

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  APRIL 25 2023

Planar turbulent wakes under pressure gradient: Integral
and self-similarity analyses
Tie Wei ; Xiaofeng Liu; Zhaorui Li; ... et. al

Physics of Fluids 35, 045149 (2023)
https://doi.org/10.1063/5.0149652

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0149652/17009625/045149_1_5.0149652.pdf

https://pubs.aip.org/aip/pof/article/35/4/045149/2886734/Planar-turbulent-wakes-under-pressure-gradient
https://pubs.aip.org/aip/pof/article/35/4/045149/2886734/Planar-turbulent-wakes-under-pressure-gradient?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/pof/article/35/4/045149/2886734/Planar-turbulent-wakes-under-pressure-gradient?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/5.0149652
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063275&setID=592934&channelID=0&CID=754934&banID=520996622&PID=0&textadID=0&tc=1&adSize=1640x440&matches=%5B%22inurl%3A%5C%2Fpof%22%5D&mt=1682439776888387&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fpof%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0149652%2F17009625%2F045149_1_5.0149652.pdf&hc=461d63eab16411b72f76778a6b4c814fe5b609eb&location=


Planar turbulent wakes under pressure gradient:
Integral and self-similarity analyses

Cite as: Phys. Fluids 35, 045149 (2023); doi: 10.1063/5.0149652
Submitted: 7 March 2023 . Accepted: 6 April 2023 .
Published Online: 25 April 2023

Tie Wei,1,a) Xiaofeng Liu,2,b) Zhaorui Li,3,c) and Daniel Livescu4,d)

AFFILIATIONS
1Department of Mechanical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy PL, Socorro,
New Mexico 87801, USA

2Department of Aerospace Engineering, San Diego State University, San Diego, California 92182, USA
3Department of Engineering, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412, USA
4CCS-2, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

a)Author to whom correspondence should be addressed: tie.wei@nmt.edu
b)Electronic address: xiaofeng.Liu@sdsu.edu
c)Electronic address: zhaorui.li@tamucc.edu
d)Electronic address: livescu@lanl.gov

ABSTRACT

By using a combination of integral and self-similarity analyses, the generalized analytical solutions for the mean transverse velocity and
Reynolds shear stress are rigorously derived for the first time for the far field of planar turbulent wakes under arbitrary pressure gradients.
Specifically, by assuming self-similarity for the mean axial velocity, the analytical formulation for the mean transverse velocity is obtained
from the integral of the mean continuity equation, and the analytical formulation for the Reynolds shear stress is obtained from the integral
of the momentum equation. The generalized analytical formulations for the mean transverse velocity and Reynolds shear stress consist of
multiple components, each with its unique scale and physical mechanism. In the zero pressure gradient limit, the generalized formulations
recover the single-scale equations reported by Wei, Liu, and Livescu. Furthermore, simpler approximate formulations for the mean transverse
velocity and Reynolds shear stress are also obtained, and show excellent agreement with the experimental measurements. The findings pro-
vide new insights into the properties of planar turbulent wakes under pressure gradients, filling some long-standing gaps in the existing
literature.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0149652

I. INTRODUCTION

Turbulent wake flow is a commonly encountered type of free tur-
bulent shear layer flow that has a wide range of applications in fields,
such as aviation, sailing, combustion, propulsion, and environmental
science. Despite extensive research on this subject, there is still a need
to improve our understanding and ability to predict the behavior of
turbulent wakes, especially under the influence of pressure gradients.
In the present work, we use a combination of integral and self-
similarity analyses to examine the impact of pressure gradients on pla-
nar turbulent wakes. Our findings identify new scales and lead to the
development of new analytical equations that allow us to better under-
stand the mean transverse flow and Reynolds shear stress and to clar-
ify the effects of pressure gradients on these flows.

Turbulent wake flows with zero pressure gradient (ZPG) have
been investigated for more than one hundred years. Comprehensive

reviews of the classic work on turbulent wake flows with zero pressure
gradient can be found in the books of Schlichting,1 Townsend,2 and
Pope.3 In practical applications, especially in aerodynamics, however,
turbulent wakes are often subject to pressure gradients.4–7 In the
multi-element airfoils used for high lift of transport aircraft, for
instance, wake from an upstream element develops under a strong
pressure gradient imposed by downstream elements. This is a critical
issue in the aerodynamics design of multi-element airfoils, as flow
reversals in the wake can result in significant reductions in the maxi-
mum lift, which is a key factor in determining the performance of
transport aircraft.

Gartshore8 carried out an experimental study to understand the
effect of pressure gradient on the development of wake flows. The
sides of the wind tunnel were adjusted to bleed air to create an adverse
pressure gradient (APG) when a perforated plate was fastened over
the downstream of the section. In forming the wakes, the pressure
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gradient downstream of a square rod was adjusted until an approxi-
mately constant ratio of ðUe � UctrÞ=Ue was obtained, where Ue is the
free-stream velocity and Uctr is the mean axial velocity at the wake cen-
terline. Gartshore measured mean velocity, longitudinal and transverse
turbulent intensity, intermittency and shear stress, and compared with
Townsend’s2 data from small-deficit undistorted wakes.

To study the memory of the larger eddies in turbulent shear flow,
Narasimha and Prabhu9 conducted experiments on planar turbulent
wakes undergoing transition from an initial equilibrium state to a dif-
ferent final one, as a result of a nearly impulsive pressure gradient.
They suggested that a flow satisfying the conditions required for a self-
preservation analysis will exhibit equilibrium only if the relaxation
length is small compared with a characteristic streamwise length scale
of the flow.

Tummers et al.10 investigated the wake of a flat plate subjected to
a strong adverse pressure gradient, which caused a local flow reversal
and high turbulence intensities. The experimental data were used to
determine terms in the turbulent kinetic energy equation. The compari-
son of experimental data with Reynolds-averaged Navier–Stokes simu-
lation showed that both a k� � model and a differential stress model
predicted well the spreading rate of the wake, but predicted poorly the
mean velocity and the turbulent kinetic energy on the wake centerline.

Liu and co-workers11–14 performed experimental investigations
on the development of planar turbulent wakes subjected to adverse,
zero, and favorable pressure gradient (FPG) conditions, respectively.
The wake was generated by a flat splitter plate with tapered trailing
edge, and the pressure gradients were imposed as the wake passed
through a wind tunnel diffuser test section with fully adjustable top
and bottom wall contours.11,12,14 The experiment’s Reynolds number
is 2:4� 106, based on the chord length of the wake generator. This
value is similar to the Reynolds number for a wake flow that is pro-
duced by a leading-edge slat during the landing approach of a Boeing
737 aircraft. The streamwise pressure gradients imposed on the
wake flow were held constant in each experiment:
dCp=dx ¼ 0:3386 0:002=m under an adverse pressure gradient
(APG), dCp=dx ¼ 0:0006 0:004=m under a constant-pressure or
zero pressure gradient (ZPG), and dCp=dx ¼ �0:606 0:01=m under
a favorable pressure gradient (FPG). The pressure coefficient Cp is
defined as Cp ¼ ½PðxÞ � P1�=q1, where P(x) is the local static pres-
sure in the diffuser, P1 and q1 are the statics and dynamic pressures,
respectively, upstream of the splitter plate. The mean velocity
upstream of the wake generator was Ueo ¼ 306 0:2 m/s. The use of
constant pressure gradient, combined with identical initial conditions,
facilitated isolation of the effect of streamwise pressure gradients on
the evolution of the wake and provided a clean test bed for numerical
simulations. The imposed pressure gradients were shown to have a sig-
nificant effect on both the mean and turbulent flow statistics.

