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ABSTRACT

Proper scales for the mean flow and Reynolds shear stress in planar turbulent mixing layers are determined from a scaling patch analysis of
the mean continuity and momentum equations. By seeking an admissible scaling of the mean continuity equation, a proper scale for the
mean transverse flow is determined as Vref ¼ ðdd=dxÞUref , where dd=dx is the growth rate of the mixing layer width and Uref ¼ Uh � Ul is
the difference between the velocity of the high speed stream Uh and the velocity of the low speed stream Ul. By seeking an admissible scaling
for the mean momentum equation, a proper scale for the kinematic Reynolds shear stress is determined as Ruv;ref ¼ UavgVref ¼ ½ 12Au

dd
dx�U2

ref ,

where Au¼def ðUh � UlÞ=ðUh þ UlÞ is the normalized velocity difference that emerges naturally in the admissible scaling of the mean
momentum equation. Self-similar equations for the scaled mean transverse flow V� and Reynolds shear stress R�uv ¼ Ruv=Ruv;ref are derived
from the mean continuity and mean momentum equations. Approximate equations for V� and R�uv are developed and found to agree well
with experimental data.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0122494

I. INTRODUCTION

A two-dimensional (2D) planar turbulent mixing layer occurs
when two parallel streams at different speeds move upon each other,
as illustrated in Fig. 1. Instabilities develop along the interface and the
ensuing eddy motions drive the growth of a mixing layer. Mixing
layers play a vital role in combustion engines including, for example,
in air-breathing hypersonic vehicles. The size and weight of the super-
sonic combustion scramjet are constrained in part by how rapidly the
fuel and oxidizer can be mixed to enable complete combustion. On
the theoretical and modeling side, as one of the most fundamental
free-shear flows, the planar mixing layer has been used, among other
things, as a benchmark for evaluating turbulence models.1,2

The first analytical study of a mixing layer was carried out by
G€ortler in 1942.4 Applying Prandtl’s eddy viscosity model, G€ortler
derived an analytic solution for the planar turbulent mixing layer. The
details of G€ortler’s analysis can be found in Ref. 5. Townsend1 showed
that the governing equations and boundary conditions for the planar

turbulent mixing layer can yield “self-similar” solutions for the flow in
the far field at sufficiently high Reynolds number. Over the past seven
decades, numerous researchers have studied this canonical flow theo-
retically, experimentally, and numerically.1,6–31 A comprehensive sum-
mary of mixing layer research is provided by Pope.2 Despite intensive
research, however, our understanding of this apparently simple flow is
still incomplete.

A long-standing question in studies of turbulent mixing layers, as
stated by Champagne et al.10 in 1976, is “… whether there exist in the
two-dimensional mixing layer universal self-preserving distributions of
the mean velocity, turbulence intensities and other mean quantities not
determined by viscous effects.” Spencer32 and Yule33 reported experi-
mentally determined contradictory trends in the variation of the
asymptotic peak Reynolds stress values. Two conjectures have been
put forward to explain the lack of a “universal” self-similar state at a
high Reynolds number:14,16,34 (1) effects of the initial condition, e.g.,
the presence or lack of a trip wire, state and thickness of the initial
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boundary layer, and the free-stream turbulence intensity and (2)
effects of boundary conditions, such as the end-plate or top/bottom
walls in the wind tunnel.14

In this work, proper scales for the mean flow and Reynolds shear
stress in planar turbulent mixing layers are determined using a scaling
patch approach. Under proper scaling, we demonstrate that the mean
flow and Reynolds shear stress approach a self-similar state in the far
fields of planar turbulent mixing layers, but the self-similar functions
depend on the difference in the velocities of the two streams. In Sec. II,
the governing equations are first presented, and the scaling patch
approach is then applied. Approximate equations for the scaled mean
transverse flow and Reynolds shear stress are derived. In Sec. III, the
approximated equations are validated against experimental data.
Section IV summarizes the work.

II. SCALING PATCH ANALYSIS OF PLANAR TURBULENT
MIXING LAYERS

In this work, we consider the simplest mixing layer flow: a two-
dimensional planar mixing layer developing from two fluids of the
same density and viscosity. The velocity of the high speed stream is
denoted as Uh and the velocity of the low speed stream as Ul.
Conventionally, the difference between the two velocities is character-
ized by the velocity ratio (see, e.g., Mehta16),

r ¼def Ul

Uh
: (1)

Here, we introduce another dimensionless number to characterize the
velocity difference in a mixing layer as

Au ¼
def Uh � Ul

Uh þ Ul
¼ 1� r

1þ r
: (2)

Au is bounded between 0 (two streams with Uh ¼ Ul) and 1 (one of
the stream is still or Ul¼ 0). This definition of the normalized velocity

difference Au is analogous to the definition of the Atwood number for
the Rayleigh–Taylor instability.35–37 Au has been used in previous
studies of mixing layers, often using the symbol k, e.g., in Abramovich
et al.,38 Sabin,39 and Birch and Eggers,8 but the significance of Au has
not previously been fully recognized. In the following analysis, we
demonstrate that Au plays an important role in the understanding and
scaling of turbulent mixing layers.

