.5 inch base diameter (𝐿cone = 0.51 m), a nose radius of 𝑟nose = 101.6` m, an initial half-angle
of \cone = 1.4◦, and a flare radius of 𝑟flare = 3 m that was used for the experiments at the BAM6QT (Chynoweth et al.
[14, 15], Chynoweth [16], McKiernan et al. [17]). A schematic of the flared cone and the reference coordinate systems
are provided in fig. 1. The origin of the Cartesian coordinate system (𝑥, 𝑦, 𝑧) is at the nose of the cone with the 𝑥 axis
along the symmetry axis of the cone. A body-fitted coordinate system (b, [, Z) is defined by the coordinate b along the
surface of the cone, the coordinate [ in the direction normal to the surface of the cone and the azimuthal (unrolled)
coordinate Z . The azimuthal angle is denoted by 𝜑 and the local cone radius measured perpendicular from the cone axis
to the surface of the cone is given by 𝑟cone (𝑥). The unrolled coordinate is calculated as Z = 𝜑𝑟cone (𝑥). The same flow

Fig. 1 Schematic of the flared cone geometry showing the different coordinate systems.

conditions for the numerical investigations by Hader and Fasel [10, 13] are summarized in table 1. For the simulations
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Parameter Value
Mach number, 𝑀 6

Unit Reynolds number, 𝑅𝑒1 10.82 × 106 1/m
Stagnation temperature, 𝑇0 420 K
Freestream temperature, 𝑇∞ 51.2 K
Stagnation pressure, 𝑝0 965.3 kPa
Freestream pressure, 𝑝∞ 611.4 Pa
Wall temperature, 𝑇wall 300 K

Wall to recovery temperature ratio, 𝑇wall/𝑇𝑟 ≈ 0.8
Table 1 Details of the flow conditions used for the numerical investigations of the flared cone.

the fluid properties of air (𝑅gas = 287.16 J/(kgK), Pr = 0.71, 𝛾 = 1.4) were used. The fluid is considered to be a perfect
gas and the viscosity is calculated using Sutherland’s law (Sutherland [18]).

` =
𝐶1𝑇

3/2

𝑇 + 𝑆 (4)

where 𝑇 is the temperature in 𝐾 , and the constants are 𝐶1 = 1.458 · 10−6𝑘𝑔/(𝑚𝑠
√
𝐾) and 𝑆 = 110.4𝐾 . For the "natural"

transition simulation a random forcing approach (see Hader and Fasel [10]) was used where random pressure fluctuations
were introduced at the inflow of the computational domain (see Fig.2a). The forcing amplitude was chosen small
enough such that all stages of the boundary-layer transition process from the primary instability regime to breakdown to
turbulence could be observed in the simulation (see Fig. 2b).

(a)
(b)

Fig. 2 Computational setup for the "natural" transition DNS using random forcing (a), and schematic of the
transition stages (b).

IV. Results (Flared-cone, M = 6): comparing Mori-MZ and EDMD with delay embeddings
In this Section, we analyze and juxtapose predictive capabilities of the linear models (Mori MZ and EDMD) where

the observables are selected as the pressure values at the sensor locations as well as including time delay embeddings
[11] (see Fig. 3). We investigate the generalization errors (both KL-Divergence and MSE) of the Mori MZ approach,
and EDMD, both with time delay embeddings. Each flow contains a long statistically stationary solution trajectory.
The convergence of the operators is checked in order to find a sufficient number of samples for training (for details see
discussion in Appendix A for low-speed boundary layer). Once the training is complete with a sufficient number of
samples, a test set (held out from training) is partitioned into independent and identically distributed prediction horizons,
in which prediction performance measures of MZ and EDMD are evaluated over the two relevant time scales; the time
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it takes the flow to advect to the next downstream sensor and one period of the primary instability mode (henceforth
referred to as 𝑡𝛾 , and 𝑡𝛼 respectively).
In Fig. 4 we see the KL-Divergence of the predicted signals versus the reference DNS data up to 𝑡𝛾 at each

downstream sensor location (averaged in the azimuthal direction, 𝜑, see Fig. 1). This shows, that including more
memory terms decreases this generalization error more than adding delay embeddings, but adding both can be most
beneficial. This figure shows that if we want to predict the statistical properties of the pressure signals up to the time
scale at which the flow will advect to the next downstream sensor, adding memory terms has the largest effect at
improving the prediction. However, in measuring the MSE up to 𝑡𝛼 Fig. 5 we see adding time delay embeddings has the
largest effect, however using memory and delay is most beneficial. Hence, if we are interested in matching the exact
pressure signal up to the time scale of one period of the primary instability wave, then adding both memory length and
delay embeddings performs best a future state prediction.
However, in Fig. 7 we see that even though adding delay embedded coordinates with EDMD can improve its short

time prediction, the predictions can decay when integrated up to the advection time scale 𝑡𝛾 . Comparing this to Fig.
6, we see that although the MZ prediction does not always match the exact pressure, the statistical features are better
captured on this timescale. In the next section, we will compare these linear based models (Mori MZ and EDMD) to the
regression based MZ and LSTM which can make further improvements in predictive performance, however lose the
ability for spectral analysis.