Driver and Mateer15 performed experiments of planar turbulent
wake under an adverse pressure gradient in the High Reynolds
Channel Number 1, a pressurized wind tunnel at NASA Ames
Research Center. More details of the experiments are provided in a
recent report.16 Driver and Mateer compared the experimental data
with computational simulations using the turbulence models of
Spalart and Allmaras17 and Menter.18 Computations with turbulence
models fail to capture the flow reversals and the associated displace-
ment effects observed in the experiment, but the performance of the
simulation was improved by ad hoc increase in lag in the model.

Traditionally, the scale for the Reynolds shear stress (and
Reynolds normal stresses) is assumed to be proportional to
ðUe � UctrÞ2 (see, e.g., p. 198 in Ref. 2). However, such scaled
Reynolds shear stress is found to vary with pressure gradient.12 Based
on a similarity analysis, Thomas and Liu14 found that incorporating
the velocity defect with the streamwise rate of variation of product of
the wake width and the local freestream velocity is better to capture
the self-similarity of the Reynolds shear stress in planar turbulent
wakes under pressure gradient. It is worth noting that in previous
studies, the influence of pressure gradient on the mean transverse
velocity has been largely omitted due to the scarcity of experimental
data. Given its small magnitude, it is extremely challenging to obtain
accurate experimental measurements of the mean transverse velocity.
However, Liu et al.11,12 were able to measure the mean transverse
velocity distribution with exceptional accuracy using hot wire. These
experimental data are invaluable in validating the analytical
derivations.

In the present work, we investigate the effects of pressure gra-
dients on planar turbulent wake development using a combination of
integral and self-similarity analyses. In Sec. II, the general characteris-
tics of planar turbulent wakes under pressure gradient are described.
Section III gives integral analyses of the mean continuity and momen-
tum equations. New analytical equations are obtained to accurately
predict the mean transverse velocity at the wake edge and the maxi-
mum Reynolds shear stress. In Sec. IV, new analytical equations are
derived for the mean transverse velocity and Reynolds shear stress
based on a self-similarity assumption of the mean axial velocity deficit.
Simplified equations are also obtained to approximate the mean trans-
verse velocity and Reynolds shear stress, showing excellent agreement
with the experimental measurements of planar turbulent wakes under
different pressure gradients. Section V summarizes the work.

II. GENERAL CHARACTERISTICS OF PLANAR
TURBULENT WAKES SUBJECTED TO PRESSURE
GRADIENT

The development of a planar turbulent wake is distinctively influ-
enced by the pressure gradient. In the experiments of Liu,11 the pres-
sure gradient was created by adjusting the top and bottom walls of the
diffuser test section, as depicted in Fig. 1 and detailed in Ref. 11. Sheet
metal was used to construct the top and bottom walls, which can be
modified using seven groups of turnbuckles. By adjusting the contour
of the walls, Liu was able to optimize the conditions to create a con-
stant pressure gradient as desired.

Figure 2 displays the mean axial velocity distribution in planar
turbulent wakes under adverse pressure gradient, zero pressure gradi-
ent, and favorable pressure gradient. The data are from the experimen-
tal study of Liu.11 Figure 2(a) presents the mean axial velocity in the
dimensional form, and Fig. 2(b) presents the ratio of the mean axial
velocity and the free stream velocity (adapted with permission
from Fig. 3.8 of Ref. 11). The initial mean wake profiles are intention-
ally controlled in the experiments to be identical for different
pressure gradients (see Fig. 3.2 in Ref. 11) and the free stream velocity
is Ueo ¼ 306 0:2 m/s. Figure 2(a) shows that, at a downstream loca-
tion of x¼ 30 in., the free stream velocity Ue maintains at 30m/s in
the ZPG wake, but increases to about 35m/s in the FPG wake and
decreases to about 27.5m/s in the APG wake. Figure 2(b) shows that
the APG wake is wider and has a larger Ue � Uctr than that in the
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ZPG wake. A favorable pressure gradient has the opposite effect on
the variation of the wake width and the maximum axial velocity
deficit.

The influence of pressure gradients on the wake spreading and
velocity deficit decay rate has been documented in detail in Refs.
11–14. For the reader’s convenience, the effects of pressure gradient
on the wake width and mean axial velocity deficit are reproduced here.
Following convention, the half-width of wake d0:5 is defined as
Uðy ¼ d0:5Þ ¼ 0:5ðUe þ UctrÞ. It is known (see Ref. 3, for example)
that in a ZPG wake, the growth of the wake half-width in the far field
can be approximated by a power law of d0:5 / x0:5. Figure 3(a) shows
that the wake half-width in the APG wake grows much faster than
that in the ZPG or FPG wake.

For a planar turbulent ZPG wake, the decaying rate of the maxi-
mummean axial velocity deficit can be approximate by a power law of
ðUe � UctrÞ=Ue / x�0:5 (see Ref. 3, for example). Figure 3(b) shows
that the ratio ðUe � UctrÞ=Ue decreases more rapidly in the FPG wake
than in the ZPG wake. For the APG wake in Liu’s experiment, the
ratio remains roughly a constant of 0.25 in the range of 0.7–1.2 m and
starts to increase slightly toward the end of the domain of investigation
at x¼ 1.4 m.

III. INTEGRAL ANALYSIS OF PLANAR TURBULENT
WAKES UNDER PRESSURE GRADIENT

In this section, integral analyses are carried out to determine the
mean transverse velocity at the wake edge, and the maximum
Reynolds shear stress in planar turbulent wake flow under pressure
gradient. This work considers incompressible, single phase flows, and
density is assumed to be constant. The governing equations for the
mean flow in a planar turbulent wake are (see Eq. 6.2.9 in Ref. 2 or Eq.
5.55 in Ref. 3, for example) as follows:

0 ¼ @U
@x
þ @V
@y

; (1a)

0 ¼ �U @U
@x
� V

@U
@y
� dðP=qÞ

dx
þ @Ruv

@y
þ @ðRuu � RvvÞ

@x

þ � @2U
@x2
þ @

2U
@y2

( )
: (1b)

Here, x denotes the axial direction and y denotes the transverse direc-
tion. Upper case letters U and V denote the mean velocity in the axial
and transverse directions, respectively. q is the fluid density and � is

FIG. 1. Schematic of the test section in
the experiments of Liu.11 Reproduced with
permission from X. Liu, “A study of wake
development and structure in constant
pressure gradients,” Ph.D. thesis
(University of Notre Dame, 2001) (Fig.
2.2).11

FIG. 2. Effects of pressure gradients on the mean axial velocity in planar wakes. Data are from experimental measurements of Liu11 at x¼ 30 in. for APG wake, ZPG wake,
and FPG wake. Reproduced with permission from X. Liu, “A study of wake development and structure in constant pressure gradients,” Ph.D. thesis (University of Notre Dame,
2001) (Fig. 3.8).11
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the fluid kinematic viscosity. Reynolds shear stress is denoted as
Ruv ¼ �huvi, where u and v are the velocity fluctuation in the x� and
y� directions, respectively. Angle brackets denote a Reynolds averag-
ing operation. Reynolds normal stress in the x� direction is Ruu ¼
�huui and in the y-direction is Rvv ¼ �hvvi. For a planar turbulent
wake flow at sufficiently high Reynolds numbers, the viscous forces
and @ðRuu � RvvÞ=@x in the mean momentum equation are typically
neglected.2

A. Global integrals of the mean continuity and
momentum equations for planar turbulent wakes

The global integral analysis is a powerful tool to uncover the
physics of turbulent flows. The first global integral analysis of the
mean momentum equation was performed by von K�arm�an19 and
Pohlhausen20 for wall-bounded turbulent boundary layer flows (see
also Ref. 1). The K�arm�an–Pohlhausen equation presents a relationship
among the wall shear stress, free stream velocity, mass deficit thick-
ness, and momentum deficit thicknesses. In the analysis of K�arm�an
and Pohlhausen, the integral of the mean continuity equation was not
explicitly presented, but indirectly used in the global integral of the
mean momentum equation. In this work, we explicitly derive the
global integral of the mean continuity equation.