Turbulent mixing layers are slender, that is, they spread slowly in
the transverse direction,2,5 and can therefore be studied using Prandtl’s
boundary layer equations. Here, we consider incompressible and single
phase flow, and the mean continuity equation and mean momentum
equation in the streamwise direction are1,2,5,38

0 ¼ @U
@x
þ @V
@y

; (3a)

0 ¼ �U @U
@x
� V

@U
@y
þ @Ruv

@y
þ @ðRuu � RvvÞ

@x
þ � @

2U
@y2
� 1

q
@P
@x
:

(3b)

As illustrated in Fig. 1, x and y are the axial and transverse coordi-
nates, respectively. The upper case letter U is the mean velocity in
the streamwise direction, and V is the mean transverse velocity.
The kinematic Reynolds shear stress is denoted as Ruv ¼ �huvi,
where the angle brackets h i denote Reynolds averaging, and the
lower case letters u and v are the velocity fluctuations in the
streamwise and transverse directions, respectively. Ruu ¼ �huui
and Rvv ¼ �hvvi are the Reynolds normal stresses in the x- and
y-directions, respectively. � is the fluid kinematic viscosity. For
turbulent mixing layer at high Reynolds numbers, it can be shown
that the viscous force and turbulent force term @ðRuu � RvvÞ=@x
are negligible in the far field.1 In this work, we assume that there is
no mean pressure gradient imposed on the flow field. The bound-
ary conditions for the planar turbulent mixing layers are listed in
Table I.

A prominent feature of the planar mixing layer, unlike the planar
jets or wakes, is that it does not develop evenly on the two sides. A
mixing layer spreads preferentially toward the low speed side, as illus-
trated in Fig. 1. The location where the mean streamwise velocity
equals the average velocity is denoted as y0:5: Uðy ¼ y0:5Þ ¼ Uavg.
Figure 1 shows that, as the mixing layer develops downstream, y0:5
shifts away from the horizontal axis toward the low speed side. To
transform the flow to a self-similar state, the coordinate system has to
be shifted. The origin in the transformed coordinate system is at
O0 ¼ ðx0:5; y0:5Þ, as sketched in Fig. 2, where x0:5 is moving down-
stream at the speed of Uavg. For a planar mixing layer to reach a
self-similar state, the mean transverse velocity of O0, i.e., Vo0 has to be
constant. That is, the shift angle in Fig. 2 is constant as supported by
the experimental measurements of Champagne et al.10 (see Fig. 5.23 in
Ref. 40).

The transformed coordinates and velocity components are
denoted as

TABLE I. Boundary conditions for turbulent mixing layer.

y ¼ þ1 U ¼ Uh; V ¼ Vþ1; Ruv ¼ 0:
y ¼ �1 U ¼ Ul; V ¼ V�1; Ruv ¼ 0:

FIG. 1. Schematic of a planar mixing layer. The photograph (bottom) is by Rebello
(see Ref. 3, p. 177). Uh is the velocity of the high speed stream, Ul is the velocity of
the low speed stream, and the average speed is Uavg ¼ 0:5ðUh þ UlÞ. y0:5 is the
distance from the x axis to the location where the mean axial velocity is Uavg. See
also Fig. 5.23 in Ref. 2 for the curves of the upper edge, lower edge, and y0:5
locations.
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x0 ¼ x � x0:5; y0 ¼ y � y0:5; (4)

U 0 ¼ U � Uo0 ¼ U � Uavg; V 0 ¼ V � Vo0 : (5)

The self-similar variables used here are defined as

n ¼def y
0

d
¼ y � y0:5ðxÞ

dðxÞ ; (6)

U�ðnÞ ¼def U 0

Uref
¼

Uðx; yÞ � Uavg

Uref ðxÞ
; (7)

V�ðnÞ ¼def V 0

Vref
¼ Vðx; yÞ � Vo0

Vref ðxÞ
; (8)

R�uvðnÞ ¼
def Ruvðx; yÞ

Ruv;ref ðxÞ
; (9)

where d is the width of the mixing layer and Uref ;Vref ;Ruv;ref are the
reference scale for the mean axial flow, mean transverse flow, and
Reynolds shear stress, respectively.

The references scales Uref ; Vref , and Ruv;ref will be obtained by
a scaling patch approach, a relatively new method developed by
Fife et al. for shear-driven wall-bounded turbulence.41–43 The scal-
ing patch approach has been applied to obtain proper scaling in
the passive scalar transport in turbulent pipe or channel flow,44,45

turbulent boundary flow with roughness,46 turbulent
Taylor–Couette flow,47 buoyancy-driven turbulence convec-
tion,48,49 and recently to free shear turbulence including jets,50

plumes,51 and wakes.52 Here, an admissible scaling is sought for
the mean continuity and momentum equations, as well as the nor-
malized boundary conditions.

To transform the governing equations into the similarity varia-
bles, we first note that the derivatives of n with respect to x and y are

@n
@x
¼ � 1

d
dy0:5
dx
� 1

d
dd
dx

n; (10a)

@n
@y
¼ 1

d
: (10b)

Then, the derivative of U with respect to x is

@U
@x
¼ �Uref

d
dy0:5
dx

dU�

dn
� Uref

d
dd
dx

n
dU�

dn
þ dUref

dx
U�; (11)

and the derivatives of U, V, and Ruv with respect to y are

@U
@y
¼ Uref

d
dU�

dn
; (12a)

@V
@y
¼ Vref

d
dV�

dn
; (12b)

@Ruv

@y
¼ Ruv;ref

d
dR�uv
dn

: (12c)

Using the self-similar variables, the dimensionless boundary con-
ditions for the mixing layer are listed in Table II. A natural choice for
Uref is then Uref ¼ Uh � Ul , because the boundary conditions for U�

become U�jn¼1 ¼ 0:5 and U�jn¼�1 ¼ �0:5; both are of O(1). In a
planar turbulent mixing layer without external pressure gradient,
Uh � Ul is a constant and dUref=dx ¼ 0. Therefore, the last term in
Eq. (11) is zero.

