
Phys. Fluids 34, 065116 (2022); https://doi.org/10.1063/5.0097588 34, 065116

© 2022 Author(s).

Scaling patch analysis of planar turbulent
wakes
Cite as: Phys. Fluids 34, 065116 (2022); https://doi.org/10.1063/5.0097588
Submitted: 29 April 2022 • Accepted: 24 May 2022 • Published Online: 07 June 2022

 Tie Wei (韦铁),  Daniel Livescu and  Xiaofeng Liu (刘霄峰)

https://images.scitation.org/redirect.spark?MID=176720&plid=1777326&setID=405127&channelID=0&CID=652684&banID=520678856&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6ba90b713ed140e4fefb1b31c42f66a862d56784&location=
https://doi.org/10.1063/5.0097588
https://doi.org/10.1063/5.0097588
https://orcid.org/0000-0001-7256-6052
https://aip.scitation.org/author/Wei%2C+Tie
https://orcid.org/0000-0003-2367-1547
https://aip.scitation.org/author/Livescu%2C+Daniel
https://orcid.org/0000-0001-9800-6870
https://aip.scitation.org/author/Liu%2C+Xiaofeng
https://doi.org/10.1063/5.0097588
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0097588
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0097588&domain=aip.scitation.org&date_stamp=2022-06-07


Scaling patch analysis of planar turbulent wakes

Cite as: Phys. Fluids 34, 065116 (2022); doi: 10.1063/5.0097588
Submitted: 29 April 2022 . Accepted: 24 May 2022 .
Published Online: 7 June 2022

Tie Wei (韦铁),1,a) Daniel Livescu,2,b) and Xiaofeng Liu (刘霄峰)3,c)

AFFILIATIONS
1Department of Mechanical Engineering, NewMexico Institute of Mining and Technology, Socorro, NewMexico 87801, USA
2CCS-2, Los Alamos National Laboratory, Los Alamos, NewMexico 87545, USA
3Department of Aerospace Engineering, San Diego State University, San Diego, California 92182, USA

a)Author to whom correspondence should be addressed: tie.wei@nmt.edu
b)Electronic mail: livescu@lanl.gov
c)Electronic mail: xiaofeng.Liu@sdsu.edu

ABSTRACT

A scaling patch approach is used to investigate the proper scales in planar turbulent wakes. A proper scale for the mean axial flow is the well-
known maximum velocity deficit Uref ¼ U1 � Uctr, where U1 is the free stream velocity and Uctr is the mean axial velocity at the wake cen-
terline. From an admissible scaling of the mean continuity equation, a proper scale for the mean transverse flow is found as
Vref ¼ ðdd=dxÞUref , where dd=dx is the growth rate of the wake width. From an admissible scaling of the mean momentum equation, a
proper scale for the kinematic Reynolds shear stress is found as Ruv;ref ¼ U1Vref , which is a mixed scale of the free stream velocity and the
mean transverse flow scale. Expressions are derived for the scaled mean transverse velocity and Reynolds shear stress in the far field of planar
turbulent wakes. Using a Gaussian function for the mean axial velocity deficit, approximate functions for the scaled mean transverse velocity
and Reynolds shear stress are developed and found to agree well with experimental and simulation data. This work reveals that the mean
transverse flow, despite its small magnitude, plays an important role in the scaling and understanding of the planar turbulent wake.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0097588

I. INTRODUCTION

Free-shear flows occur when there are no solid walls directly
within flow field, for example, jets, wakes, and mixing layers. Such
flows are encountered in a wide range of practical applications includ-
ing flying in the air, sailing in the ocean, combustion, propulsion,
atomization, and environmental flows. Better understanding of free-
shear turbulence is necessary to improve the design and operation of
many engineering devices. Due to its simple geometry and no wall
effects, turbulent free-shear flows are also of great theoretical interest
to gain insight into the fundamental properties of turbulent flows in
general. Turbulent free-shear flows have been studied for over a cen-
tury experimentally, theoretically, and numerically.1–27 The purpose of
this paper is to, using a relatively new scaling patch approach, deter-
mine the proper scaling of planar turbulent wakes. The configuration
of a planar wake, coordinate system, and notations is shown in Fig. 1.