Fig. 3 Locations of pressure sensors on the surface of the flared cone.

Fig. 4 Comparing effects of memory length and delay embeddings using KL divergence over the distributions
of MZ predictions in time up to the timescale 𝑡_ defined as the advection timescale from a sensor to the next
downstream sensor. 𝑥1 represents the location of the upstream sensors, and 𝑥4 is the sensor located near the
transition region.
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Fig. 5 Comparing effects of memory length and delay embeddings using MSE over the short prediction timescale
𝑡𝛼, defined as one period of the second mode wave (the primary instability wave [1]).

Fig. 6 MZ with 250 memory terms and with no time delay embedded coordinates predictions compared to the
ground truth test set data.

Fig. 7 EDMD with 10 delay embedded coordinates predictions compared to the ground truth test set data.

V. Results (Flared-cone, M = 6): comparing EDMD, MZ, Regression MZ, and LSTM
In this section, as in the previous, once the training is complete, performance measures are compared over the two

relevant time scales with a test set (held out from training) containing independent and identically distributed prediction
samples. Fig. 8 shows the KL-Divergence and MSE over time of each model, as well as the MSE at 𝑡𝛼 vs memory
length, where test set samples are obtained by translating the sensor location in the azimuthal direction. We see that the
regression based MZ (MZ : NN) has a lower total KL divergence over time than all other models. LSTM performs
similarly and is even slightly better on certain time scales. Fig. 9 shows the predictions of the pressure signals of the
regression based MZ on up to 𝑡𝛾 . In Fig. 10 we see that the power spectrum of the regression based MZ matches well
with the lower frequency modes.
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Fig. 8 (a) KL-Divergence over time, comparing each model at predicting the sensors over an array of samples
not seen in training. Measured up the the time scale 𝑡_ (b) Normalized MSE over time, averaged over an array of
samples (not seen in training (c) Normalized MSE at 𝑡𝛼 averaged over samples

Fig. 9 Regression based MZ predictions compared to the ground truth test set data.

Fig. 10 Regression based MZ power spectrum predictions compared to the ground truth test set data.

VI. Conclusions and Future work
In this manuscript, we applied the data-driven MZ methods developed in [5, 7] in order to obtain reduced models

for a set of sparse pressure sensors, using DNS data for two types of boundary layer transition: a) bypass transition
occurring in a low speed incompressible flow over a flat plate, and b) "natural transition" occurring in a high speed
compressible flow over a flared cone at Mach 6 and zero angle of attack. The MZ approach is natural for this problem
since it quantifies the effect that the unresolved variables (surrounding field) have on the resolved variables (sensor
values). This work serves as a proof of concept, where we have compared a range of daat driven models from EDMD
with delay embedding, MZ using the Mori (linear) projection, MZ using regression based on neural networks as the
projection operator to learn the Markovian and memory kernels, and LSTM. This opens up many more questions, such
as the feasibility for using these models for control, in application such as delaying the onset of transition.
The Mori based projection [5] was compared with EDMD using delay embedded coordinates [11], to quantify the

effect of mixing memory kernels with time delay embedding. We showed that using memory terms and delay embedded
coordinates performs best when comparing these linear methods. Since the Mori based projection produces linear MZ
operators, this approach would be interesting to explore with linear control strategies.
The regression based projection approach [7] offers the freedom to use nonlinear function approximators such as

neural networks to learn the MZ operators. This is most similar and compared to LSTM. When comparing all the
models, using both the KL-Divergence and mean squared error over the relevant time scales, we show that the regression
based MZ method, using fully connected neural networks to approximate the MZ operators, performs best, with LSTM
performing similarly. However, with LSTM the GFD is not explicitly enforced.
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Although the regression based MZ with neural networks does not clearly outperform LSTM, its formal construction
offers a more interpretable framework to incorporate physical structure. This could be leveraged in future works, where
known physical laws and / or constraints can be included within a parameterized MZ model which can be learned from
data.
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A. Additional Results: Incompressible Boundary-Layer
A low speed incompressible boundary flow from the Johns Hopkins Turbulence Database (JHTB) [19–21] is also