Substituting the self-similar variables and their derivatives into
Eqs. (3a) and (3b), the mean continuity equation and the mean
momentum equation can be presented as

0 ¼ �Uref

d
dy0:5
dx

dU�

dn
� Uref

d
dd
dx

n
dU�

dn
þ Vref

d
dV�

dn
; (13a)

0 ¼ ðUavg þ UrefU
�Þ Vref

d
dV�

dn

� �
� ðVo0 þ VrefV

�Þ Uref

d
dU�

dn

� �

þ Ruv;ref

d

� �
dR�uv
dn

: (13b)

Note that in the derivation of Eq. (13b), the term @U=@x in the mean
momentum Eq. (3b) is substituted by �@V=@y via the continuity
equation. Next, we will seek an admissible scaling of the mean conti-
nuity equation, and then an admissible scaling of the mean momen-
tum equation.

A. Admissible scaling of the mean continuity equation

Multiplying d=Vref onto the mean continuity Eq. (13a) yields a
dimensionless equation as

0 ¼ � Uref

Vref

dy0:5
dx

� �
dU�

dn
� Uref

Vref

dd
dx

� �
n
dU�

dn
þ dV�

dn
: (14)

The nominal orders of magnitude of the three terms on the right side
of Eq. (14) are Uref=Vref dy0:5=dx; Uref=Vref dd=dx, and 1. For Eq.
(14) to satisfy the requirement of an admissible scaling, i.e., at least
two terms with a nominal order of magnitude 1, a scale for the mean
transverse flow is ðdd=dxÞUref or ðdy0:5=dxÞUref . Here, we set the ref-
erence scale for the mean transverse velocity as

Vref ¼def Uref
dd
dx
¼ ðUh � UlÞ

dd
dx
; (15)

and denote the ratio of the pre-factors to the first two terms in Eq. (14) as

B ¼def
dy0:5
dx
dd
dx

: (16)

FIG. 2. Transformation of coordinate systems for a planar mixing layer.

TABLE II. Boundary conditions for the dimensionless equations for planar turbulent
mixing layers.

n ¼ �1 U� ¼ �0:5ðUh � UlÞ
Uref

; V� ¼ V�1 � Vo0

Vref
; R�uv ¼ 0:

n ¼ 1 U� ¼ 0:5ðUh � UlÞ
Uref

; V� ¼ V1 � Vo0

Vref
; R�uv ¼ 0:
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Hence, an admissible scaling of the mean continuity equation is

0 ¼ �B dU
�

dn
� n

dU�

dn
þ dV�

dn
: (17)

Equation (17) shows that, for V� to be self-similar, it is necessary that
B is a constant (does not vary with x). In the present coordinate sys-
tem, the positive y direction is from the low-speed side to the high-
speed side. Thus, B is negative because dy0:5=dx is negative.
Experimental data indicate (see Sec. III) that B is indeed a constant,
but its value varies in the range of�0:25�B � 0 depending on Au.

Integrating the mean continuity Eq. (17) and applying boundary
conditions produces an analytic equation for the scaled mean trans-
verse velocity V� as

V� ¼ BðU� þ 0:5Þ þ
ðn

�1
n
dU�

dn

� �
dnþ V��1: (18)

If U� exhibits a self-similar state (a function of n only), Eq. (18) indi-
cates that V� will be a function of n and B only. In other words, the
scaled mean transverse velocity V� will also approach a self-similar
state, but V� varies with Au and is not universal.

Integrating the mean continuity Eq. (17) from n ¼ �1 to
n ¼ þ1 yields a relation between the mean transverse velocity at the
upper and lower edges of the mixing layer as

V�1 � V��1 ¼ Bþ
ð1
�1

n
dU�

dn

� �
dn: (19)

Empirically, it is observed that U� is approximately anti-symmetric
(see Fig. 5). Therefore, the second term on the right of Eq. (19) is close
to 0 andV�1 � V��1 � B.

B. Admissible scaling of the mean axial-momentum
equation

Multiplying d=ðUavgVref Þ onto the mean momentum Eq. (13b)
yields a dimensionless equation as

0 ¼ dV�

dn
� 2Au

Vo0

Vref

� �
dU�

dn
þ 2Au½ � U�

dV�

dn
� V�

dU�

dn

� �

þ Ruv;ref

UavgVref

� �
dR�uv
dn

: (20)

Equation (20) represents the balance of two forces: the advective
or inertial force (the first three terms on the right side) and the
turbulent force (last term). For Eq. (20) to be an admissible scal-
ing, the pre-factor to the turbulence term must have a nominal
order of magnitude 1. Hence, a proper scale for the Reynolds
shear stress is

Ruv;ref ¼def UavgVref ¼
Uavg

Uref
UrefVref ¼

1
2Au

dd
dx

� �
U2
ref : (21)

Note that in many previous studies of turbulent mixing layers, Ruv is
normalized by U2

ref , but Pantano and Sakar40 and Baltzer and
Livescu53 have pointed out the importance of dd=dx in the proper
scaling of Ruv.

Substituting the definition of Ruv;ref in Eqs. (21) into (20), the
dimensionless mean momentum equation becomes

0 ¼ dV�

dn
� 2Au

Vo0

Vref

� �
dU�

dn
þ 2Au U�

dV�

dn
� V�

dU�

dn

� �
þ dR�uv

dn
:

(22)

The nominal orders of magnitude of the terms on the right side of Eq.
(22) are 1, B, 2Au, and 1, respectively. Hence, Eq. (22) satisfies the
requirement of an admissible scaling. For the case of small normalized
velocity difference Au � 1 (Ul � Uh), the second and third terms on
the right side of Eq. (22) become high order terms and do not contrib-
ute to the force balance.