Gough11 carried out a detailed study of flow over and behind a
flat plate using physical experiments and numerical simulations. Using
hot-wire, he measured mean flow and turbulence statistics in one
symmetric and one asymmetric wake. Using a flat splitter plate
with tapered trailing edge, Liu15 performed comprehensive studies of
wake flows under constant pressure, adverse pressure, and favorable

pressure gradients. The effect of streamwise pressure gradient is iso-
lated by the use of constant pressure gradients, combined with identi-
cal initial conditions. The flow field survey was conducted by using
both laser Doppler anemometry and hot-wire anemometry. The
experimental study was complemented by a self-similarity analysis,
and a new scaling has been proposed for the Reynolds stresses.16,18

Hickey28 performed a direct simulation and theoretical study of sub-
and supersonic wakes, and investigated three distinct wake evolution
scenarios: the Kelvin–Helmholtz transition, the bypass transition in an
asymmetric wake, and the initially turbulent wake. Using a variety of
wake generators (including airfoil, cylinders, flat plate, screen, and
solid strip), Wygnanski, Champagne, and Marasli29 studied the effects
of wake generator on the turbulent far wake. Nakayama30 measured
the mean and fluctuating velocities using pressure and hot-wire probes
in the attached boundary layer and wakes of two airfoil models at a
low Mach number. His results indicate that the flow around the con-
ventional airfoil is a minor perturbation of a symmetric flat-plate flow
with small wake curvature and weak viscous-inviscid interaction.

Despite decades of intensive research, a fundamental question
remains open in the study of turbulent wake flows: whether a “univer-
sal self-similar” state exists in the flow far away from its initiation.
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One hypothesis proposed by Townsend4 is that free-shear flows
become “self-similar” at a sufficient downstream distance. Empirically,
the mean axial velocity deficit from different experiments and different
axial locations, when normalized as ðU1 � Uðx; yÞÞ=ðU1 � UctrðxÞÞ,
is observed to collapse onto a single curve; that is, the U deficit profiles
become self-similar. Given the direct connection among the mean
axial velocity, mean transverse velocity, and Reynolds shear stress in
the governing equations, one may assert that the mean transverse flow
and the mean Reynolds shear stress should also become self-similar in
the far field, if U profiles become self-similar.

Wygnanski, Champagne, and Marasli6 observed that neither the
normalized Reynolds shear stress profiles Ruv=ðU1 � UctrÞ2 nor the
velocity variance profiles huui=ðU1 � UctrÞ2 from different wake gen-
erators collapse onto a single curve. These profiles have the same
shape, but the magnitudes depend on the initial conditions. The lack
of collapse among Ruv=ðU1 � UctrÞ2 profiles is obviously not consis-
tent with the concept of self-similarity. To explain the findings of
Wygnanski et al.,6 George7 performed a similarity analysis and pro-
posed that there may exist a multiplicity of self-preserving states
instead of one universal self-similar state.

In traditional similarity analyses,4 the mean continuity equa-
tion is usually integrated such that the mean transverse velocity does
not appear directly in the analysis process or the final results. In this
work, we apply a scaling patch approach to investigate the scaling
properties of planar turbulent wakes, and one goal is to determine a
proper scaling for the mean transverse flow. In Sec. II, the governing
equations for the mean flow are presented, and self-similar variables
are defined. Proper scales for the mean transverse flow and the
Reynolds shear stress are then determined by seeking admissible
scaling for the mean continuity equation and the mean momentum
equation. Analytical expressions for the mean transverse flow and
Reynolds shear stress are also obtained. In Sec. III, the analysis
results are compared with experimental data. Section IV summarizes
the work.

II. SCALING PATCH ANALYSIS OF THE GOVERNING
EQUATIONS

This work considers incompressible, single phase flows. Free-
shear flows are “slender”; they spread slowly in the transversal direc-
tion.1,13 Therefore, Prandtl’s boundary layer equations have been used
to study turbulent free-shear flows. The mean continuity equation and
mean axial-momentum equation are1,4,13,31

0 ¼ @U
@x

þ @V
@y

; (1a)

0 ¼ �U
@U
@x

� V
@U
@y

þ �
@2U
@y2

þ @Ruv

@y
: (1b)

Herein, x and y are the axial and transverse coordinates, respectively. �
is the kinematic viscosity. An upper case letter denotes a mean flow
variable, and a lower case letter denotes its fluctuation. For example, U
is the mean velocity in the axial direction, and u is the velocity fluctua-
tion in the axial direction. V is the mean transverse velocity, and v is
the velocity fluctuation in the transverse direction. The kinematic
Reynolds shear stress is denoted as Ruv ¼ �huvi, where angle brackets
h i denote Reynolds averaging. Note that the pressure gradient term
and @ðhuui � hvviÞ=@x term are neglected in the mean momentum
equation, as they can be shown to be insignificant for this flow.1,13 The
corresponding boundary conditions for planar turbulent wakes are
listed in Table I.