The global integral of the mean continuity and mean momentum
equations, from the wake centerline y¼ 0 to the wake edge de, are (see
Subsections 2 and 3 of Appendix A for details) as follows:

Ve ¼
d
dx

Uede � 0:5 _V
� �

� de
dUe

dx
; (2a)

0 ¼ d
dx

0:5ðUe
_V � _MÞ

� �
þ Uede � 0:5 _V
� � dUe

dx
; (2b)

where _V¼def
Ð de
�de

Udy and _M¼def
Ð de
�de

U2dy are the volumetric and the
kinematic momentum flow rate over a unit length in the spanwise
direction, respectively (see Subsection 1 of Appendix A). Due to sym-
metry, the mean axial velocity gradient in the transverse direction
@U=@y, mean transverse velocity, and Reynolds shear stress are all
zero at the wake centerline.

The mean transverse velocity is usually small in wake flows and
is difficult to measure accurately. However, Eq. (2a) provides a useful
way to estimate the mean transverse velocity at the wake edge, Ve, by
using the mean axial velocity profiles measured at multiple axial
locations.

Using the definition of I1 (see Subsection 1 of Appendix A),
Eq. (2a) can be expressed as (see Subsection 2 of Appendix A for
details)

Ve ¼
d
dx
ðUe � UctrÞdeI1½ � � de

dUe

dx
: (3)

In the wake far fields where the mean axial velocity deficit is observed
to reach a self-similar state, I1 is found to be a constant of I1 � 0:5.
Equation (3) indicates that the mean transverse velocity at the wake
edge Ve can be calculated if Ue, Uctr, de are measured at multiple axial
stations. However, to ensure accuracy in the calculation of d/dx, ade-
quate spatial resolution in the axial direction (smaller Dx between the
measuring stations) is critical.

Figure 4 shows the variation of the mean transverse velocity, Ve,
calculated using Eq. (3) and the curve-fitted values of Ue, Ue � Uctr,

FIG. 3. (a) Growth of the wake half width d0:5 in the axial direction. (b) Variation of ðUe � UctrÞ=Ue in the axial direction. Data are from Liu.11

FIG. 4. The mean transverse velocity at the wake edge calculated from Eq. (3).
Data are from experimental measurements of Liu.11
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and de (see Appendix C for more details on curve fitting). The mean
transverse velocity Ve is positive in an APG wake, and the magnitude
increases in the axial direction. In a FPG wake, the mean transverse
velocity Ve is negative, and its magnitude decreases in the axial direc-
tion. In a ZPG wake, Ve is zero in the far field (see Ref. 21). The sign of
Ve and its magnitude can provide insight into the nature of the wake
flow subjected to APG, ZPG, or FPG. By understanding the variation
of Ve under different pressure gradient, researchers can gain a deeper
understanding of wake dynamics and use this information to design
more efficient fluid systems.

Applying the definitions of I1 and I2, the global integral of the
mean momentum Eq. (2b) can be re-written as (see Subsection 3 of
Appendix A for details)

0¼ d
dx

UeðUe�UctrÞdeI1�ðUe�UctrÞ2deI2
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term1

þðUe�UctrÞdeI1
dUe

dx|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term2

:

(4)

I2 is defined in Subsection 1 of Appendix A and is found to be a con-
stant of I2 � 0:36. To evaluate the validity of the global integral mean
momentum Eq. (4), Fig. 5 presents the first and second terms calcu-
lated using the curved-fitted d05, Ue, and Ue � Uctr for the APG and
FPG wakes. In an APG wake, Ue decreases in the axial direction and
the second term in Eq. (4) is negative. In contrast, in a FPG wake, Ue

increases in the axial direction and the second term in Eq. (4) is posi-
tive, as shown in Fig. 5(b). Overall, the two terms shown in Fig. 5
exhibit similar magnitude and opposite signs in the far wake, as dic-
tated by the global integral constraint Eq. (4).

Figure 3(b) shows that in the far field of ZPG or FPG wakes, the
maximum axial velocity deficit becomes much smaller than the free
stream velocity: Ue � Uctr � Ue. Thus, the ðUe � UctrÞ2 term in
Eq. (4) is negligible, and the global integral of the mean momentum
Eq. (4) can be approximated as

d
dx

UeðUe � UctrÞdeI1½ � � �ðUe � UctrÞdeI1
dUe

dx
: (5)

This equation can be rearranged as

1
UeðUe � UctrÞdeI1

d UeðUe � UctrÞdeI1½ �
dx

� � 1
Ue

dUe

dx
: (6)

Simple integration gives a relation amongUe, ðUe � UctrÞ, and de:

U2
e ðUe � UctrÞde ¼ const: if ðUe � UctrÞ � Ue: (7)

This relation can be obtained from a self-similarity analysis and was
reported by a number of researchers, e.g., Townsend (Eq. 6.4.12 in Ref.
2), Narasimha and Prabhu,9 and Liu et al.11,12 For a planar wake flow
under ZPG, Ue is a constant and Eq. (7) can be further simplified as

ðUe � UctrÞde ¼ const: ZPGwake: (8)

This relation has been presented routinely in previous studies of planar
turbulent wakes under ZPG, such as Refs. 9,12, and 21.

B. Maximum Reynolds shear stress from integral
analysis

Empirically, it is observed that the normalized Reynolds shear
stress profiles reach a self-similar shape away from the wake generator,
and the maximum Reynolds shear stress is located at ym � 0:84d0:5
(see Fig. 17). Hence, an equation for the maximum Reynolds shear
stress can be obtained by integrating the mean momentum equation
from the wake centerline to ym as (the steps are similar to the global
integral in Subsection 2 and 3 of Appendix A),

Ruvjmax ¼
d
dx

U2
e ym � 2UeðUe � UctrÞymI1m þ ðUe � UctrÞ2ymI2m

n o
�Uym

d
dx

Ueym � ðUe � UctrÞymI1m
� �

� ymUe
dUe

dx
;

(9)

where I1m � 0:86 and I2m � 0:76 (see Subsection 1 of Appendix A).
While Eq. (9) appears complex, the only measurement required is the
mean axial velocity at multiple axial stations. All the variables on the
right side of Eq. (9), Ue, Ue � Uctr; ym; I1m, and I2m, are obtained
from the mean axial velocity profiles.

Figure 6 compares the measured maximum Reynolds shear stress
Ruvjmax with the analytical prediction from the integral Eq. (9). The

FIG. 5. The first and second terms in the global integral of the mean momentum Eq. (4). The two terms are calculated from the experimental measurements of Ue, Uctr , and
de. (a) APG wake. (b) FPG wake. Data are from experimental measurements of Liu.11
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agreement between the analytical prediction and the measured values
in Fig. 6 supports the validity of the integral equation (9) for predicting
the maximum Reynolds shear stress.