Applying Eq. (17) for dV�=dn, it can be shown that the first two
terms in Eq. (22) sum up to

dV�

dn
� 2Au

Vo0

Vref

� �
dU�

dn
¼ n

dU�

dn
þ B� 2Au

Vo0

Vref

� �
dU�

dn
: (23)

While the term in the parenthesis in Eq. (22) can be rewritten as

U�
dV�

dn
� V�

dU�

dn
¼ B

dðU�Þ2

dn
þ 2nU�

dU�

dn
� dðU�V�Þ

dn
: (24)

Hence, the admissible scaling for the mean momentum Eq. (22)
can be written as

0 ¼ n
dU�

dn
þ B� 2Au

Vo0

Vref

� �
dU�

dn

þ 2Au B
dðU�Þ2

dn
þ 2nU�

dU�

dn
� dðU�V�Þ

dn

 !
þ dR�uv

dn
: (25)

An equation for the location of the maximum Reynolds shear stress
can be obtained by setting dR�uv=dn ¼ 0 in Eq. (25). In general, Eq.
(25) indicates that the maximum Reynolds shear stress location does
not coincide with o0 or n ¼ 0. By assuming that the peak Reynolds
shear stress coincides with o0, Pope obtained a simple expression for B
[see Eqs. (5.217) and (5.222) of Ref. 2].

Integrating the mean momentum Eq. (25) from n ¼ �1 to
n ¼ 1 and applying boundary conditions yields

V�1 þ V��1 ¼
1
Au

ð1
�1

n
dU�

dn

� �
dnþ 4

ð1
�1

nU�
dU�

dn

� �
dn

þ B
Au
� 2

Vo0

Vref

� �
: (26)

Combining with Eq. (19), V��1 can be obtained as

V��1 ¼ �
B
2
þ 2

ð1
�1

nU�
dU�

dn

� �
dn

þ 1
2Au
� 1
2

� �ð1
�1

n
dU�

dn

� �
dnþ B

2Au
� Vo0

Vref

� �
: (27)

Hence, the analytical Eq. (18) for V� can be presented as

V� ¼ BU� þ
ðn

�1
n
dU�

dn

� �
dnþ 2

ð1
�1

nU�
dU�

dn

� �
dn

þ 1
2Au
� 1
2

� �ð1
�1

n
dU�

dn

� �
dnþ B

2Au
� Vo0

Vref

� �
: (28)
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By definition, the normalized mean transverse velocity at n ¼ 0 is
zero: V�jn¼0 ¼ ðVo0 � Vo0 Þ=Vref ¼ 0. Hence, Eq. (28) gives an equa-
tion for Vo0=Vref as

Vo0

Vref
¼
ð0
�1

n
dU�

dn

� �
dnþ 2

ð1
�1

nU�
dU�

dn

� �
dn

þ 1
2Au
� 1
2

� �ð1
�1

n
dU�

dn

� �
dnþ B

2Au
: (29)

Substituting Vo0=Vref in Eqs. (29) into (28) produces an analytical
equation for V� as

V� ¼ BU� þ
ðn

0
n
dU�

dn

� �
dn: (30)

Solution for the scaled Reynolds shear stress can be obtained
through integration of Eq. (25) and use of Eqs. (27) and (28) as

R�uv ¼ �
ðn

�1
n
dU�

dn

� �
dnþ Au

"
2U�

ðn

�1
n
dU�

dn

� �
dn

� 4
ðn

�1
nU�

dU�

dn

� �
dnþ 2

ð1
�1

nU�
dU�

dn

� �
dn

þ 4U�
ð1
�1

nU�
dU�

dn

� �
dn

þ 1
Au
� 1

� �
U� þ 1

2

� �ð1
�1

n
dU�

dn

� �
dn

#
: (31)

Therefore, R�uv is a function of n and Au only. In other words, the
properly scaled Reynolds shear stress R�uv also approaches a self-
similar state. However, the self-similar function of R�uv is not universal,
but varies with Au.

III. COMPARISON WITH EXPERIMENTAL DATA

As the mixing layer growth rate dd=dx and the growth ratio B
play an important role in the scaling of the equations [see Eqs. (15)
and (17)], we first examine the experimental data for dd=dx and B.
Next, approximate functions for V� and R�uv are derived and com-
pared with the experimental data.

A. Growth rate of mixing layer width

A number of definitions have been developed to measure mixing
layer width, including visual thickness, thickness based on the distance
between the locations where the mean velocity reaches a certain per-
centage of the average velocity, and thickness related to the vorticity of
the flow. Benefits and shortcomings of the various measures of mixing
layer thickness were discussed by Samimy and Elliott.54 Examples of
mixing layer width definition as summarized by Yoder55 are listed in
Table III. Not surprisingly, the variety of definition of mixing layer
width has added to the complexity of comparing data from different
experimental studies.

Building on a chain of physical arguments, Abramovich et al.
(Ref. 38, pp. 36–42) derived a linear relation between the mixing layer
growth rate and Au as (see also Ref. 2, p. 142)

dd
dx
¼ cAu or

1
Au

dd
dx
¼ c; (32)

where c is a constant [note c is twice of the S in Eq. (5.209) of Ref. 2].
The same relation was proposed by Sabin.39 The Abramovich–Sabin
relation can also be derived directly from G€ortler’s similarity solution.
Other relations have been proposed for the mixing layer growth rate,
as listed in Table IV. After critically reviewing a number of data sets,
Birch and Eggers8 concluded that experimental data support the
Abramovich–Sabin prediction expressed in Eq. (32).

In Birch and Eggers’ Fig. 4 (see Ref. 8), the growth rate data are
plotted as r0=r vs r ¼ Ul=Uh. The validity of Abramovich–Sabin pre-
diction Eq. (32) was evaluated by plotting a y ¼ 1=x curve. Following
the suggestion of Kline, Birch and Eggers replotted the growth rate
data as r0=r vs Au (in their paper, the normalized velocity difference
is denoted by the symbol k). The validity of the Abramovich–Sabin
prediction can then be evaluated by plotting a straight line through the
origin.