In this paper, we apply a scaling patch analysis to investigate pla-
nar turbulent wakes. Scaling patch approach was originally developed
to explore the multi-layer scaling and structure of wall-bounded turbu-
lent flows,32–35 and has been successfully applied to buoyancy-driven
convection,36 and recently to planar turbulent jet37 and turbulent
plumes.38 Whereas some of the concepts and ideas in the scaling patch
approach are similar to previous scaling approaches, the logical train
of thought in the new approach is distinctly different.39,40

The objective of a scaling patch analysis is to reveal naturally the
relative magnitudes of different terms in an engineering equation.
Such an equation typically consists of the balance of more than two
terms. However, different terms do not contribute equally to the bal-
ance of the equation. The relative magnitudes of terms are not clear
when the equation is presented in a dimensional form. Through a sys-
tematic transformation of the dimensional equation into a dimension-
less form, the scaling patch approach is able to determine the proper
scales for the different terms in the equation. A key concept in the scal-
ing patch approach is the admissible scaling, which requires that the
scaled governing equations have at least two terms with a nominal
order of magnitude 1, and the scaled boundary conditions should also
be zero or nominal order of magnitude 1.39,40

The first step in a scaling patch approach is to normalize the flow
variables by proper reference scales

U� ¼def U1 � Uðx; yÞ
Uref ðxÞ ; (2)

TABLE I. Boundary conditions for planar turbulent wakes.

y¼ 0 U ¼ Uctr; V ¼ 0; Ruv ¼ 0
y ¼ 61 U ¼ U1; V ¼ 0; Ruv ¼ 0

FIG. 1. Sketch of a planar wake flow initialized by a generic wake generator. x
denotes the axial direction aligned along the wake centerline, and y denotes the
transverse direction. U1 is the free stream velocity, Uctr is the mean axial velocity
at the wake centerline, and Us ¼ U1 � Uctr is the velocity deficit at the wake cen-
terline. The wake half-width is commonly denoted as d or y0:5.
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V� ¼def Vðx; yÞ
Vref ðxÞ ; (3)

R�
uv ¼

def Ruvðx; yÞ
Ruv;ref ðxÞ : (4)

The reference scales Uref ; Vref , and Ruv;ref will be determined in the
process of seeking an admissible scaling for the boundary conditions
and the mean continuity and momentum equations. Far away from
the wake generator, it has been observed that a proper length scale for
the variation in the transverse direction is the wake width, and the nor-
malized transverse distance is denoted as

g ¼def y
dðxÞ ; (5)

where d is a measure of the wake width. To transform the governing
equations into the similarity variables, we first note that the derivatives
of g with respect to x and y are

@g
@x

¼ � 1
d
dd
dx

g; (6a)

@g
@y

¼ 1
d
: (6b)

Subsequently, the derivatives of U with respect to x is

@U
@x

¼ � dUref

dx
U� þ Uref

d
dd
dx

g
dU�

dg
; (7)

and the derivatives of U, V, and Ruv with respect to y are

@U
@y

¼ �Uref

d
dU�

dg
; (8a)

@V
@y

¼ Vref

d
dV�

dg
; (8b)

@Ruv

@y
¼ Ruv;ref

d
dR�

uv

dg
: (8c)

Substituting the self-similar variables and their derivatives, the
mean continuity equation and the mean momentum equation become

0 ¼ � dUref

dx
U� þ Uref

d
dd
dx

g
dU�

dg
þ Vref

d
dV�

dg
; (9a)

0 ¼ ðU1 � UrefU
�ÞVref

d
dV�

dg
þ ðVrefV

�ÞUref

d
dU�

dg

� �Uref

d2
d2U�

dg2
þ Ruv;ref

d
dR�

uv

dg
: (9b)

The scaled boundary conditions are listed in Table II.
Based on the scaled boundary conditions in Table II, a natural

scale for the mean axial velocity deficit is Uref ¼ U1 � Uctr, because

the rescaled boundary conditions at g ¼ 0 will be U�jg¼0 ¼ 1, and all
the other rescaled boundary conditions are 0. Next, proper scaling for
Vref and Ruv;ref is determined by seeking admissible scaling for the
mean continuity equation and the mean momentum equation.