IV. SELF-SIMILARITY SOLUTIONS OF PLANAR
TURBULENT WAKES UNDER PRESSURE GRADIENT

Figure 3 shows that the wake half-width d0:5 and the mean maxi-
mum axial velocity deficit Ue � Uctr are strongly affected by the pres-
sure gradients. However, it is known that shapes of the mean axial
velocity deficit profiles become self-similar in the far field.2,11 As
shown in Fig. 7, the normalized profiles of ðUe � UÞ=ðUe � UctrÞ col-
lapse onto a single curve in the far field of planar turbulent wakes,
when plotted against y=d0:5, regardless of the pressure gradient. The
self-similar function for the mean axial velocity deficit can be approxi-
mated as

U� ¼ Ue � U
Ue � Uctr

� eð�0:637g
2�0:056g4Þ; (10)

where g ¼ y=d0:5 is the transverse location normalized by the wake’s
half-width. This approximation function has been used by Wygnanski
et al.22 and Liu.11

Liu et al.12 found that a universal shape for U� is established in
planar turbulent wakes subjected to ZPG, APG, or FPG when
x=h0 > 40, where h0 is the initial wake momentum thickness. Thus
x=h0 � 40 can be used as the delimiter of the far wake. The self-
similar shape implies that the mean axial velocity deficit profiles can

be characterized by one length scale d0:5 and one velocity scale
Ue � Uctr. Note that in Fig. 7, the U� profiles at the near wake stations
of x ¼ 5 or 6 in. (x=h0¼ 17.6 or 21.1) are still developing and have
not reached the self-similar state yet.

Given the direct connections among the mean axial flow, the
mean transverse flow, and Reynolds shear stress in the mean momen-
tum equation, rational questions arise: Far from the wake generator,
do the mean transverse flow V and Reynolds shear stress Ruv also
approach a self-similar state? If profiles of V or Ruv do not reach a self-
similar state, then additional length scales would be required to
describe the profiles of V or Ruv. How would the additional length
scales be related to the single length scale for the U� profile? If the pro-
files of V or Ruv approach a self-similar state, then their proper scales
need to be determined. Determining the proper scales for the mean
transverse flow and the Reynolds shear stress is an important step in
fully characterizing the flow and understanding the underlying
physics.

A. Analytical and approximate equations for the mean
transverse velocity

The mean transverse velocity is a key parameter that provides
information about the transverse flow structure in the wake and its
evolution in the axial direction. An analytical equation for the mean
transverse velocity can be obtained by integrating the mean continuity
Eq. (1a) from 0 (wake centerline) to y,

FIG. 6. Maximum Reynolds shear stress from experimental measurements and analytical Eq. (9): (a) APG wake, (b) ZPG wake, and (c) FPG wake. Data are from experimen-
tal measurements of Liu.11

FIG. 7. Normalized mean velocity deficit profiles in planar turbulent wakes under pressure gradients: (a) APG wake, (b) ZPG wake, and (c) FPG wake. The dashed curve is
the approximation Eq. (10). Data are from experimental measurements of Liu.11
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V ¼ �
ðy
0

@U
@x

dy ¼ � dUe

dx
y þ

ðy
0

@ðUe � UÞ
@x

dy: (11)

Applying the self-similarity assumption of U� ¼ f ðgÞ, the x-
derivative of the mean axial velocity deficit can be written as

@ðUe � UÞ
@x

¼ dðUe � UctrÞ
dx

U� � ðUe � UctrÞ
d0:5

dd0:5
dx

g
dU�

dg
: (12)

The integral of @ðUe � UÞ=@x then becomesðy
0

@ðUe � UÞ
@x

dy ¼
ðg

0

dðUe � UctrÞ
dx

U�d0:5dg

�
ðg

0

ðUe � UctrÞ
d0:5

dd0:5
dx

g
dU�

dg
d0:5dg

¼ dððUe � UctrÞd0:5Þ
dx

ðg

0
U�dg

� ðUe � UctrÞ
dd0:5
dx

gU�:

(13)

Substituting Eq. (13) into Eq. (11) gives an analytical equation for the
mean transverse velocity as

V ¼ �d0:5
dUe

dx|fflfflfflfflfflffl{zfflfflfflfflfflffl}
aI

g

þ d ðUe � UctrÞd0:5½ �
dx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
aII

ðg

0
U�dg �ðUe � UctrÞ

dd0:5
dx|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aIII

gU�: (14)

Note that each of the three pre-factors aI ¼ �d0:5dUe=dx;
aII ¼ d½ðUe � UctrÞd0:5�=dx, or aIII ¼ �ðUe � UctrÞdd0:5=dx is a
velocity scale. Hence, the mean transverse flow in planar turbulent
wakes under pressure gradient consists of three components, each
associated with a distinct velocity scale. Equation (14) provides a useful
framework for understanding the mean transverse flow in planar tur-
bulent wakes under pressure gradient and how it is related to different
velocity scales.

In a ZPG wake, Ue ¼ const and ðUe � UctrÞd0:5 ¼ const, so
aI ¼ aII ¼ 0. Consequently, the mean transverse velocity Eq. (14) can
be simplified for a ZPG wake as

V ¼ �ðUe � UctrÞ
dd0:5
dx

gU�; ZPGwake (15)

consistent with the result reported in Ref. 21
For simplicity, U� is approximated by a Gaussian function

U� � expð�ag2Þ, where a ¼ lnð2Þ. The difference between this sim-
ple Gaussian function and Eq. (10) is minor and limited to the wake
edge region (see Ref. 21). Then, an approximate equation for the mean
transverse velocity can be obtained from Eq. (14) as

V ¼ �d0:5
dUe

dx
gþ d ðUe � UctrÞd0:5½ �

dx

ffiffiffi
p
p

2
ffiffiffi
a
p erf

ffiffiffi
a
p

g
� 	

� ðUe � UctrÞ
dd0:5
dx

g expð�ag2Þ: (16)

Using hot wire measurements, Liu11 determined the mean trans-
verse velocity profiles at the axial location of x=h0 ¼ 141. The relevant

parameters at this location, determined from the measurement of U
distribution, are listed in Table 1. Applying the parameters in Table 1,
the mean transverse velocity profiles are calculated using the approxi-
mate Eq. (16), and compared with the experimentally measured V in
Fig. 8, showing excellent agreement.

In general, the mean transverse velocity Eq. (16) consists of three
self-similar functions: g, erf

ffiffiffi
a
p

g
� 	

, and g expð�ag2Þ. The shapes of
the three functions are shown in Fig. 9. The first term of Eq. (16),
�d0:5 dUe=dx g ¼ �y dUe=dx ¼ y @V=@yje, is a linear function of y,
representing the mean transverse flow in the free stream imposed by
the pressure gradient. The last term is similar to the mean transverse
flow in a ZPG wake (see Ref. 21).

Figure 10 presents the variations of pre-factors aI; aII, and aIII in
Eq. (14). In the far field, aI is zero in a ZPG wake, and is positive (neg-
ative) in an APG (FPG) wake. The magnitude of aI increases in the
axial direction of the APG wake, but decreases in the FPG wake.
Figure 10(b) shows that aII is zero in the far field of a ZPG wake, which
confirms the constraint reported in Ref. 21. In an APG wake, the defi-
cit ðUe � UctrÞ decreases slowly in the axial direction, but d0:5
increases more rapidly (see Fig. 3). Therefore, the magnitude of the
product ðUe � UctrÞd0:5 increases in the axial direction of an APG
wake, and aII is positive as shown in Fig. 10(b). On the other hand, the
magnitude of the product ðUe � UctrÞd0:5 decreases in the axial direc-
tion of FPG wakes, and aII is negative. Figure 10(c) shows that the pre-
factor aIII is negative in all the three wakes.

TABLE I. Parameters in Eq. (16). The parameters are for x=h0 ¼ 141 or x¼ 1.01 m.

APG
wake

ZPG
wake

FPG
wake

d0:5 (mm) 25 22 17.8
aI ¼ �d0:5dUe=dx (m/s) 0.125 0 �0.125
aII ¼ dððUe � UctrÞd0:5Þ=dx (m/s) 0.07 0 �0.05
aIII ¼ �ðUe � UctrÞdd0:5=dx (m/s) �0.12 �0.06 �0.02

FIG. 8. Comparison of approximate Eq. (16) for V with experimental measure-
ments. The data of Liu11 were measured at x=h0 ¼ 141 or x¼ 1.015 m. To prevent
clutter, every 5th measurement of V is plotted.
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FIG. 9. Components of mean transverse flow in planar turbulent wakes under pressure gradient. (a) APG wake. (b) FPG wake.