In the new scale for the Reynolds shear stress [see Eq. (21)], the
mixing layer growth rate is grouped with Au as 1

2Au

dd
dx. In Fig. 3, the

experimental 1
2Au

dd
dx are plotted as a function of Au. The experimental

data are compiled from those presented in the figures of Birch and
Eggers8 and Mehta.16 If the Abramovich–Sabin prediction is valid,
then 1

2Au

dd
dx will be a constant, independent of Au. However, Fig. 3

shows that the Abramovich–Sabin prediction is valid only at Au � 0:2,
with 1

2Au

dd
dx � 0:08. As Au approaches 0 (two streams with the same

speed), 1
2Au

dd
dx rises sharply. Mathematically, it is not clear if this rising

TABLE III. Definitions of mixing layer width as summarized by Yoder (Ref. 55, pp.
11–14). Note that Yoder defined the dimensionless mean axial velocity as
ðU � UlÞ=ðUh � UlÞ, which varies between 0 and 1 and can be obtained by adding
0.5 to our definition of U� in Eq. (7). The growth rate at Au ¼ 1 is calculated using
r0 ¼ 11 (see Appendix A for the definition of r0).

Symbol Definition Ratio
dd
dx

���
Au¼1

d0:01 yU�¼0:49 � yU�¼�0:49
d0:01
ðx � x0Þ

¼ 3:29
r

0.30

b ¼ d0:1 yU�¼0:4 � yU�¼�0:4
b

ðx � x0Þ
¼ 1:812

r
0.165

dx
Uh � Ul

ð@U=@yÞmax

dx

ðx � x0Þ
¼

ffiffiffi
p
p

r
0.161

du2 yðU�þ0:5Þ2¼0:9 � yðU�þ0:5Þ2¼0:1
du2

ðx � x0Þ
¼ 1:488

r
0.135

dvis Visual
dvis

ðx � x0Þ
¼ 2

ffiffiffi
p
p

r
0.322

TABLE IV. Approximation function for the mixing layer growth rate. r0 is the spread-
ing parameter at Au ¼ 1. r ¼ Ul=Uh refers to the velocity ratio of the two streams.
In the studies of Brown and Roshko,9 densities of the two streams are different, and
s is the density ratio. For two streams with the same density, s¼ 1.

Miles and Shih56 Yule33 Brown and Roshko9

dd
dx
¼ 1

r0

1
1þ 5r2

dd
dx
¼ 1

r0

1� r

ð1þ rÞ1=2
dd
dx
¼ 1

r0

ð1� rÞ 1þ
ffiffi
s
p� 	

2 1þ r
ffiffi
s
p� 	

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 115120 (2022); doi: 10.1063/5.0122494 34, 115120-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


trend is bounded or not. Physically, as Au ! 0, there will not be a
mixing layer to be developed, i.e., dd=dx! 0.

B. Ratio of growth rates B ¼ dy0:5=dx
dd=dx

In Sec. IIA, we have shown that B, the ratio between the shifting
speed of centerline and the growth rate of the mixing layer, plays an
important role in the scaling of the mixing layer. That is, for V� to be
self-similar, B has to be a constant. Empirically, it has been observed that,
in the mixing layer far downstream from its initiation, both the mixing
layer width d and the y0:5 locations vary approximately linearly with x.
Therefore, it is reasonable to assume that B is indeed close to a constant
in the far field of a high Reynolds number turbulentmixing layer.

To obtain experimental data on B, evolution of both the mixing
layer thickness dðxÞ and the mixing layer centerline location y0:5ðxÞ
have to be measured. In nearly all mixing layer experiments, dðxÞ is
measured and reported. However, very few experiments report y0:5ðxÞ
data. Therefore, available B data are scarce, especially for the cases at
low Au. Figure 4 presents a few data points of B as a function of Au.

When Au > 0:6, B is approximately a constant of B � �0:25. As
Au decreases toward 0, B also approaches 0. There are not enough
data points to establish the trend of B at small Au. However, as Au

approaches zero (Ul � Uh), the mixing layer, if exists, will become
more symmetric or dy0:5=dx! 0. Hence, B will approach zero for
Au ! 0.

Setting dV�=dn ¼ 0 in Eq. (17), the minimum V� location can
be found as

B ¼ �njV�min
: (33)

Therefore, B is directly related to the location of the minimum V�.

C. Mean axial flow data U�

Experimental mean axial velocity data in planar turbulent mixing
layers exhibit a sigmoid shape,2 as shown in Fig. 5. Traditionally, the
error function has been used to approximate U�. Another choice is a
hyperbolic tangent function tanh ðnÞ. For the convenience of obtaining

derivatives and integrals, here the error function is used to approxi-
mate U� as

U� � 1
2
erf

n
a

� �
; (34)

where a � 0:5518 follows from the definition of U�ðn ¼ 60:5Þ
¼ 60:4.