A. Admissible scaling of the continuity equation

Multiplying d=Vref onto Eq. (9a) produces a dimensionless conti-
nuity equation as

0 ¼ � d
Vref

dUref

dx

� �
U� þ Uref

Vref

dd
dx

� �
g
dU�

dg
þ dV�

dg
: (10)

Integrating Eq. (10) from g ¼ 0 (wake centerline) to g ¼ 1 and
applying boundary conditions yields

0 ¼ d
Vref

dUref

dx
þ Uref

Vref

dd
dx

� �ð1
0
U�dg: (11)

As
Ð1
0 U�dg is not zero, the integral constraint for the mean continu-

ity equation is then

d
Vref

dUref

dx
þ Uref

Vref

dd
dx

¼ 0 or
dd
dx

¼ � d
Uref

dUref

dx
: (12)

This integral constraint has been derived and used by previous
researchers, for example, Narasimha and Prabhu,41 Moser et al.,42

Liu,19 and George and Davidson.20 Integrating the integral constraint
Eq. (12) yields

Uref ðxÞdðxÞ ¼ const: (13)

Hence, to approach a self-similar state in the far wake, the product of
Uref ðxÞdðxÞ has to remain a constant. However, the integral constraint
does not dictate individually any specific functional form for dðxÞ or
Uref ðxÞ.

Applying the integral result Eq. (12), the continuity Eq. (10) can
be rewritten as

0 ¼ Uref

Vref

dd
dx

� �
U� þ g

dU�

dg

� �
þ dV�

dg
: (14)

For Eq. (14) to be an admissible scaling, a natural scale for the mean
transverse flow is

Vref ¼ dd
dx

Uref or Vref ¼ �d
dUref

dx
; (15)

and the dimensionless continuity equation becomes

0 ¼ U� þ g
dU�

dg

� �
þ dV�

dg
: (16)

Integrating Eq. (16) and applying boundary conditions produces a
solution for the mean transverse flow as

V� ¼ �gU�: (17)

Equation (17) indicates that if U� is self-similar (function of g only),
V� will be self-similar as well. Furthermore, as U� is bounded between
0 and 1, V� also varies between 0 and 6Oð1Þ (g can be both positive
and negative), a good indication of natural scaling in the scaling patch
approach.32,39,40

TABLE II. Scaled boundary conditions for planar turbulent wakes.

g ¼ 0
U� ¼ U1 � Uctr

Uref
;

V� ¼ 0; R�
uv ¼ 0:

g ¼ 61 U� ¼ 0; V� ¼ 0; R�
uv ¼ 0:
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Next, the analysis is applied to the mean axial momentum equa-
tion to determine a proper scaling for Ruv and provide an analytical
solution for the scaled Reynolds shear stress.

B. Admissible scaling of the mean axial momentum
equation

Multiplying d=ðU1Vref Þ onto Eq. (9b) produces a dimensionless
mean momentum equation as

0 ¼ dV�

dg
� Uref

U1

� �
U� dV

�

dg
� V� dU

�

dg

� �
� Uref

U1

� �
�

dVref

d2U�

dg2

þ Ruv;ref

U1Vref

� �
dR�

uv

dg
: (18)

At a sufficient downstream distance in high Reynolds number turbulent
wake flows, the centerline velocity deficit is much smaller than the free
stream velocity, that is,Uref ¼ ðU1 � UctrÞ � U1. As a result, the sec-
ond term on the right of Eq. (18) is a high-order term and can be
neglected. The viscous term is also a high-order term due to the small
pre-factor ofUref=U1 and �=ðdVref Þ. Thus, for Eq. (18) to be an admis-
sible scaling, a proper scale for the kinematic Reynolds shear stress is

Ruv;ref ¼ U1Vref ¼ dd
dx

U1Uref ; (19)

and the mean momentum equation in the axial direction can be sim-
plified as

0 ¼ dV�

dg
þ dR�

uv

dg
: (20)

Integrating Eq. (20) and applying boundary conditions produces a
solution to the Reynolds shear stress as

R�
uv ¼ �V� ¼ gU�: (21)

Hence, the shapes of the scaled Reynolds shear stress and mean trans-
verse flow are the same, but with the opposite sign. The scaled
Reynolds shear stress R�

uv is also self-similar and varies within the
range between 0 and6Oð1Þ.

The scale of ðdd=dxÞU1Uref had been used in the past to scale
the Reynolds shear stress,18,20,21,42–44 but the direct connection
between the Ruv;ref and Vref had not been established. Here, we show
explicitly that the proper scale for the Reynolds shear stress is a mixed
scale of U1 and Vref .