FIG. 10. Pre-factors of terms in the mean transverse velocity Eq. (14): (a) aI ¼ �d0:5dUe=dx vs x; (b) aII ¼ dððUe � UctrÞd0:5Þ=dx vs x; and (c) aIII ¼ �ðUe �
UctrÞdd0:5=dx vs x.

FIG. 11. (a) Ratio of aII=jaIj vs x. (b) Ratio of aIII=jaIj vs x.
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At the wake edge y ¼ de or ge ¼ de=d0:5, the last term in
Eq. (14) or Eq. (16) is close to zero as shown in Fig. 9. Therefore,
Eq. (14) at y ¼ de reproduces the global integral result Eq. (3):
Ve � de@V=@yje ¼ aII ge I1. Figure 10 shows that aII is not zero for an
APG or FPG wake. Hence, Eq. (14) indicates that the mean transverse
velocity at the edge of APG or FPG wakes is not de@V=@yje. In other
words, the mean transverse velocity in the free stream is tilted from
the linear function y@V=@yje by the second term in Eq. (14) or
Eq. (16) (see Figs. 8 and 12).

In any wake flow, the parameters aI; aII, and aIII can be obtained
by measuring the U profiles at multiple axial locations. Once aI; aII,
and aIII are determined from experimental or numerical data, Eq. (16)
can be used to calculate the mean transverse velocity at that location.
To understand the effect of aI; aII, and aIII on the shape of V, it is bet-
ter to present the mean transverse velocity profile in a dimensionless
form, which can be obtained by dividing Eq. (16) by one of the velocity
scales, aI; aII, or aIII. For example, dividing Eq. (16) by jd0:5dUe=dxj
gives a dimensionless equation for the mean transverse velocity as

V

jd0:5 dUe
dx j
¼
�d0:5

dUe

dx


d0:5 dUe

dx




|fflfflfflfflfflffl{zfflfflfflfflfflffl}
aI=jaIj

gþ
d ðUe � UctrÞd0:5½ �

dx


d0:5 dUe

dx




|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
aII=jaIj

ffiffiffi
p
p

2
ffiffiffi
a
p erf

ffiffiffi
a
p

g
� 	

þ
�ðUe � UctrÞ dd0:5dx


d0:5 dUe

dx




|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
aIII=jaI j

g expð�ag2Þ: (17)

The shape of the normalized mean transverse velocity Eq. (17)
depends on the two ratios aII=jaIj and aIII=jaIj, which are shown in
Fig. 11. The ratio aII=jaIj is positive for the APG wake, but is negative
for the FPG wake. The ratio aIII=jaIj is negative for both the APG and
FPG wakes. As shown in Fig. 3(a), d0:5 of the APG wake increases
much faster than that of the FPG wake. Therefore, the magnitude of
the ratio aIII=jaIj in the APG wake is larger than that of the FPG wake.

FIG. 12. Mean transverse velocity normalized by jaIj (or jd0:5dUe=dxj). Effects of aII=jaIj and aIII=jaIj: (a) APG wake with different aII=jaIj; (b) FPG wake with different
aII=jaIj; (c) APG wake with different aIII=jaIj; and (d) FPG wake with different aIII=jaIj. The insets show the sum of the last two terms in Eq. (17) (without the linear function).
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Figure 11 shows that the ratios aII=jaIj and aIII=jaIj approach
constant values in the far field. In other words, the normalized mean
transverse velocity Eq. (17) become self-similar far from the wake initi-
ator. However, the ratios aII=jaIj and aIII=jaIj are not universal, but
depend on the pressure gradient. For example, with increasing pres-
sure gradient, the pre-factor aI in an APG or FPG wake becomes
larger, and the ratio of aIII=jaIj will become smaller. On the other
hands, as the pressure gradient decreases toward zero, the pre-factor
aI in an APG or FPG wake also decreases toward zero, and the ratio
aIII=jaIj will become larger.

The effect of pressure gradients on the shape of the mean trans-
verse flow are illustrated here using Eq. (17) with different values of
aII=jaIj and aIII=jaIj. Figure 12(a) shows the effects of aII=jaIj on the
shape of the mean transverse velocity in the APG wake. The inset
presents the sum of the last two terms in Eq. (17), showing the effects
of aII=jaIj on the mean transverse flow inside the wake. In Fig. 12(a),
the ratio aIII=jaIj ¼ �1 is kept the same as that in Table 1, and three
values of aII=jaIj ¼ 0:3; 0:6; and 1.2 are used. The solid black curve
with aII=jaIj ¼ 0:6 corresponds to the experimental data of Liu.11 As
aII=jaIj increases, the tilt from the linear function y@V=@yje becomes
larger, and the transverse flow within the wake deviates more from the
shape in the ZPG wake.

Figure 12(b) presents the shapes of the mean transverse velocity
in the FPG wake at three values of aII=jaIj ¼ �0:2;�0:4; and �0.8.
The ratio aIII=jaIj is kept at –0.16. The solid black curve corresponds
to the data in Table 1. Similar to the APG wake, the increase in the
magnitude of aII=jaIj results in a larger tilt of the mean transverse flow
from the y@V=@yje curve.

Figure 12(c) presents the effect of aIII=jaIj on the shape of the
mean transverse flow in the APG wake, and the inset shows the sum
of the last two terms in Eq. (17). The ratio aII=jaIj is kept at 0.6, and
three values of aIII=jaIj are�0:5;�1:0; and�2.0. The tilt of the mean
transverse flow from the linear function y@V=@yje is fixed in
Fig. 12(c), but the transverse flow inside the wake is stronger for the
larger magnitude of aIII=jaIj. Figure 12(d) presents the effect of
aIII=jaIj on the shape of the mean transverse flow in the FPG wake. At
a fixed value of aII=jaIj ¼ �0:4, the influence of three values of
aIII=jaIj ¼ �0:08;�0:16;�0:32 is minor on the shape of the mean
transverse velocity.

As pressure gradient approaches zero, the pre-factor aI ¼
d0:5dUe=dx also approaches zero and the curves in Fig. 12 become
unbounded. In order to better illustrate the effect of pressure gradient
on the mean transverse velocity under small pressure gradient, one
can normalize Eq. (16) by either aII or aIII. The profiles of the mean
transverse velocity normalized by jðUe� UctrÞdd0:5=dxj are presented
in Appendix B. This information can be useful in understanding how
the pressure gradient influences the mean transverse velocity, as well
as how to present the velocity data in a way that makes it easier to
interpret the effect of pressure gradient.

B. Analytical and approximate equations for the
Reynolds shear stress

Reynolds shear stress is one of the most important quantities
in the analysis and modeling of turbulent wake flow. Figure 13(a)
shows that the Reynolds shear stress profiles in a near wake loca-
tion are similar for the APG, ZPG, and FPG wakes. Figure 13(b)
shows that, at a downstream location of x¼ 30 in., the shapes of
the Reynolds shear stress profiles under different pressure gra-
dients are still similar, but the width and the magnitude are
affected by the pressure gradients.

In previous studies, there has been a lack of agreement on
how to properly scale the Reynolds shear stress. The Reynolds
shear stress profiles normalized by the traditional scale
ðUe � UctrÞ2 fail to capture the self-similarity.12,23 Alternative scale
has been proposed to provide a more accurate characterization of
the self-similarity of the normalized Reynolds shear stress, by
accounting for the axial variation of the wake width and free
stream velocity.11,14 Here, a self-similarity analysis of the mean
momentum equation rigorously reveals a more complete under-
standing of the Reynolds shear stress by decomposing it into
four distinct components, each of which is associated with a differ-
ent scale. This result provides a new framework for understanding
the Reynolds shear stress and its role in the turbulent wake flow.