Experimental U� at three Au are compared with the error func-
tion of Eq. (34) in Fig. 5. Overall, the error function fits the experimen-
tal data reasonably well. For the lowest Au ¼ 0:053, Mehta16 observed
that the splitter plate wake plays an important and lasting role in the
development of the mixing layer. The small deviation from the error
function at Au ¼ 0:053 may be due to the proximity to the end of the

FIG. 4. Experimental data of B ¼ ðdy0:5=dxÞ=ðdd=dxÞ. Values of B at Au ¼ 0:37
and Au ¼ 1:0 are calculated from table in Mehta and Westphal;14 Values of B at
Au ¼ 0:41; 0:61; 0:67 are calculated from data in experiments by Chang and
coworkers.25,26,57

FIG. 3. Growth rate of the width of planar turbulent mixing layers. Experimental
data are compiled from figures in Birch and Eggers8 and experiment of Mehta.16

The error bar at Au ¼ 1 follows the values suggested by Birch and Eggers.8

FIG. 5. Mean axial velocity distribution. The experimental data of Au ¼ 0:053 and
0.33 are from Mehta.16 The streamwise location of the measurement is x¼ 2.67 m
for the case of Au ¼ 0:053, and x¼ 2.05 m for the case of Au ¼ 0:33. The data of
Au ¼ 1 are from Wygnanski and Fiedler7 at the streamwise location of x¼ 0.59 m.
The solid curve represents the approximating Eq. (34) using an error function.
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splitter plate. Of the three Au, experimental data at Au ¼ 0:33 agree
best with the error function. At Au ¼ 1, the error function fits the
experimental data well on the low speed side but underpredicts the
data slightly on the high speed side.

It is logical to assume that as Au approaches 0, the shape of the
U� profile would become anti-symmetric. At Au ¼ 1 the experimental
U� profile seems to deviate slightly from anti-symmetry. Nevertheless,
the deviation from the error function is still relatively small even at
Au ¼ 1 (see the WF data in Fig. 5).

D. Mean transverse flow data, V�

Using an error function for U�, an approximate function for the
scaled mean transverse velocity can be obtained from Eq. (30) as (see
Appendix B for details on the integrals),

V�ðnÞ � B
2
erf

n
a

� �
� a
2
ffiffiffi
p
p e�

n2

a2 þ a
2
ffiffiffi
p
p : (35)

In physical experiment or numerical simulations, the mean trans-
verse velocity V is directly measured or computed, and the shifting
speed of the centerline Vo0 is not known a priori. Therefore, it is more
convenient to present the mean transverse flow data directly as
V=Vref ,

V
Vref
¼ V� þ Vo0

Vref
� B

2
erf

n
a

� �
� a
2
ffiffiffi
p
p e�

n2

a2 þ affiffiffiffiffi
2p
p þ B

2Au
: (36)

In turbulent mixing layers, the mean transverse velocity is much
smaller than the mean axial velocity, and its magnitude is often beyond
the accuracy range of the currently available measuring techniques.
Therefore, experimental V� data are very scarce, and the uncertainty in
the few available measurements is not clear. We first present the shapes
of approximate Eq. (35) for V� in Fig. 6(a) and the approximate Eq.
(36) for V=Vref in Fig. 6(b). As no data of B is available for Au < 0:3
(see Fig. 4), the three Au presented in Fig. 6 are Au ¼ 1:0; 0:5 and
Au ¼ 0:37. The B values used in calculating the curves in Fig. 6 are
B ¼ �0:25 for Au ¼ 1; B ¼ �0:22 for Au ¼ 0:5, and B ¼ �0:18 for
Au ¼ 0:37 (see Fig. 4).

By comparing data from different experiments on turbulent mix-
ing layers, one possible confusion is how the transversal direction is
defined. For example, Wygnanski and Fielder7 defined the positive y
(or n) direction from the high speed side to the low speed side. Other
experiments define the positive y (or n) direction from the low speed
side to the high speed side. The latter is used in this work. In the trans-
verse direction, fluid from the two sides is engulfed toward the middle
of the mixing layer. Thus, in the present coordinate system, V1 < 0
and V�1 > 0.

In Fig. 7, experimental V=Vref at two Au are compared with Eq.
(36). The difference between the experimental data and the approxi-
mate equation is not small. Given the large uncertainty in the mea-
surement of V, this is not surprising. Nevertheless, Eq. (36) seems to
capture well the shape of the mean transverse velocity. More experi-
mental and numerical simulation data are required to evaluate the
validity of Eq. (36).

E. Kinematic Reynolds shear stress data

Using an error function for U�, an approximate function for R�uv
can be obtained from Eq. (31) as (see Appendix B for details on the
integrals),

R�uv �
a

2
ffiffiffi
p
p
n
e�n2=a2 þ Au

h
erfðn=aÞe�n2=a2

þ
ffiffiffi
2
p 


erfðn=aÞ � erf
ffiffiffi
2
p

n=a

 ��io

: (37)

Note that Eq. (37) does not involve the parameter B explicitly. In other
words, the normalized Reynolds shear stress does not depend directly
on B. It is not clear how the accuracy of the simplified Reynolds shear
stress Eq. (37) is influenced approximating U� with an error function.
The validity of Eq. (37) is evaluated by experimental data. Shapes of
the approximate Eq. (37) are presented in Fig. 8(a) for three values of
Au.

As Au approaches 0, Eq. (37) indicates that the scaled Reynolds
shear stress can be approximated by a Gaussian function as

FIG. 6. (a) Approximate Eq. (35) for V� ¼ ðV � Vo0 Þ=Vref at three Au. (b) Approximate Eq. (36) for V=Vref. In the present coordinate system (y or n goes from the slow speed
side to the high speed side), V1 is negative, as the high-speed fluid is moving downward toward the center of the mixing layer, and V�1 is positive, as the slow-speed fluid is
moving upward.
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R�uv �
a

2
ffiffiffi
p
p e�n2=a2 : (38)

Thus, the scaled Reynolds shear stress for Au ¼ 0 is symmetric around
n ¼ 0, as shown in Fig. 8(a) and the asymptotic peak value of R�uv is
around 0.156 and occurs at n¼ 0.

As the normalized velocity difference Au increases, the peak val-
ues of R�uv increase slightly and peak location shifts slightly toward the
high speed side. At Au ¼ 1, the peak value of the Reynolds shear stress
is R�uvjmax � 0:163 and the peak location is n � 0:116, as shown in
Fig. 8(a).