used in this work, with similar results as obtained above. In each flow, which contains a long statistically stationary
solution trajectory, the convergence of the operators is checked in order to find a sufficient number of samples for training
(see Figs 12, 13). Next, once the training is complete with a sufficient number of samples, a test set (held out from
training) is partitioned into independent and identically distributed prediction horizons, in which the statistical prediction
performance of MZ and EDMD is evaluated over relatively short (in time) prediction horizons. The number of the
prediction horizons ranged from 30 to 100 depending on the number of memory terms, 𝑘 , used. The KL divergence is
then computed at each instance of time over the distribution of prediction horizons in which the MZ and EDMD are
compared in Fig 14. This shows that as the number of memory terms is increased past a certain threshold, the statistical
prediction accuracy become significantly better when using MZ compared to EDMD (we remind that the latter contains
only the Markovian term and does not account for memory). Furthermore, we compare the 𝐿2 norm errors in Fig. 15
which shows a similar decreasing trend in the prediction error as the number of memory terms are increased.
The KL divergence is then computed at each instance of time over the distribution of prediction horizons in which

the MZ and EDMD are compared in Fig 14. This shows that as the number of memory terms is increased past a certain
threshold, the statistical prediction accuracy become significantly better when using MZ compared to EDMD (we
remind that the latter contains only the Markovian term and does not account for memory). Furthermore, we compare
the 𝐿2 norm errors in Fig. 15 which shows a similar decreasing trend in the prediction error as the number of memory
terms are increased.
Overall, we see that as the number of memory terms is increased, the predictive performance (as evaluated on the

test sets) improves. Although the MZ approach has significant improvements over EDMD over all the flow regions
(both laminar and turbulent), the performance degrades downstream as the flow becomes more turbulent. Nevertheless,
it retains the superiority over the EDMD prediction throughout the domain.

Fig. 11 The locations of the pressure sensors and a snapshot of the pressure field near the surface of the flat
plate from a full 3D DNS data set in JHTD. It is an example of an incompressible bypass transition flow with
homogeneous isotropic turbulent inflow. The flow is periodic and homogeneous in the 𝑧-direction.
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Fig. 12 Convergence of the two time covariance matrix and MZ operators as the training time (number of
samples) is increase for the hypersonic flow.

Fig. 13 Convergence of the two time covariance matrix and MZ operators as the training time (number of
samples) is increase for the JHTDB.

Fig. 14 (a) KL divergence over the distributions of MZ prediction horizons averaged over time on JHTDB. (b)
KL divergence over the distributions of MZ prediction horizons averaged over time on hypersonic flow. 𝑥1, 𝑥5
corresponds to the first and last column of sensors respectively.
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Fig. 15 (a) MSE over the distributions of MZ prediction horizons averaged over time on JHTDB. (b) MSE over
the distributions of MZ prediction horizons averaged over time on hypersonic flow. 𝑥1, 𝑥5 corresponds to the first
and last column of sensors respectively.

Fig. 16 (a) KL divergence over the distributions of MZ prediction horizons evolving over time on JHTDB. (b)
KL divergence over the distributions of MZ prediction horizons evolving over time on hypersonic flow. 𝑥1, 𝑥5
corresponds to the first and last column of sensors respectively. Each using the optimal 𝑘 selected from the lowest
generalization errors shown above.
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B. Algorithms

Algorithm 1 Discrete MZ Algorithm: SVD based observables
1: Select the number of memory terms 𝑘
2: Given snapshots of sensor data: 𝑿 𝑓 𝑢𝑙𝑙 = [𝒈1, ..., 𝒈𝑚+𝑘]; 𝒈𝑘 = [𝑝1 ((𝑘 − 1)Δ𝑡), 𝑝2 ((𝑘 − 1)Δ𝑡), ..., 𝑝𝑀 ((𝑘 − 1)Δ𝑡)]𝑇
3: Collect snapshots over 𝑘 time delays: 𝑮1 = [𝒈1, 𝒈2, ..., 𝒈𝑚], 𝑮2 = [𝒈2, 𝒈3, ..., 𝒈𝑚+1], ... 𝑮𝑘 = [𝒈𝑘 , 𝒈𝑘+1, ..., 𝒈𝑚+𝑘]
4: ——————————————————————————————–

5: 𝑪1 =
〈
𝒈(𝑡), 𝒈(𝑡)𝑇

〉
≈ 𝑮1 · 𝑮𝑇

1
6: for 𝑖 ← 2, ..., 𝑘 + 1 do
7: 𝑪𝑖 =

〈
𝑒 (𝑖Δ)L 𝒈(𝑡), 𝒈(𝑡)𝑇

〉
≈ 𝑮𝑖 · 𝑮𝑇

1
8: end for
9: 𝛀(0) = 𝑪2 · 𝑪−11
10: for 𝑖 ← 2, ..., 𝑘 + 1 do
11: 𝛀(𝑖) =

[
𝑪𝑖+1 −

∑𝑖−1
𝑙=1 𝛀

(𝑙) · 𝑪𝑖−𝑙+1
]
· 𝑪−11

12: end for

Result: 𝒈𝑛+1 (𝝓0) = 𝛀(0) 𝒈𝑛 (𝝓0) +
∑𝑘

𝑙=1𝛀
(𝑙) 𝒈𝑛−𝑙 (𝝓0) + 0.
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