An analytical equation for the Reynolds shear stress can be
obtained by integrating the mean momentum Eq. (1b) from the wake
centerline to y, utilizing the mean continuity Eq. (1a), and applying
boundary conditions,

FIG. 13. Typical evolution of Reynolds shear stress profiles in planar turbulent wake flow under APG, ZPG, and FPG: (a) At a near wake location and (b) At x¼ 30 in. Data
are from experimental measurements of Liu.11
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0 ¼ �
ðy
0

@U2

@x
dy � ðUV � 0Þ �

ðy
0

1
q
dP1
dx

dy þ ðRuv � 0Þ: (18)

To apply the self-similarity assumption, the mean axial velocity
in Eq. (18) is rearranged as Ue � ðUe � UÞ, and the Reynolds shear
stress can be written as

Ruv ¼ �ðUe � UÞV þ UeV � Ue
dUe

dx
y þ

ðy
0

@ðUe � U � UeÞ2

@x
dy

¼ �ðUe � UÞV þ UeV � Ue
dUe

dx
y þ

ðy
0

@ðUe � UÞ2

dx
dy

�2Ue

ðy
0

@ðUe � UÞ
@x

dy � 2
dUe

dx

ðy
0
ðUe � UÞdy þ 2Ue

dUe

dx
y:

(19)

Substituting V in Eq. (11) into Eq. (19), the Reynolds shear stress can
be presented as

Ruv ¼ �Ue

ðy
0

@ðUe � UÞ
@x

dy � 2
dUe

dx

ðy
0
ðUe � UÞdy

þðUe � UÞ dUe

dx
y �

ðy
0

@ðUe � UÞ
@x

dy

� �
þ
ðy
0

@ðUe � UÞ2

@x
dy:

(20)

Assuming self-similarity forU�, the term @ðUe � UÞ2=@x can be writ-
ten as

@ðUe � UÞ2

@x
¼ 2ðUe � UctrÞ

dðUe � UctrÞ
dx

ðU�Þ2

� 2
ðUe � UctrÞ2

d0:5

dd0:5
dx

gU�
dU�

dg

¼ 1
d0:5

dððUe � UctrÞ2d0:5Þ
dx

ðU�Þ2

� ðUe � UctrÞ2

d0:5

dd0:5
dx

dðgðU�Þ2Þ
dg

:

(21)

The integral of Eq. (21) is

ðy
0

@ðUe � UÞ2

@x
dy ¼ dððUe � UctrÞ2d0:5Þ

dx

ðg

0
ðU�Þ2dg

� ðUe � UctrÞ2
dd0:5
dx

gðU�Þ2: (22)

The integral of ðUe � UÞ is

ðy
0
ðUe � UÞdy ¼ d0:5ðUe � UctrÞ

ðg

0
U�dg: (23)

Substituting Eqs. (13), (22), and (23) into Eq. (20) yields a new
analytical equation for the Reynolds shear stress as

Ruv ¼ ðUe � UctrÞ
dðUed0:5Þ

dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bI

gU�

� dðUeðUe � UctrÞd0:5Þ
dx

þ ðUe � UctrÞd0:5
dUe

dx

 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bII

ðg

0
U�dg

þ dððUe � UctrÞ2d0:5Þ
dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bIII

ðg

0
ðU�Þ2dg

�ðUe � UctrÞ
dððUe � UctrÞd0:5Þ

dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bIV

U�
ðg

0
U�dg:

(24)

Equation (24) indicates that the Reynolds shear stress in planar turbu-
lent wakes consists of four components, each associated with its own
scale bI; bII; bIII, and bIV. Figure 3(b) shows that in the far field of
ZPG or FPG wakes, Ue � Uctr � Ue. Consequently, the pre-factor bII
in Eq. (24) approaches zero in the far field of ZPG or FPG wakes [see
Eq. (5)]. The pre-factors bIII and bIV are proportional to ðUe � UctrÞ2
and are much smaller than bI in the far fields of ZPG or FPG wakes.
Figure 14 presents the variations of bI; bII; bIII, and bIV in an APG
wake, showing that bI has the largest magnitude.

The four self-similar functions in Eq. (24) can be simplified by
employing the approximation of U� � expð�ag2Þ:

gU� � g expð�a g2Þ; (25a)ðg

0
U�dg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð4aÞ

p
erf

ffiffiffi
a
p

g
� 	

; (25b)ðg

0
ðU�Þ2dg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð8aÞ

p
erf

ffiffiffiffiffi
2a
p

g
� 	

; (25c)

U�
ðg

0
U�dg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð4aÞ

p
erf

ffiffiffi
a
p

g
� 	

expð�a g2Þ: (25d)

The shapes of the four self-similar functions in Eqs. (25a)–(25d) are
illustrated in Fig. 15. Outside the wake, Eqs. (25a) and (25d) approach

FIG. 14. Pre-factors of terms in the Ruv Eq. (24) for the APG wake case of Liu’s
experiment.11
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zero, but Eqs. (25b) and (25c) do not. As the Reynolds shear stress
becomes zero outside the wake, the pre-factors bII and bIII must have
opposite signs and bII � �

ffiffiffi
2
p

bIII in order to cancel their contribu-
tions in the free stream, as shown in Fig. 14.

In the far fields of APG, ZPG, or FPG wakes, the dominant com-
ponent in Eq. (24) is the first term, and the Reynolds shear stress can
be approximated as

Ruv � ðUe � UctrÞ
dðUed0:5Þ

dx
gU�: wake far field (26)

Equation (26) indicates that a proper scale for the Reynolds shear
stress in planar turbulent wakes under pressure gradient is
Ruv;ref ¼ ðUe � UctrÞdðUed0:5Þ=dx. This scale has been reported by
Liu11 and Thomas and Liu.14 In the far field of a ZPG wake where
Ue ¼ const, Eq. (26) becomes

Ruv � UeðUe � UctrÞ
dd0:5
dx

gU�; ZPGwake (27)

consistent with the result presented in Ref. 21. In a ZPG wake, the
proper scale for the Reynolds shear stress is UeVref , where
Vref ¼ ðUe � UctrÞdd0:5=dx.

By substituting Eq. (10) for U� into Eq. (26), we can determine
that the maximum Reynolds shear stress occurs at g � 0:84, with a
maximum value of Ruv;max � 0:52ðUe � UctrÞdðUed0:5Þ=dx. Figure 16
illustrates a comparison between the measured maximum Reynolds
shear stress and the calculated value of ðUe � UctrÞdðUed0:5Þ=dx. The
figure demonstrates that the variation in the measured
Ruv;max data aligns with the trend of the calculated values of
0:52ðUe � UctrÞdðUed0:5Þ=dx, with the scatter primarily attributed to

FIG. 15. The four self-similar functions for the Ruv Eq. (24).

FIG. 17. Reynolds shear stress normalized by its maximum value: (a) APG wake, (b) ZPG wake, and (c) FPG wake. Data are from experimental measurements of Liu.11

FIG. 16. Comparison of the Reynolds shear stress scale ðUe � UctrÞdðUed0:5Þ=dx with the maximum Reynolds shear stress. Note that the reference scale is multiplied by a
factor of 0.52: (a) APG wake, (b) ZPG wake, and (c) FPG wake. Data are from experimental measurements of Liu.11
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the uncertainty in calculating the x�derivative component of
dðUed0:5Þ=dx from the data measured at the sparsely x�spaced
stations.