Figure 8(b) shows the new scaling of the Reynolds shear stress
data from the experimental measurement of Mehta.14 Overall, the
shapes of the scaled experimental data are similar to those in Fig. 8(a),
but the difference and scatter are noticeable. For the case of
Au ¼ 0:33, the difference between the scaled peak value and predic-
tion is about 20%.

Given the critical role of Reynolds shear stress in the understand-
ing and modeling of turbulent flows, we will examine next the

maximum value of Reynolds shear stress in the turbulent mixing layer
and effects of the normalized velocity difference Au.

1. Effects of Au on the shapes of the kinematic Reynolds
shear stress

The effects of velocity difference on mixing layer development
have been systematically investigated by Mehta.14 The mean axial
velocity, kinematic Reynolds shear stress, and variances in the axial
and wall-normal directions at Au ¼ 0:053; 0:11; 0:18; 0:25; 0:33 were
measured in the experiments. In previous studies of mixing layers,
including Mehta’s, the kinematic Reynolds shear stress data are com-
monly reported as Ruv=U2

ref . For the convenience of comparison,
therefore, Eq. (37) is rewritten as

Ruv

U2
ref

� dd
dx

1
2Au

� �
a

2
ffiffiffi
p
p
n
e�n2=a2 þ Au

h
erfðn=aÞe�n2=a2

þ
ffiffiffi
2
p 


erfðn=aÞ � erf

 ffiffiffi

2
p

n=a
��io

: (39)

FIG. 7. Comparison of experimental V=Vref with approximate Eq. (36) at two Au values. (a) At Au ¼ 0:62 (LCW: experimental data by Li et al.23 at the streamwise location of
x¼ 0.05 m). (b). At Au ¼ 1:0 (LL: experimental data by Liepmann and Laufer6 at the streamwise location of x¼ 0.543 m. WF: Wygnanski and Fielder7 at the streamwise loca-
tion of x¼ 0.49 m).

FIG. 8. (a) New scaled kinematic Reynolds shear stress R�uv ¼ Ruv=UavgVref at three Au using Eq. (37). (b) Experimental data of Reynolds shear stress normalized by the
new scaling. The experimental data are from Mehta.14 The streamwise location of the measurement is x¼ 2.67 m. The dotted curve at Au ¼ 0:053 and the dashed curve at
Au ¼ 0:33 are from the approximating Eq. (37).
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In Fig. 9(a), Mehta’s experimental measurements of the Reynolds
shear stress data normalized by u2ref are presented vs n for five different
Au. In Fig. 9(b), the approximate Eq. (39) is plotted for the corre-
sponding Au. Figures 9(a) and 9(b) show that the approximate Eq.
(39) and experimental data exhibit qualitatively the same dependence
on Au. The most prominent feature in Fig. 9 is the higher peak values
of Ruv=U2

ref at lower Au. As Au increases, the peak Ruv=U2
ref value

decreases in both the experimental data and Eq. (39). Moreover, at
lowest Au ¼ 0:053, the experimental data and Eq. (39) are roughly
symmetric about n ¼ 0. With increasing Au, the peak Ruv=U2

ref loca-
tion shifts slightly toward the positive n direction (high speed side).

2. Effect of Au on the maximum Reynolds shear stress

An important quantity to evaluate the validity of a new scaling or
modeling for the Reynolds shear stress is the scaling of its peak value.
From Eq. (39), the peak value of Reynolds shear stress can be esti-
mated as

1
1

2Au

dd
dx

� � Ruv

U2
ref

����
max

� a
2
ffiffiffi
p
p � 0:156 or

Ruv

U2
ref

����
max

� 0:156
1

2Au

dd
dx

� �
:

(40)

Using a similarity analysis, Townsend1 derived a scaling for the peak
value of Reynolds shear stress as (see also Mehta16),

Ruv

U2
ref

����
max

� 0:155
1

2Au

dd
dx
: (41)

Thus, the present analysis produces the same scaling for the peak
Reynolds shear stress value as Townsend.

In Fig. 10, Mehta’s experimental peak Reynolds shear stress data,
jhuvijmax=U

2
ref , are presented as a function of Au. To better show the

correlation between jhuvijmax=U
2
ref and ½dddx 1

2Au
�, the experimental

0:14½dddx 1
2Au
� data are also plotted in Fig. 10. Despite scatter among dif-

ferent experimental studies, Fig. 10 displays an excellent correlation
between jhuvijmax=U

2
ref and ½dddx 1

2Au
�, indicating that jhuvijmax=U

2
ref

scales as ½dddx 1
2Au
�. However, the numerical factor 0.14 is about 10%

lower than the prediction in Eqs. (40) or (41). The cause of the dis-
crepancy is unclear; possible reasons include the use of an error func-
tion in the approximation function and/or in the definition and
measurement of dd=dx data.

IV. CONCLUSION

In this work, planar turbulent mixing layers are investigated by a
scaling patch approach, and the main results are summarized in Table
V. The effect of the velocity difference on the development of mixing
layers is found to be best captured by the normalized velocity differ-
ence Au. A prominent feature of a planar turbulent mixing layer is that
the mean average location y0:5 shifts toward the low speed stream side.
The ratio B between the growth rate of the mixing layer dd=dx and
the shift rate of dy0:5=dx is found to an important parameter in the
admissible scaling of the mean continuity equation.