III. COMPARISONSWITH EXPERIMENTAL DATA

In this section, the analytical results are compared with experi-
mental data. Figure 2 presents the experimental measurements of the
mean axial velocity deficit from several independent studies. The nor-
malized mean axial velocity deficit profiles shown in the figure can be
approximated by a simple Gaussian function4,13

U� � e�ag2 ; (22)

where a ¼ lnð2Þ � 0:693 arising from the definition of wake half-
width d as the location where U�ðg ¼ 1Þ ¼ 0:5. To better fit the
experimental data, in particular near the wake edge, Wygnanski et al.6

and Liu et al.16 had proposed a slightly more complicated function

U�ðgÞ � eð�0:637g2�0:056g4Þ: (23)

A. Mean transverse velocity profiles

In experimental studies of wake flows, the mean transverse veloc-
ity measurement is rarely presented. Gough and Hancock11 measured
the mean transverse velocity in a relatively low Reynolds number wake
flow. As shown in Fig. 3(a), the mean transverse velocity profile of a
wake flow is anti-symmetric about the wake centerline, indicating that
ambient fluids move toward the wake core from the bottom and top.
From Eq. (17), the mean transverse velocity can be approximated as

V�ðgÞ � �g e�0:693g2 ; (24a)

V�ðgÞ � �g eð�0:637g2�0:056g4Þ: (24b)

The approximation equations for V� exhibit a peak and a trough
within the wake. The locations of the peak and trough can be found by
solving dV�=dg ¼ 0. The peak transverse velocity location and value
are

g � 61=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þ

p
� 60:85; (25a)

jV�jmax � 0:515: (25b)

Figure 3(a) shows that the approximate Eq. (24a) or Eq. (24b)
capture well the shape of the measured mean transverse velocity. The
peak and trough locations in the experimental data shown in Fig. 3(a)
agree well with the analytical approximation; there is scatter between
the peak value and the analytical result of jV�jmax ¼ 0:515. The scatter
can be attributed to (1) uncertainty in the measurements of V and (2)
uncertainty in the calculation of Vref ¼ Uref dd=dx. There is uncer-
tainty in the determination of the wake width d, and uncertainty in the
calculation of dd=dx using simple finite difference.

The analytical result for V is only valid in the far wake for
ðU1 � UctrÞ=U1 � 1, as “self-similarity” assumption is used to
obtain the continuity equation in the form of Eq. (9a) or Eq. (10).
Figure 3(b) shows that jV jmax=Vref asymptotically approaches to the
analytical result of 0.515 when ðU1 � UctrÞ=U1 becomes smaller
than 0.2, which occurs in the far field of the wake. As shown in Liu

FIG. 2. Mean axial velocity deficit and approximate functions of Eqs. (22) and (23).
Experimental data are from Gough and Hancock11 (GH), Hickey,28 Liu,15 Ong and
Wallace12 (OW), and Wygnanski et al.6 (WCM).
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et al.,16 when scaled by d0:5 and U1 � Uctr, the mean velocity defect
profiles in planar turbulent wakes under zero pressure gradient,
adverse pressure gradient, or favorable pressure gradient all collapse
onto a “universal” shape for x=h0 > 40. Here, h0 is the initial wake
momentum thickness. Thus x=h0 � 40 can be viewed as the bound of
the far wake. For ðU1 � UctrÞ=U1 > 0:2, Fig. 3(b) shows that
jV jmax=Vref is smaller than 0.515, indicating that the reference velocity
scale valid in the self-similar region Vref ¼ Urefdd=dx overestimates
the mean transverse velocity flow in the near-wake region. The scatter
in Fig. 3(b) is mainly attributed to the uncertainties mentioned above.

B. Reynolds shear stress profiles

Using a Gaussian function for U�, the analytical Eq. (21) for the
scaled Reynolds shear stress can be approximated as

R�
uvðgÞ � g e�0:693g2 ; (26a)

R�
uvðgÞ � g eð�0:637g2�0:056g4Þ: (26b)

The approximation functions for R�
uv also exhibit a peak and a trough

within the wake. The location and value of the peak and trough of the
scaled Reynolds shear stress profile are also g ¼ 6 0:85 and
jR�

uvjmax � 0:515.
Figure 4(a) shows that the approximate equations capture the

experimental measurements of the Reynolds shear stress reasonably
well. The peak and trough locations of the Reynolds shear stress pro-
files agree well with the analytical result, but there is scattering in the
peak and trough values.