Figure 17 displays the measured Reynolds shear stress data nor-
malized by their maximum values, revealing that the shapes of
Reynolds shear stress profiles approach a universal curve in the far
field, irrespective of the pressure gradient. This phenomenon was first
reported by Liu et al.12 The figure confirms that the self-similar shape
of the Reynolds shear stress can be approximated as

Ruv

jRuvjmax
� 1:92g eð�0:637g

2�0:056g4Þ ¼ 1:92gU�: (28)

V. CONCLUSIONS

The paper fills some long-standing gaps regarding the scaling of
turbulent wake flow with adverse (APG) and forward (FPG) pressure
gradient. Table II summarizes the main results of the present work.
The results demonstrate the usefulness of using a combination of inte-
gral and self-similarity analyses to gain a better understanding of wake
behavior in the presence of pressure gradients.

One aim of the present work is to address the gap in previous
research by focusing on the properties of the mean transverse velocity.
A new analytical equation is derived here for the mean transverse
velocity at the wake edge from the global integral of the mean continu-
ity equation. Moreover, applying a self-similarity assumption for U�, a
new analytical equation is derived for the mean transverse velocity.
The analytical equation of V is found to consist of three components:
one due to the mean pressure gradient, one similar to that of ZPG
wake, and one to match the mean transverse velocity at the wake edge.
This decomposition provides a useful framework for understanding
the mean transverse flow in planar turbulent wakes under pressure
gradient and how it is related to different velocity scales.

From the integral of the mean momentum equation, a new ana-
lytical equation for the Reynolds shear stress is derived, consisting of
four components. By breaking down the Reynolds shear stress into its
individual components, it may be possible to gain a deeper under-
standing of the flow dynamics and develop more accurate models of
planar turbulent wakes. The findings of this work provide convenient
theoretical tools for quick estimate of the planar turbulent wake devel-
opment in pressure gradients, enable insights into possible ways of

further studies on the properties of planar turbulent wakes, and might
be useful in various practical applications such as the design of wind
turbines and the optimization of airfoils for aerospace applications.
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APPENDIX A: DETAILS OF INTEGRAL ANALYSIS

1. Volume and kinematic momentum flow rate in a
planar turbulent wake

The volumetric flow rate _V and momentum flow rate _M in a
planar turbulent wake are important quantities in the integral anal-
ysis of the mean continuity and momentum equations. The flow
rates _V and _M per unit length in the spanwise direction in a pla-
nar turbulent wake are

_V ¼def
ðde

�de

Udy ¼ 2
ðde

0
Udy; (A1a)

TABLE II. Major results from the analyses of planar turbulent wakes under pressure gradient.

Global integral of mean continuity equation Ve ¼ d
dx Uede � 0:5 _V
� �

� de
dUe
dx

Global integral of mean momentum equation 0 ¼ d
dx 0:5ðUe

_V � _MÞ
� �

þ Uede � 0:5 _V
� �

dUe
dx

Analytical equation for maximum Ruv Eq. (9)

Approximate relation for shallow wakes U2
e ðUe � UctrÞde ¼ const:

Empirical equation for Reynolds shear stress
Ruv

jRuvjmax
� 1:92g eð�0:637g

2�0:056g4Þ ¼ 1:92gU�:

Analytical mean transverse velocity V ¼ �d0:5
dUe

dx
gþ dððUe � UctrÞd0:5Þ

dx

ðg

0
U�dg� ðUe � UctrÞ

dd0:5
dx

gU�

Analytical Reynolds shear stress Eq. (24)
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_M ¼def
ðde

�de

U2dy ¼ 2
ðde

0
U2dy: (A1b)

It is observed that the normalized mean axial velocity deficit
U� ¼ ðUe � UÞ=ðUe � UctrÞ in the far field of a planar turbulent
wake approaches a self-similar function of y=d0:5 or y=de (see
Fig. 7). Employing the self-similarity property of U�, two parame-
ters I1 and I2 are defined using the integral of the first and second
moments of the normalized mean streamwise velocity,

I1 ¼
def 1

2de

ðde

�de

Ue � U
Ue � Uctr

dy ¼ 1
de

ðde

0

Ue � U
Ue � Uctr

dy; (A2a)

I2 ¼
def 1

2de

ðde

�de

Ue � U
Ue � Uctr

� �2

dy ¼ 1
de

ðde

0

Ue � U
Ue � Uctr

� �2

dy: (A2b)

Note that the I1 and I2 defined here are essentially identical to the In
defined by Townsend,2 and no self-similarity assumption is made
for the mean axial velocity deficit. Figure 18 presents the normal-
ized mean axial velocity deficit and the integral of its first and sec-
ond moments vs the normalized transverse location. The data
points are from experimental measurements of Liu11 (ZPG wake at
x¼ 48 in.).

As shown in Sec. IV, the mean axial velocity deficit profiles
reach a self-similarity state in the far field of planar turbulent wakes,
and the self-similar Eq. (10) for U� is represented by the solid curve
in Fig. 18. The definitions of I1 and I2 can be re-written as I1 ¼Ð de
0 U�dðy=deÞ and I2 ¼

Ð de
0 ðU�Þ

2dðy=deÞ. Estimating the wake edge
as the location of U� � 0:025, it is determined that de � 2:05d0:5.
Note that the horizontal axis in Fig. 18 is g ¼ y=y0:5, so there is a
factor of 2.05 in the integrated values shown by the dashed and dot-
dashed curves. The values for I1 and I2 are I1 � 0:5 and I2 � 0:36,
respectively.

Using the definitions of I1 and I2, the volumetric and kine-
matic momentum flow rate of the wake can be written as

_V ¼ 2
ðde

0
Udy ¼ 2 Uede � ðUe � UctrÞdeI1½ �; (A3a)

_M ¼ 2
ðde

0
U2dy

¼ 2 U2
e de � 2UeðUe � UctrÞdeI1 þ ðUe � UctrÞ2deI2

h i
: (A3b)

In the integration of the mean continuity and momentum
equation to the maximum Reynolds shear stress location ym, two
parameters, I1m and I2m, are defined using the integral of the mean
axial velocity deficit as

I1m ¼def
1
ym

ðym
0

Ue � U
Ue � Uctr

dy; (A4a)

I2m ¼
def 1

ym

ðym
0

Ue � U
Ue � Uctr

� �2

dy: (A4b)

Approximating U� with Eq. (10), it is found that (see Fig. 18)

I1m ¼ 0:86; I2m ¼ 0:76 (A5)

2. Global integrals of the mean continuity equation

Integrating the mean continuity Eq. (1a) from the wake center-
line to the wake edge and applying boundary conditions yields

0 ¼
ðde

0

@U
@x

dy þ ðVe � 0Þ: (A6)

Note that the mean transverse velocity at the wake centerline is
zero, due to the flow symmetry. Applying Leibniz’s integral rule, the
global integral of @U=@x can be presented asðde

0

@U
@x

dy ¼ d
dx

ðde

0
Udy � Ue

dde
dx
¼ dð0:5 _VÞ

dx
� Ue

dde
dx

: (A7)

Hence, the mean transverse velocity at the wake edge is

Ve ¼ Ue
dde
dx
� dð0:5 _VÞ

dx
¼ d

dx
Uede � 0:5 _V
� �

� de
dUe

dx
: (A8)

Substituting _V from Eq. (A3a) into Eq. (A8), the mean transverse
velocity at the wake edge can be written as

Ve ¼
d
dx
ðUe � UctrÞdeI1
� �

� de
dUe

dx
: (A9)

In a ZPG wake, Ue is a constant and ðUe � UctrÞde is also a
constant [see Eq. (8)]. Thus, Eq. (A9) reproduces Ve ¼ 0 for a ZPG
wake.