FIG. 10. Maximum values of Reynolds shear stress scaled by ðUh � UlÞ2. Black
open symbols are 0:14½dddx 1

2Au
�. The experimental data are from Mehta.16

FIG. 9. (a) Reynolds shear stress profiles normalized by ðUh � UlÞ2 from experiments of Mehta.16 The streamwise location of the measurement is x¼ 2.67 m. (b). Reynolds
shear stress profiles calculated from the approximation Eq. (39), using dd

dx
1
2Au

as reported by Mehta.16
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In previous studies of turbulent free-shear flow, the properties of
the mean transverse flow rarely received attention, and the mean con-
tinuity equation is typically integrated to remove the mean transverse
flow from the analysis. A proper scale for the mean transverse flow is
identified here as Vref ¼ ðUh � UlÞdd=dx. Moreover, we show that
the proper scale for the Reynolds shear stress is a mixed scale of the
average axial Uavg and the transverse velocity scale Vref . Hence,
the proper scale for the Reynolds shear stress is directly related to the
velocity scale for the mean transverse flow.

Approximate equations have been developed for the mean trans-
verse flow and Reynolds shear stress. At the limit of Au ! 0, the
Reynolds shear stress profile can be approximated by a simple
Gaussian function. At larger Au, the shape of the Reynolds shear stress
profile is close to a Gaussian function, but its maximum location does
not coincide with the location of the mean axial velocity. The effect of
Au on the magnitude and shape of the mean transverse flow and
Reynolds shear stress have been examined.

The present analysis demonstrates that the scaling patch
approach, originally developed for wall-bounded turbulence, can also
be applied to free-shear turbulence, including planar turbulent mixing
layers. One challenge in current studies of turbulent flow is the predic-
tion of turbulent boundary layers under adverse pressure gradient
(APG TBL). Given that the mean streamwise velocity and Reynolds
shear stress distributions in planar turbulent mixing layers and the
outer region of APG TBL present close similarities, the present analy-
sis of mixing layers could be considered for application to APG TBL.
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APPENDIX A: DEFINITION OF MIXING LAYER GROWTH
RATE

The mixing layer growth rate is defined here as dd=dx, where
d is the mixing layer width. In order to fit an error function to the
U� data, another parameter a is used in Eq. (34). Thus the self-
similar parameter used in this work is

n
a
¼ y

da
: (A1)

In most previous studies of turbulent mixing layer flows (e.g.,
Birch and Eggers8 and Mehta16), the self-similar variable is defined as

f ¼def r y
x
; (A2)

where r is called the spreading parameter.
Comparing Eqs. (A1) and (A2), the spreading parameter used

in the previous studies is related to the mixing layer growth rate as

1
r
¼ a

dd
dx

or
1
r
¼ 1

a
dd
dx

: (A3)

At Au ¼ 1, the spreading parameter is

1
r0
¼ a

dd
dx

����
Au¼1

: (A4)

TABLE V. Summary of planar mixing layer results.

Normalized velocity difference Au ¼
Uh � Ul

Uh þ Ul

Normalized transverse location n ¼ y � y0:5
d

Characteristic scales Uref ¼ Uh � Ul; Vref ¼ Uref
dd
dx

; Ruv;ref ¼ Uavg Vref

Admissible scaling of continuity equation 0 ¼ �B dU
�

dn
� n

dU�

dn
þ dV�

dn
; where B ¼ dy0:5=dx

dd=dx

Admissible scaling of momentum equation 0 ¼ dV�

dn
� 2Au

Vo0

Vref

dU�

dn
þ 2Au U�

dV�

dn
� V�

dU�

dn

� �
þ dR�uv

dn
:

Approximate equation for V� V� � B
2
erf

n
a

� �
� a
2
ffiffiffi
p
p e�

n2

a2 þ a
2
ffiffiffi
p
p , where a¼ 0.5518

Approximate equation for R�uv R�uv �
a

2
ffiffiffi
p
p e�n2=a2 þ Au

h
erfðn=aÞe�n2=a2 þ

ffiffiffi
2
p 


erfðn=aÞ � erf

 ffiffiffi

2
p

n=a
��i� 

:
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The ratio r0=r used in Birch and Eggers’s paper is

r0

r
¼ 1

dd
dx

����
Au¼1

2
64

3
75
dd
dx
: (A5)

Birch and Eggers8 suggested an optimum value of r0 ¼ 11.
However, they also pointed out that the optimum value of r0 may
be less than 11 in turbulent mixing layers with tripped initial
boundary layers. In contrast, Mehta and Westphal14 reported a
larger growth rate in a mixing layer without a trip wire. The differ-
ence in the r0 or dd=dx from the presence of trip wire may cause
discrepancy in the prediction of the peak Reynolds shear stress
value.

APPENDIX B: INTEGRALS INVOLVING THE ERROR
FUNCTION

In Sec. III C, the error function is used to approximate the
mean axial velocity in planar turbulent mixing layers
U� ¼ 0:5erfðn=aÞ. Then, the derivative of the mean axial velocity is

dU�

dn
¼ 1

a
ffiffiffi
p
p eð�n2=a2Þ: (B1)

The following integrals are used in the derivation of the approxima-
tion functions for V� and R�uv in Secs. III D and III E.ðn

�1
n
dU�

dn

� �
dn ¼ � a

2
ffiffiffi
p
p eð�n2=a2Þ; (B2a)

ðn

0
n
dU�

dn

� �
dn ¼ � a

2
ffiffiffi
p
p eð�n2=a2Þ þ a

2
ffiffiffi
p
p ; (B2b)

ð1
�1

n
dU�

dn

� �
dn ¼ 0; (B2c)

ðn

�1
nU�

dU�

dn

� �
dn ¼ a

8
ffiffiffi
p
p
� ffiffiffi

2
p

erf
ffiffiffi
2
p

n=a

 �

� 2erfðn=aÞeð�n2=a2Þ
�
þ

ffiffiffi
2
p

a
8
ffiffiffi
p
p ; (B2d)

ð1
�1

nU�
dU�

dn

� �
dn ¼

ffiffiffi
2
p

a
4
ffiffiffi
p
p : (B2e)
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