Figure 4(b) shows that, far from the wake generator or
ðU1 � UctrÞ=U1 . 0:2; U1Vref is a proper scale for the Reynolds
shear stress as its maximum value scaled by this reference scale asymp-
totically approach a constant around 0.515, which is of a nominal
order 1 as required by the admissible scaling. For ðU1 � UctrÞ=U1
> 0:2; jRuvjmax=ðU1Vref Þ is smaller than 0.515, indicating that
U1Vref overpredicts the Reynolds shear stress in the near-wake region
and is not an appropriate scale when the wake flow has not reached a
self-similar state.

FIG. 3. (a) Mean transverse velocity and approximate functions of Eqs. (24a) and (24b). (b) Maximum mean transverse velocity normalized by Vref ¼ Urefdd=dx vs
ðU1 � UctrÞ=U1. Data of Gough and Hancock11 (GH).

FIG. 4. (a) Reynolds shear stress and approximate functions from Eqs. (26a) and (26b). (b) Maximum Reynolds shear stress normalized by U1Vref vs ðU1 � UctrÞ=U1.
Data of Gough and Hancock11 (GH), data of Liu15 (L), and data of Nakayama30 (N).
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C. Characteristic of force balance in planar turbulent
wakes

Using the approximate functions for U�; V�, and R�
uv in the self-

similar regions, the terms in the mean momentum Eq. (18) are calcu-
lated and plotted in Fig. 5. Far away from the wake generator, the
momentum equation is balanced by two forces: advective force and
turbulent force (gradient of Reynolds shear stress), while the viscous
force or the term of @Ruu=@x is negligible. Near the wake core, the
Reynolds shear stress gradient is positive (a driving force) and the
advective force is negative (a drag force). Away from the wake core,
Reynolds shear stress gradient becomes negative (or a drag force), and
the advective force becomes a driving force of the wake flow.

The advective force can be decomposed as Fadve ¼ dV�=dg
þðU1 � UctrÞ=U1 ð�U�dV�=dgþ V�dU�=dgÞ. The dominant
contribution to the advective force is the term of dV�=dg, because the
other terms have a pre-factor of ðU1 � UctrÞ=U1, which is small in
the far wake. In Fig. 5, ðU1 � UctrÞ=U1 is set as 0.1 for the illustration
purpose. At smaller ðU1 � UctrÞ=U1 in the far wake, the contribu-
tion of ðU1 � UctrÞ=U1 ð�U�dV�=dgþ V�dU�=dgÞ is smaller than
that in the figure. In the near-wake region where U1 � Uctr is not
much smaller than U1, the flow has not reached a self-similar state
and the contributions of different terms in the mean momentum
equation are more complicated than that sketched in Fig. 5. Moreover,
the relative contributions of different forces vary in the axial direction
in the near-wake region.

IV. CONCLUSIONS

A relatively new scaling patch approach is used in this work to
investigate the scaling properties of planar turbulent wakes. By seeking
an admissible scaling for the mean continuity equation, a proper scale
for the mean transverse flow is found as Vref ¼ ðdd=dxÞUref . From an
admissible scaling of the mean momentum equation, a proper scale
for the kinematic Reynolds shear stress is found as Ruv;ref ¼ U1Vref ,
which is a mixed scale of U1 and Vref . In the far wake region, an ana-
lytical equation is derived for the scaled mean transverse flow as

V� ¼ �gU�, and analytical equation for the scaled Reynolds shear
stress as R�

uv ¼ gU�. Using a Gaussian function for U�, approximate
functions for V� and R�

uv are presented and are found to agree well
with experimental data. The main results of this work are summarized
in Table III.

Proper scaling of turbulent flow variables is important in present-
ing and evaluating experimental/numerical data. More importantly,
proper scaling is essential in understanding the underlying physics
and developing turbulence models. In this work, we reveal that proper
scaling lies at the root of a fundamental question in turbulent wake
flows whether a universal self-similar state exists in the fields far from
its initiation. By applying proper scalings to the flow variables, the
mean axial flow, the mean transverse flow, and the Reynolds shear
stress do approach a self-similar state in the far field of planar turbu-
lent wakes.

Although some of the relations have been found in the past, this
work uses a systematic approach to derive the scaling properties in pla-
nar turbulent wakes. One key finding is the important role of the
mean transverse flow in the understanding and scaling of turbulent
wake flows.
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