3. Global integrals of the mean momentum equation

It can be shown that the global integral of �@2U=@x2 is negligi-
ble for a planar turbulent wake. The global integral of �@2U=@y2

from the wake centerline to the edge is �@U=@yjde � �@U=@yj0,

FIG. 18. Normalized mean axial velocity deficit U� ¼ ðUe � UÞ=ðUe � UctrÞ and
integrals. The experimental data are from the ZPG case of Liu11 at x¼ 48 in. The
lines are based on the approximated U� ¼ expð�0:637g2 � 0:056g4Þ. The
dashed vertical line marks the location of the maximum Reynolds shear stress
ym � 0:84d0:5.
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equaling zero from the boundary conditions. Thus, the global inte-
gration of the mean momentum Eq. (1b) from the wake centerline
to the edge is

0 ¼ �
ðde

0

@U2

@x
dy � ðUeVe � 0Þ �

ðde

0

1
q
dP1
dx

dy

þ
ðde

0

@ðRuu � RvvÞ
@x

dy þ ðRuvjde � 0Þ: (A10)

Note that V and Ruv are zero at the wake centerline due to the flow
symmetry, and the Reynolds shear stress at the wake edge is also
zero, Ruvjde ¼ 0.

Applying Leibniz’s integral rule, the first and the fourth inte-
grals in Eq. (A10) can be presented as follows:

ðde

0

@U2

@x
dy ¼ d

dx

ðde

0
U2dy � U2

e
dde
dx
¼ dð0:5 _MÞ

dx
� U2

e
dde
dx

: (A11)

and

ðde

0

@ðRuu � RvvÞ
@x

dy ¼ d
dx

ðde

0
ðRuu � RvvÞdy � ðRuu � RvvÞjde

dde
dx

:

(A12)

Note that Reynolds normal stresses at the wake edge are zero:
ðRuu � RvvÞjde ¼ 0. Figure 2 shows that U> 18 (m/s) or U2 > 324
(m2/s2), but Fig. 19 shows that Ruu and Rvv are both smaller than 2
(m2/s2) and Ruu � Rvv is even smaller. Thus, it is reasonable to sur-
mise that d

dx

Ð de
0 ðRuu � RvvÞdy� d

dx

Ð de
0 U2dy. Accordingly, the

fourth term in Eq. (A10) can be neglected.
Substituting Ve from Eqs. (A8) and (A11) into Eq. (A10), the

global integral of the mean momentum equation can be written as

0 ¼ � dð0:5 _MÞ
dx

þ Ue
dð0:5 _VÞ

dx
�
ðde

0

1
q
dP1
dx

dy: (A13)

If the mean pressure gradient dðP=qÞ=dx does not vary in the trans-
verse direction, the global integral of the mean momentum equation
can be simplified as

0 ¼ � dð0:5 _MÞ
dx

þ Ue
dð0:5 _VÞ

dx
þ Uede

dUe

dx

¼ d
dx

0:5ðUe
_V � _MÞ

� �
þ Uede � 0:5 _V
� � dUe

dx
:

(A14)

Substituting _V from Eq. (A3a) and _M from Eq. (A3b) into
Eq. (A14), the global integral of the mean momentum equation can
be written as

0 ¼ d
dx

UeðUe � UctrÞdeI1 � ðUe � UctrÞ2deI2
� �

þ ðUe � UctrÞdeI1
dUe

dx
: (A15)

Note that all the variables in Eq. (A15) are determined from the
measurements of the mean axial velocity profiles at multiple axial
locations.

APPENDIX B: NORMALIZE THE MEAN TRANSVERSE
VELOCITY BY jðUe �UctrÞdd0:5=dxj

In Fig. 12, the normalized mean transverse velocity in the free
stream has a slope of 1 (for APG wake) or –1 (for FPG wake)
because the mean transverse velocity in Eq. (17) is normalized
by jaIj. As aI approaches zero (ZPG wake), it is better to normalize
the mean transverse velocity by jaIIIj, instead of jaIj. The
dimensionless mean transverse velocity normalized by jaIIIj ¼
jðUe � UctrÞdd0:5=dxj can be expressed as

FIG. 19. Effects of pressure gradient on the maximum Reynolds normal stresses: (a) jRuujmax vs x, and (b) jRvvjmax vs x, data are from experimental measurements of Liu.11
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V

jðUe � UctrÞ
dd0:5
dx
j
¼

�d0:5
dUe

dx

jðUe � UctrÞ
dd0:5
dx
j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aI=jaIIIj

g

þ
d ðUe � UctrÞd0:5½ �

dx

jðUe � UctrÞ
dd0:5
dx
j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aII=jaIIIj

ffiffiffi
p
p

2
ffiffiffi
a
p erf

ffiffiffi
a
p

g
� 	

þ
�ðUe � UctrÞ

dd0:5
dx

jðUe � UctrÞ
dd0:5
dx
j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aIII=jaIIIj

g expð�ag2Þ:

(B1)

Figure 20 presents the mean transverse velocity profile normal-
ized by jaIIIj. The three curves in Fig. 20 use the same aI; aII, and
aIII as the corresponding ones in Fig. 12. That is, the mean trans-
verse flow V in Fig. 20 is identical to the corresponding one in Fig.
12, except that V is normalized by aIII, and aI, respectively.

Figures 20(a) and 20(b) present the effect of aII=jaIIIj on the
shape of V=jaIIIj. As aI=jaIIIj is kept at a constant, the slope of the
mean transverse flow in the free stream remains fixed. As the mag-
nitude of aII=jaIIIj increases, the mean transverse flow within the
wake deviates more from that in a ZPG wake, and the V=jaIIIj tilts
further from the linear function y@V=@yje.

In Fig. 20(c) and 20(d), the ratio aII=jaIj is kept at a constant
[see Figs. 20(c) and 20(d)], but both aI=jaIIIj and aII=jaIIIj vary. As
the magnitude of aI=jaIIIj increases, the slope of V=jaIIIj in the free
stream becomes steeper, and the mean transverse flow inside the
wake also deviates more from that in a ZPG wake.

FIG. 20. Mean transverse velocity profile normalized by jaIIIj ¼ jðUe � UctrÞdd0:5=dxj: (a) APG wake with different aII=jaIIIj; (b) FPG wake with different aII=jaIIIj; (c) APG
wake with different aI=jaIIIj and aII=jaIIIj; and (d) FPG wake with different aI=jaIIIj and aII=jaIIIj. The insets show the sum of the last two terms in Eq. (B1) (without the linear
function). The dashed curve represents the mean transverse flow in a ZPG wake, and the other three curves correspond to the curves in Fig. 12.
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APPENDIX C: CURVE-FITTING AND ERROR
PROPAGATION

Inevitably, the measured data of d05, Ue, and Ue � Uctr contain
errors. These errors will propagate to derived quantities through the
addition and the multiplication of the measured quantities and the
calculation of the x-derivatives, such as dd05=dx; dUe=dx, or
dðUe � UctrÞ=dx. To account for the influence of the error propaga-
tion, the measured profiles of d05, Ue, and Ue � Uctr in the axial
direction were first curve-fitted using a power law axb or an expo-
nential law a expðbxÞ based on the established consensus on the
streamwise variations of these quantities. The curve-fitted functions
are then used in the calculation of Ve Eq. (3), global momentum
balance Eq. (4), maximum Ruv Eq. (9), and aI; aII, and aIII in Eq.
(14). The calculation of the error bar is similar to the multi-variable
error propagation described by Figliola and Beasley.24 In the present
work, d05, Ue, and Ue � Uctr are taken as the independent variables
for a derived variable R (for example, Ve), and the uncertainty of R
at the kth measuring station is calculated as

uRjk

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@R
@d05





k
ud05

� �2

þ @R
@Ue





k
uUe

� �2

þ @R
@ðUe�UctrÞ





k
uðUe�UctrÞ

� �2
s

;

(C1)

where ud05 , uUe, and uðUe�UctrÞ are the rms calculated from the
curve-fitted and measured d05, Ue, and Ue � Uctr over the x-stations
in the fully developed region.
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